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We complete several generating functions to non-holomorphic modular forms in two

variables. For instance, we consider the generating function of a natural family of

meromorphic modular forms of weight two. We then show that this generating series

can be completed to a smooth, non-holomorphic modular form of weights 3
2 and

two. Moreover, it turns out that the same function is also a modular completion of

the generating function of weakly holomorphic modular forms of weight 3
2 , which

prominently appear in work of Zagier [27] on traces of singular moduli.

1 Introduction and Statement of Results

1.1 Modular completions

When studying an interesting sequence (an)n∈Z, it is often helpful to consider the

generating function

∑
n∈Z

anqn.

An important class of examples is given by theta functions associated with positive

definite quadratic forms, which are generating functions of representation numbers.

Studying the analytic properties of such a generating function provides rich analytic
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6332 K. Bringmann et al.

tools to obtain information about the sequence an. Famous examples include explicit

formulas for the number of representations of a positive integer as a sum of four and

eight squares, whose generating functions are modular forms of weight two and four,

respectively, or the partition function p(n), whose generating function is essentially a

modular form of weight −1
2 . The latter fact plays a crucial role in the ingenious proof of

Rademacher’s exact formula [4, Theorem 5.1] for p(n).

In a different direction, the following generating function of certain cusp forms

fk,d was considered by Kohnen and Zagier [28]. For integers k ≥ 2, they defined (e(x) :=
e2π ix, τ , z ∈ H := {z ∈ C : Im(z) > 0})

�k(τ , z) :=
∞∑

d=1

dk− 1
2 fk,d(z)e(dτ),

where for d ∈ N

fk,d(z) :=
∑

Q∈Qd

Q(z, 1)−k.

Here, for a discriminant δ, Qδ denotes the set of integral binary quadratic forms of

discriminant δ. It is not hard to see that each fk,d is a cusp form of weight 2k for the full

modular group � := SL2(Z). These functions were introduced by Zagier [25] in his study

of the Doi–Naganuma lift. Katok [22] showed that they can be written as hyperbolic

Poincaré series. Using the modularity of the fk,d’s it follows that z �→ �k(τ, z) is modular

of weight 2k. It turns out that τ �→ �k(τ, z) is also modular (of weight k + 1
2 ). To see this,

one rewrites �k as (up to a constant)

∞∑
n=1

nk−1
∑
d|n

dkPk+ 1
2 ,d2(τ )e(nz),

where the functions Pk+ 1
2 ,d2 are certain exponential Poincaré series. A key property of

�k(τ , z) is that it is the holomorphic kernel function for the Shimura and Shintani lifts.

To be more precise, for f a cusp form of weight 2k and g a cusp form of weight k + 1
2 in

Kohnen’s plus-space, the Shimura lift of g basically equals 〈g, �k(·, −z)〉 and the Shintani

lift of f is essentially 〈 f , �k(−τ , ·)〉 [23].

In the following we consider a related generating function, where several

complications arise. We let j be the usual modular j-invariant. Its derivative j′ is a

weakly holomorphic modular form of weight two for �. It is well-known that � acts

on Q−d with finitely many orbits if d �= 0. For each positive d, we consider the
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Modular Completion of Generating Functions 6333

meromorphic modular form of weight two given by

Fd(z) := −2i
∑

Q∈�\Q−d

1

ωQ

j′(z)

j(z) − j(zQ)
,

where ωQ is the size of the stabilizer of Q in PSL2(Z) and zQ is the complex multiplication

(CM) point associated with Q, that is, zQ is the unique root of Q(z, 1) contained in H.

These functions are CM traces of

j′(z)

j(z) − j(τ )
= −2π i

∞∑
n=0

jn(τ )e(nz), (1.1)

where jn for n ∈ N0 is the unique weakly holomorphic modular function for � with

Fourier expansion jn(τ ) = e(−nτ) + O(e(τ )), and the equality holds whenever Im(z) >

Im(Mτ) for all M ∈ �. Note that (1.1) is equivalent to the famous denominator formula

for the Monster Lie algebra.

In this paper, we are interested in the (formal) generating function

A(τ , z) :=
∑
d>0

Fd(z)e(dτ).

However, leaving convergence issues aside, since Fd has poles at all of the CM points

of discriminant −d and the set of all CM points is dense in H, the resulting function

would be undefined on a dense set in H and thus badly behaved. In this article, we

study how to “complete” such a formal generating function to converge everywhere on

H × H to a smooth function, which is modular in both variables. This is analogous to

the modular completion of the mock theta functions in the work of Zwegers [29], which

turn out to be harmonic Maass forms. To state our result, we extend the definition of Fd

to include non-positive discriminants. To be more precise, for d ∈ −N0 such that −d is

a discriminant, we set

Fd(z) :=
⎧⎨⎩

2π
6 E∗

2(z) if d = 0,

0 if d < 0,

where E∗
2 is the non-holomorphic Eisenstein series of weight 2 for � defined in (2.6)

below. Furthermore, we let (z = x + iy, τ = u + iv)

F̃d(z, v) := −2
∑

Q∈Q−d\{0}

Qz

Q(z, 1)
exp

(
−4πv

|Q(z, 1)|2
y2

)
,
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6334 K. Bringmann et al.

where for Q = [a, b, c], we set Qz := 1
y (a|z|2 + bx + c). We obtain the following result (see

Theorem 5.5 for a proof).

Theorem 1.1. For d > 0 the function (z, v) �→ Fd(z) + F̃d(z, v) extends to a smooth

function on H × R+ if we define its value at a CM point zQ of discriminant −d by

limz→zQ
(Fd(z) + F̃d(z, v)). Furthermore, the series

A∗(τ , z) :=
∑
d∈Z

(
Fd(z) + F̃d(z, v)

)
e(dτ),

converges locally uniformly on H × H to a smooth function. It is modular of weight two

for � in z and of weight 3
2 for �0(4) in τ for �0(4).

Remark 1.2.

(i) Note that in contrast to Fd, the function F̃d(z, v), which is used to complete

the generating function is defined in elementary terms and resembles the

d-th Fourier coefficient of a theta function —except for the denominator

which causes the poles.

(ii) We also remark that our completion A∗(τ , z) is closely related to upcoming

work of Bruinier, Funke and Imamoglu [8], in which the lift of meromorphic

modular forms like (1.1) against the Siegel theta function is studied.

Theorem 1.1 immediately begs the question whether the Fourier coefficients

of A∗(τ , z) in z are also of interest. As it turns out, the very same function is also a

completion of a formal generating function of another natural family of modular forms,

which we describe in the following. For a positive discriminant D we denote by gD the

unique weakly holomorphic modular form of weight 3
2 for �0(4) in Kohnen’s plus space

having principal part e(−Dτ). In their influential paper [16], Duke, Imamoglu, and Tóth

considered the finite sum

g0(τ ) −
∑

0<m≤M

∑
n|m

ngn2(τ )e(mz), (1.2)

where g0 := H is Zagier’s non-holomorphic Eisenstein series of weight 3
2 for �0(4)

defined in (2.4). After taking the (regularized) inner product of this sum against gD

for a positive non-square discriminant D > 0 the limit as M → ∞ exists. They then

show that this limit is the generating function of the D-th traces of cycle integrals of

the modular functions jm and a modular integral of weight two with rational period
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Modular Completion of Generating Functions 6335

function. Without taking the inner product first, the limit as M → ∞ in (1.2) does

not exist. However, we show that it can again be completed to a convergent generating

function, which is modular in both variables. It turns out that this generating function

in fact equals A∗(τ , z), giving its Fourier expansion in z (see Theorem 5.1 for a precise

statement in the vector-valued setting).

The function A∗(τ, z) satisfies differential equations under the Laplace operators

and it is related to the Siegel and the Kudla–Millson theta functions by the Maass

lowering operator. In our particular situation, the two theta functions are explicitly

given by

�S(τ , z) := 4v
∑
d∈Z

∑
Q∈Q−d

exp
(

−4πv
|Q(z, 1)|2

y2

)
e(dτ),

�KM(τ , z) :=
∑
d∈Z

∑
Q∈Q−d

(
4vQ2

z − 1

2π

)
exp

(
−4πv

|Q(z, 1)|2
y2

)
e(dτ),

and they are smooth functions in τ and z that transform like modular forms of

weight −1
2 and 3

2 in τ for �0(4), respectively, and weight 0 in z for �.

Proposition 1.3. The function A∗(τ, z) satisfies the differential equations

4	 3
2 ,τ

(
A∗(τ , z)

) = 	2,z

(
A∗(τ , z)

)
,

where 	k is the weight k hyperbolic Laplace operator defined in (2.1), and

L 3
2 ,τ

(
A∗(τ , z)

) = − 1

16π
R0,z

(
�S(τ , z)

)
, (1.3)

L2,z

(
A∗(τ , z)

) = �KM(τ , z),

where L 3
2 ,τ := −2iv2 ∂

∂τ
, L2,z := −2iy2 ∂

∂z , and R0,z := 2i ∂
∂z are Maass lowering and raising

operators.

In Proposition 5.4, we prove the corresponding identity in a vector-valued

setting, which immediately implies Proposition 1.3. For the proof we use a method

from [18], which yields distinguished Lk-preimages of a certain class of smooth

automorphic forms of moderate growth, generalizing the surjectivity of the ξk-operator

from harmonic Maass forms to holomorphic modular forms [6, Theorem 3.7]. To deal

with the above generating function, the following simplified version is sufficient. The

reader is referred to Section 3 for details.
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6336 K. Bringmann et al.

Proposition 1.4 ([18], Theorem 2.14). Let F(z) = ∑
m∈Z cF(m, y)e(mz) be a smooth

modular function for � of moderate growth, and assume that cF(0, y) = O(e−Cy) as

y → ∞ for some C > 0. Then there exists a unique smooth weight two modular form

F#(z) = ∑
m∈Z cF#(m, y)e(mz) with at most linear exponential growth at the cusp and

limy→∞ cF#(m, y) = 0 for m < 0, such that L2(F#) = F. Its Fourier coefficients are given

by

cF#(m, y) =
〈
Fm − Pm,y, F

〉
,

where 〈·, ·〉 is the regularized Petersson inner product defined in (3.3), Fm = jm for

m ∈ N0 is the unique weakly holomorphic modular form for � with Fourier expansion

e(−mz) + O(e(z)), Fm = 0 for m ∈ −N, and Pm,y is a truncated Poincaré series defined

in (3.1).

Here and throughout, we mean by moderate growth that F and all iterated

partial derivatives in z and z are O(y�) for some � ∈ Z (� and the implied constant are

allowed to depend on the order of the partial derivative) as y → ∞. By Proposition 1.3,

for fixed τ , the function

�#
KM(τ , z) :=

∑
m∈Z

〈
Fm − Pm,y, �KM(τ , z)

〉
e(mz)

is a smooth weight two modular form in z for �, which maps to �KM(τ , z) under L2,z. For

m ∈ N0 the inner product with Fm = jm is the Kudla–Millson theta lift studied in [7]. By

[7, Theorems 1.1 and 1.2], we have

〈
Fm, �KM(τ , z)

〉
=
⎧⎨⎩2H(τ ) if m = 0,

−2
∑

n|m ngn2(τ ) if m > 0.

The integral involving the truncated Poincaré series can be computed by unfolding

against Pm,y. In this way we obtain the Fourier expansion in z. The modularity of

�KM(τ , z) in τ implies that τ �→ �#
KM(τ , z) transforms like a modular form of weight

3
2 . The series converges locally uniformly and defines a smooth function on H × H

(which is in fact quite difficult to prove). It can be differentiated termwise with respect

to τ , which then easily implies the relation (1.3). Equivalently stated, (1.3) says that

�#
KM(τ , z) maps to a multiple of R0,z(�S(τ , z)) under L 3

2
. Applying the same technique

to construct a L 3
2
-preimage of R0,z(�S(τ , z)) with respect to τ , we obtain Theorem 1.1,

and from the uniqueness we see that this preimage agrees up to a constant factor

with �#
KM(τ , z).
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1.2 Higher weight

While we focus on the generating functions in low weights in this paper, we also

consider lowering preimages of the Shintani and Millson theta functions in higher

weight. Our interest in these functions is twofold. First of all, we obtain again

completions of the formal generating functions of very natural families of modular

forms. In particular, the construction yields completions of the generating functions of

the modular forms fk+1,D,d (defined above for D = 1 and d < 0), which are holomorphic

cusp forms for d > 0 (and a holomorphic Eisenstein series for d = 0) but meromorphic

modular forms for d < 0.

Second, the modular completions we consider in higher weight feature an

interesting phenomenon: it really becomes clear that the preimages under the lowering

operator that we obtain with the method of this paper should in fact be seen as a very

close relative of theta functions build from Schwartz functions. Namely, it is possible to

write them as theta functions coming from a “degenerate” Schwartz function. We refer

to Section 7 for details.

To state one of our results in this direction, let k be a positive integer and let D

be a fundamental discriminant with (−1)kD < 0. For all D and d, the function

fk+1,d,D(z) :=
∑

Q∈Qd|D|\{0}

χD(Q)

Q(z, 1)k+1

has weight 2k + 2, where χD denotes the usual genus character (see Section 4). Define

the series

B∗
k(τ , z) := k!

|D| k+1
2

πk+1

∑
d∈Z

(−1)kd≡0,3 (mod 4)

(
f̃k+1,−d,D(v, z) − gk+1,d,D(v, z)

)
e (dτ) ,

where

f̃k+1,d,D(v, z) := fk+1,d,D(z)

⎧⎪⎪⎨⎪⎪⎩
1 if d ≤ 0,

�
(
k+ 1

2 ,4π |d|v
)

�
(
k+ 1

2

) if d > 0,

gk+1,d,D(v, z) := 1

k!

∑
Q∈Q−d|D|\{0}

χD(Q)

Q(z, 1)k+1
�

(
k + 1, 4πv

|Q(z, 1)|2
y2|D|

)
.

Using the same method as above, we obtain the following result.
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6338 K. Bringmann et al.

Theorem 1.5. We have that B∗(τ , z) converges to a smooth function on H × H and is

modular of weight 2k + 2 in z for � and modular of weight −k + 1
2 in τ for �0(4).

For the proof we refer to Section 7.1.

1.3 How this article is organized

In Section 2, we set up the notation for the rest of the paper and recall important facts

from the theory of harmonic Maass forms. Section 3 is then concerned with the Lk-

preimages; the results of this section are essentially contained in [18]. However, since

we need special cases and also slightly stronger versions for our very explicit results,

we nevertheless provide a lot of details and proofs. The four theta functions that we use

are all introduced in Section 4. In Sections 5, 6, and 7, we construct the preimages of

all theta functions and study their analytic behaviour in detail. The appendix contains

growth estimates for families of weakly holomorphic modular forms, which are needed

in order to prove normal convergence of the completed generating function. These

results might be of independent interest but are also quite technical and only included

because, to our surprise, we could not find similar results in the literature. We only

provide details in weight 3
2 , which is the most delicate regarding convergence, but our

arguments generalize to other weights.

2 Preliminaries on Vector-valued Harmonic Maass Forms for the Weil Representa-

tion

Consider the even lattice

L :=
{(

−b −c

a b

)
: a, b, c ∈ Z

}

with the quadratic form Q(λ) := det(λ) and bilinear form (λ, ν) := −tr(λν). It has

signature (1, 2) and level four, and its dual lattice equals

L′ =
{(

−b
2 −c

a b
2

)
: a, b, c ∈ Z

}
.

Hence, L′/L ∼= Z/2Z. The modular group � acts on L′ and L by conjugation γ .λ := γ λγ −1,

and fixes the classes of L′/L. For a discriminant D ∈ Z let

L− D
4

:=
{
λ ∈ L′ : Q(λ) = −D

4

}
.
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Modular Completion of Generating Functions 6339

Note that an element λ ∈ L− D
4

corresponds to a binary quadratic form [a, b, c] of

discriminant D, and this identification is compatible with the actions of SL2(Z) on L− D
4

and QD.

We let Mp2(R) be the metaplectic group, realized as the set of pairs γ̃ = (γ , φ)

with γ = ( a b
c d

) ∈ SL2(R) and φ : H → C a holomorphic function with φ2(τ ) = cτ + d. The

group �̃ := Mp2(Z) is generated by the elements T̃ := (( 1 1
0 1

)
, 1
)

and S̃ := (( 0 −1
1 0

)
,
√

τ
)
. Let

�̃∞ be the subgroup of �̃ generated by T̃.

We let eμ with μ ∈ L′/L be the standard basis vectors of the group algebra

C[L′/L]. We frequently identify L′/L with Z/2Z and for n ∈ Z we use the notation

en to denote en (mod 2), where e0 corresponds to e0+L and e1 corresponds to eγ+L with

γ ∈ L′ \ L. The group algebra is equipped with the natural inner product 〈eμ, eν〉 = δμ,ν ,

which is antilinear in the 2nd variable. Furthermore, let �L denote the associated Weil

representation of �̃, which is defined by

�L

(
T̃
)
eμ := e(Q(μ))eμ, �L

(̃
S
)
eμ :=

√
i√|L′/L|

∑
ν∈L′/L

e(−(μ, ν))eν .

Moreover, �L denotes the complex conjugate representation, which corresponds to the

Weil representation attached to the lattice given by L with the negative of the quadratic

form.

For k ∈ 1
2 +Z, define the weight k slash operator of Mp2(Z) on functions f : H →

C[L′/L] by

f |k,�L
(γ , φ)(τ) := φ−2k(τ )�L(γ , φ)−1f (γ τ).

The weight k Laplace operator

	k := −v2
(

∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
(2.1)

acts component-wise on smooth functions f : H → C[L′/L] and commutes with the

weight k slash-action.

We recall the definition of harmonic Maass forms from [6].

Definition 2.1. A harmonic Maass form of weight k ∈ 1
2 + Z for �L is a twice

continuously differentiable function f : H → C[L′/L], which satisfies the following
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conditions:

(i) 	k(f ) = 0;

(ii) f |k,�L
(γ , φ) = f for every (γ , φ) ∈ �̃;

(iii) f (τ ) = O(eCv) as v → ∞ for some constant C > 0, uniformly in u.

We denote the space of all harmonic Maass forms by H!
k,�L

. Furthermore, we

let Hk,�L
be the subspace of harmonic Maass forms for which there exists a Fourier

polynomial

Pf (τ ) =
∑

−∞�n≤0

c+
f (n)e(nτ)

with coefficients c+
f (n) ∈ C[L′/L] such that f (τ ) − Pf (τ ) = O(e−cv) as v → ∞ for

some c > 0, uniformly in u. The function Pf is called the principal part of f . The

subspaces of weakly holomorphic modular forms (meromorphic modular forms which

are holomorphic on H), holomorphic modular forms and cusp forms are denoted by

M!
k,�L

, Mk,�L
, and Sk,�L

, respectively. Harmonic Maass forms of half-integral weight for �L

and of integral weight for � are defined analogously, and the corresponding spaces are

denoted by H!
k,�L

(for k ∈ 1
2 + Z) and H!

k (for k ∈ Z), respectively.

An element f ∈ H!
k,�L

has a Fourier expansion of the shape

f (τ ) =
∑
n∈Q

cf (n, v)e(nτ), (2.2)

with cf (n, v) ∈ C[L′/L]. The right-hand side of (2.2) decomposes into a holomorphic part

f + and a non-holomorphic part f −, which are for k �= 1 given by

f +(τ ) =
∑
n∈Q

n�−∞

c+
f (n)e(nτ), f −(τ ) = c−

f (0)v1−k +
∑

n∈Q\{0}
n�∞

c−
f (n)Wk(2πnv)e(nτ),

with coefficients c+
f (n), c−

f (n) ∈ C[L′/L]. Here, following [5] and [6] for x ∈ R, we set

Wk(x) := (−2x)1−kRe(Ek(−2x))

with Ek the generalized exponential integral (see [17], 8.19.3) defined by

Er(z) :=
∫ ∞

1
e−ztt−r dt.
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This function is related to the incomplete Gamma function via (8.19.1) of [17] by �(r, z) =
zrE1−r(z). For k = 1, one has to replace v1−k by log(v) in the non-holomorphic part f − of

f . Note that f ∈ Hk,�L
is equivalent to c−

f (n) = 0 for all n ≥ 0.

The Maass lowering operator and the Maass raising operator

Lk := −2iv2 ∂

∂τ
, Rk := 2i

∂

∂τ
+ k

v
,

lower or raise the weight of an automorphic form of weight k by 2. The ξk-operator

ξk( f (τ )) := vk−2Lk( f (τ )) = R−k

(
vkF(τ )

)
= 2ivk ∂

∂τ
f (τ )

defines surjective maps H!
k,�L

→ M!
2−k,�L

and Hk,�L
→ S2−k,�L

. The raising and lowering

operators are related to the Laplace operator by

−	k = ξ2−k ◦ ξk = Lk+2 ◦ Rk + k = Rk−2 ◦ Lk. (2.3)

Remark 2.2. The action �L(Z)eh = ie−h of Z := S̃2 in the Weil representation implies

that the components fh of f = ∑
h∈L′/L fheh ∈ H!

k,�L
satisfy the symmetry relation

f−h = (−1)k+ 1
2 fh. We obtain that H!

k,�L
= {0} if k + 1

2 is odd and that H!
k,�L

= {0}
if k + 1

2 is even. Denote by H!
k(4) the space of scalar-valued harmonic Maass forms

f (τ ) = ∑
n∈Z cf (n, v)e(nτ) of weight k for �0(4) satisfying the Kohnen plus space

condition cf (n, v) = 0 unless (−1)k− 1
2 n ≡ 0, 1 (mod 4). One can show as in the proof

of [19, Theorem 5.4] that vector-valued modular forms of half-integral weight for the

(dual) Weil representation can be identified with (skew-holomorphic) Jacobi forms via

the theta decomposition. Hence, again by [19, Theorem 5.4], the map

f0(τ )e0 + f1(τ )e1 �→ f0(4τ) + f1(4τ)

defines an isomorphism H!
k,�L

∼= H!
k(4) if k + 1

2 is even, and H!
k,�L

∼= H!
k(4) if k + 1

2 is

odd. Throughout this work, we switch freely between the vector-valued and the scalar-

valued viewpoint without further notice. In particular, we use the same symbol for a

vector-valued harmonic Maass form and its scalar-valued version.

Example 2.3. We collect some examples of harmonic Maass forms and modular forms

that are used below.
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(i) Zagier’s non-holomorphic Eisenstein series

H(τ ) :=
∞∑

n=0

H(n)e(nτ) + 1

4
√

π

∞∑
n=1

n�

(
−1

2
, 4πn2v

)
e(−n2τ) + 1

8π
√

v
, (2.4)

with

H(0) := − 1

12
,

1

2
H(d) :=

∑
Q∈�\Q−d

1

ωQ

is a harmonic Maass form in H!
3
2
(4) ∼= H!

3
2 ,�L

[26]. It is related to the Jacobi

theta function θ(τ ) :=∑n∈Z e(n2τ) ∈ M 1
2
(4) ∼= M 1

2 ,�L
by ξ 3

2
(H) = − 1

16π
θ .

(ii) For each negative discriminant −d < 0, there exists a unique weakly

holomorphic modular form fd ∈ M!
1
2
(4) having a Fourier expansion of the

shape

fd(τ ) = e(−dτ) +
∑
D>0

D≡0,1 (mod 4)

A(D, d)e(Dτ).

Similarly, for each positive discriminant D > 0 there is a unique weakly

holomorphic modular form gD ∈ M!
3
2
(4) with

gD(τ ) = e(−Dτ) +
∑
d≥0

d≡0,3 (mod 4)

B(D, d)e(dτ). (2.5)

Here B(D, 0) = −2 if D is a square, and B(D, 0) = 0 otherwise. If we

define f0 := θ , then the sets {fd} and {gD} form bases of M!
1
2
(4) and M!

3
2
(4),

respectively. The coefficients satisfy the Zagier duality A(D, d) = −B(D, d)

and can be expressed in terms of twisted traces of CM values of the modular

j-function [27].

(iii) The non-holomorphic Eisenstein series

E∗
2(z) := − 3

πy
+ 1 − 24

∞∑
n=1

∑
d|n

d e(nz) (2.6)

is a harmonic Maass form of weight two for �. It satisfies ξ2(E∗
2) = 3

π
.
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3 Normalized Lk-preimages

In this section, we recall a special case of a result from [18], which produces a

distinguished preimage F ∈ L−1
k+2(f ) of an automorphic form f of weight k under the Lk+2-

operator. We formulate this result for scalar-valued integral weight modular forms on

the full modular group � = SL2(Z) and for half-integral weight vector-valued modular

forms for the Weil representation �L (or �L). To ease the notation, we deal with the two

cases separately.

3.1 Integral weight

For k ∈ Z, we define a family of harmonic Maass forms Fm ∈ Hk (m ∈ Z). For m > 0,

we let Fm ∈ Hk be a harmonic Maass form with principal part e(−mz) + c+
Fm

(0) for some

constant c+
Fm

(0) ∈ C, which is unique up to addition of holomorphic modular forms. If

Mk �= {0}, then we let F0 = 1 if k = 0 and F0 = Ek (the normalized Eisenstein series) if

k �= 0, and we additionally require that c+
Fm

(0) = 0 for all m > 0. If Mk = {0}, then we

set Fm = 0 for m ≤ 0.

Example 3.1. For k = 0 and m ≥ 0 the function Fm is the unique weakly holomorphic

modular function whose Fourier expansion has the form e(−mz) + O(e(z)). It is usually

denoted by jm and it is a polynomial in the modular j-function, for example, j0 = 1, j1 =
j − 744.

Furthermore, for m ∈ Z and w ∈ R+, we define the truncated Poincaré series

Pm,w(z) := 1

2

∑
γ∈�∞\�

(
σw(y)e(−mz)

)∣∣
kγ , where σw(y) :=

⎧⎨⎩1 if y ≥ w,

0 if y < w,
(3.1)

with |k the usual weight k slash operator, and �∞ := {( 1 n
0 1

)
: n ∈ Z

}
.

We introduce some more notation.

Definition 3.2. The space Amod
k consists of all smooth functions F : H → C satisfying

the following conditions:

(i) F|kγ = F for all γ ∈ �;

(ii) ∂α

∂zα
∂β

∂zβ F(z) = O(y�α+β ) for some �α+β ∈ N0 as y → ∞, uniformly in x, for all

α, β ∈ N0.
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(iii) If F(z) = ∑
m∈Z cF(m, y)e(mz) denotes the Fourier expansion of F, then the

integral

∫ ∞

1
cF(0, t)t−2−sdy,

which converges for Re(s) � 0 large enough, has a meromorphic continua-

tion to a half-plane Re(s) > −ε for some ε > 0.

Remark 3.3. The integral in Definition 3.2 (iii) converges for Re(s) � 0 since F is of

polynomial growth as y → ∞. The condition that it has a meromorphic continuation

to s = 0 ensures that all of the regularized Petersson inner products (see (3.3) below)

appearing in the following are well-defined. Also note that we modify the definition of

the space Amod
k slightly in comparison to [18].

Next we define a space of smooth modular forms in which the Lk+2-preimages

of functions in Amod
k live.

Definition 3.4. The space A!
k+2 consists of all smooth functions G : H → C such that

(i) G|k+2γ = G for all γ ∈ �;

(ii) G(z) = O(eCy) as y → ∞ for some constant C > 0, uniformly in x;

(iii) Lk+2(G) ∈ Amod
k .

We next describe some basic properties of the Fourier coefficients of functions

in A!
k+2.

Lemma 3.5. Let G(z) =∑m∈Z cG(m, y)e(mz) ∈ A!
k+2. For m ∈ −N the limit

κG(m) := lim
y→∞ cG(m, y)

exists and vanishes for all but finitely many m ∈ −N. For m ∈ N, we have the estimate

cG(m, y) = O
(
y�e2πmy)

as y → ∞, for some � ∈ N0.
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Proof. Let m ∈ Z. If Lk+2(G) = F ∈ Amod
k , then we can write

cG(m, y) = cG(m, 1) +
∫ y

1
cF(m, t)t−2dt. (3.2)

Since F(z) = O(y�) for some � ∈ N0, we have
∣∣cF(m, y)

∣∣ ≤ Cy�e2πmy for some C > 0. This

easily implies the statements of the lemma. �

Following [13], we define the regularized Petersson inner product of two

automorphic forms F and G of weight k by

〈F, G〉 := CT
s=0

lim
T→∞

∫
FT

F(z)G(z)yk−s dxdy

y2 , (3.3)

where FT := {z ∈ H : |x| ≤ 1
2 , |z| ≥ 1, y ≤ T} is a truncated fundamental domain

for �\H and CT
s=0

f (s) denotes the constant term in the Laurent expansion at s = 0 of

the meromorphic continuation of a function f . Of course, the inner product (3.3) does

not always exist, but this description is sufficient for the purposes of this work. In

particular, 〈F, G〉 always exists for F ∈ A!
k and G ∈ Mk (see [18, Lemma 2.10] for a proof).

For notational convenience we define a bilinear pairing between automorphic forms F

and G of weight k and −k, respectively, by

〈〈F, G〉〉 := CT
s=0

lim
T→∞

∫
FT

F(z)G(z)y−s dxdy

y2 = 〈F, y−kG
〉
,

whenever this exists.

The following result (essentially a special case of [18, Proposition 2.12]) yields

distinguished Lk+2-preimages of certain functions in Amod
k .

Proposition 3.6. Let F ∈ Amod
k , such that 〈〈F, G〉〉 = 0 for all G ∈ S−k. Then there exists

a unique F# ∈ A!
k+2 with Fourier expansion

F#(z) =
∑
m∈Z

cF#(m, y)e(mz),

such that

(i) Lk+2(F#) = F;

(ii) κF#(m) = 0 for all m < 0;
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(iii) if Mk+2 �= {0}, then

cF#(0, y) = − CT
s=0

∫ ∞

y
cF(0, t)t−s−2dt; (3.4)

(iv) F# is orthogonal to cusp forms, that is, 〈F#, G〉 = 0 for all G ∈ Sk+2.

The Fourier coefficients of F# are given by

cF#(m, y) = 〈〈Fm − Pm,y, F〉〉,

where Fm and Pm,y are the harmonic Maass forms and truncated Poincaré series of

weight −k defined at the beginning of this subsection.

Remark 3.7. Note that

Lk+2

(
− CT

s=0

∫ ∞

y
cF(0, t)t−s−2dt

)
= y2 ∂

∂y

(
− CT

s=0

∫ ∞

1
cF(0, t)t−s−2dt +

∫ y

1
cF(0, t)t−2dt

)
= cF(0, y).

Thus, the constant term of any Lk+2-preimage of F and the expression on the right-hand

side of (3.4) can only differ by a constant. In the case Mk+2 �= {0}, we normalize this

constant to be zero.

Proof of Proposition 3.6. For the convenience of the reader we only use the existence

of some function F# ∈ A!
k+2 with Lk+2(F#) = F from [18, Proposition 2.12] and sketch the

proofs for the remaining claims, which can be found in more detail in [18, Theorem 2.14].

For simplicity, we assume that M−k = {0} and thus Mk+2 �= {0}; the case that M−k �= {0}
and that Mk+2 = {0} is completely analogous.

We first show how the normalization in (ii), (iii), and (iv) can be achieved. An

application of Stokes’ theorem as in the proof of [6, Proposition 3.5] shows that for

every cusp form G(z) =∑m>0 cG(m)e(mz) ∈ S−k we have the formula

0 = 〈〈F, G〉〉 =
〈〈

Lk+2(F#), G
〉〉

=
∑
m>0

cG(m)κF#(−m).

It now follows from [6, Proposition 3.11 and Theorem 3.6] (see also [14, Theorem 3.1])

that there exists a weakly holomorphic modular form of weight k + 2 with principal
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part
∑

m<0 κF#(m)e(mz). Subtracting it from F# we can assume that κF#(m) = 0 for all

m < 0. Furthermore, by subtracting a suitable cusp form from F# we can assume that

F# is orthogonal to cusp forms and by subtracting a suitable constant (if k = −2) or a

suitable multiple of an Eisenstein series we obtain the normalization in (iii). It is clear

that the properties (i)–(iv) determine F# uniquely.

We next compute the Fourier coefficients of F#. For m ∈ Z a standard argument

(see, e.g., [18, Proposition 2.14]) shows that

〈〈Fm − Pm,y, F〉〉 = lim
T→∞

(∫
FT

(Fm(z1) − Pm,y(z1))F(z1)
dx1dy1

y2
1

+
(
c+

Fm
(0) − δm=0

)
CT
s=0

∫ ∞

T
cF(0, y1)y−s−2

1 dy1

)
.

(3.5)

For m > 0, Stokes’ theorem yields

∫
FT

Fm(z1)F(z1)
dx1dy1

y2
1

= −
∫
FT

F#(z1)ξ−k(Fm(z1))yk+2
1

dx1dy1

y2
1

+
∫ 1+iT

iT
Fm(z1)F#(z1)dz1.

The 1st integral on the right-hand side vanishes as T → ∞ since F# is orthogonal to

cusp forms. The remaining path integral can be evaluated as

cF#(m, T) + c+
Fm

(0)cF#(0, T) +
n0∑

n=1

c+
Fm

(n)cF#(−n, T) +
−1∑

n=−n0

c−
Fm

(n)cF#(−n, T)Wk(2πnT)

+
∫ 1+iT

iT

∑
n≥n0+1

c+
Fm

(n)e(nz1)F#(z1)dz1

+
∫ 1+iT

iT

∑
n≤−n0−1

c−
Fm

(n)Wk(2π |n|y1)e(nz1)F#(z1)dz1,

where n0 is any positive integer chosen such that the integrands in the last two

integrals are exponentially decreasing as y1 → ∞, which is possible since F# is of

linear exponential growth. In particular, the last two integrals vanish as T → ∞. The

finite sums in the 2nd line vanish as T → ∞ since limT→∞ cF#(−n, T) = κF#(−n) = 0

for n > 0 and cF#(−n, T) = O(T�e−2πnT) for n < 0 (see Lemma 3.5) and Wk(2πnT) =
O(T−ke4πnT) for n < 0. Using the normalization of cF#(0, T) in item (iii) we see that

the term c+
Fm

(0)cF#(0, T) cancels out with one of the extra terms coming from the

regularization in (3.5). In particular, in the limit T → ∞ only the term cF#(m, T) gives

a contribution.
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Furthermore, for m ∈ Z and for sufficiently large T the unfolding argument gives∫
FT

Pm,y(z1)F(z1)
dx1dy1

y2
1

=
∫ T

y

∫ 1

0
e(−mz1)F(z1)

dx1dy1

y2
1

=
∫ T

y
cF(m, y1)y−2

1 dy1 = cF#(m, T) − cF#(m, y).

Note that we are also using the last equality in (3.2). Combining everything, we obtain

the stated formula for cF#(m, y). �

3.2 Half-integral weight

We next explain how the analogs of the families Fm and Pm,y of harmonic Maass forms

and the truncated Poincaré series are defined in the vector-valued case. For simplicity,

we only do this for the representation �L, since the case �L can be treated in the same

way.

Let k ∈ 1
2 + Z. The spaces Amod

k,�L
and A!

k,�L
are defined in the obvious way.

We can assume that k + 1
2 is even since otherwise Hk,�L

= {0}. For D > 0 with

D ≡ 0, 1 (mod 4) we let FD ∈ H+
k,�L

be any harmonic Maass form with principal part

e(−Dτ
4 )eD + c+

FD
(0)e0, which is unique up to addition of holomorphic modular forms. If

there exists a holomorphic modular form in Mk,�L
, which has constant term equal to one,

then we take this as F0, and we further require that c+
FD

(0) = 0 for all D > 0. If there is

no such holomorphic modular form, then we set F0 = 0. Finally, for D < 0, we let FD = 0.

Example 3.8. If k = 3
2 , then we take the weakly holomorphic forms FD = gD for D > 0

and FD = 0 for D ≤ 0.

We also define the truncated Poincaré series

PD,w(τ ) := 1

4

∑
γ∈�̃∞\�̃

(
σw(v)e

(
−Dτ

4

)
eD

) ∣∣∣∣
k,�L

γ .

With these definitions, the following analog of Proposition 3.6 holds in the

vector-valued case.

Proposition 3.9. Let f ∈ Amod
k,�L

, such that 〈〈 f , g〉〉 = 0 for all g ∈ S−k,�L
. Then there exists

a unique f # ∈ A!
k+2,�L

with Fourier expansion

f #(τ ) =
∑
D∈Z

D≡0,1 (mod 4)

cf #(D, v)e(Dτ),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/6331/5700599 by Anja Becker-H
aum

ann user on 27 April 2021



Modular Completion of Generating Functions 6349

such that the following conditions hold:

(i) Lk+2( f #) = f ;

(ii) κf #(D) = 0 for all D < 0;

(iii) If Mk+2,� �= {0}, then

cf #(0, v) = − CT
s=0

∫ ∞

v
cf (0, t)t−s−2dt;

(iv) f # is orthogonal to cusp forms, that is, 〈 f #, g〉 = 0 for all g ∈ Sk+2,�L
.

The Fourier coefficients of f # are given by

cf #(D, v) = 〈〈FD − PD,v, f 〉〉eD,

where FD and PD,v are the harmonic Maass forms and truncated Poincaré series of

weight −k for �L defined at the beginning of this subsection.

4 Theta Functions

In this section we briefly recall the main players of this article, well-known non-

holomorphic theta functions for the lattice L.

For z = x + iy ∈ H and λ ∈ L′, we define the quantities

Qλ(z) := az2 + bz + c, pλ(z) := −1

y
(a|z|2 + bx + c), R(λ, z) := 1

2
p2

λ(z) − (λ, λ).

Note that (λ, λ) = −1
2 (b2 − 4ac) for λ ∈ L′. Let D be a fundamental discriminant (possibly

1). For a quadratic form Q = [a, b, c] ∈ Q	 of discriminant 	 such that D divides 	, we let

χD(Q) :=
⎧⎨⎩
(D

n

)
if gcd(a, b, c, D) = 1 and Q represents n with gcd(n, D) = 1,

0 otherwise,

be the genus character as in [23, Section 1]. We can view χD as a function on L′/L via the

identification of elements λ ∈ L′ with binary quadratic forms. Define

�̃L :=
⎧⎨⎩�L if D > 0,

�L if D < 0,
ε(D) :=

⎧⎨⎩1 if D > 0,

i if D < 0.
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For a rapidly decaying (Schwartz) function ϕ : L ⊗Z R → C we consider the

following twisted vector-valued theta function

�(ϕ) :=
∑

μ∈L′/L

∑
λ∈L+Dμ

Q(λ) ≡ DQ(μ) (mod D)

χD(λ)ϕ(λ)eμ.

The Schwartz functions that we use are defined as follows. We always write ϕ(λ; τ , z),

also depending on τ and z, as a product ϕ(λ; τ , z) = ϕ0(λ; τ , z)ϕ∞
D (λ; τ , z), with the

Gaussian

ϕ∞
D (λ; τ , z) := exp

(−2πv(Q(λ) + R(λ, z))

|D|
)

.

The four cases that we need for ϕ0 are

ϕ0
S,D(λ; τ , z) := ve

(
Q(λ)u

|D|
)

, ϕ0
KM,D(λ; τ , z) :=

(
vp2

λ(z)

|D| − 1

2π

)
e
(

Q(λ)u

|D|
)

,

ϕ0
Sh,k,D(λ; τ , z) := vk+2 Qk+1

λ (z)

y2k+2|D| k+1
2

e
(

Q(λ)u

|D|
)

, ϕ0
M,k,D(λ; τ , z) := vk+1 pλ(z)Qk

λ(z)

y2k|D| k+1
2

e
(

Q(λ)u

|D|
)

.

The corresponding theta functions are then defined as �0
S,D := �(ϕ0

S,Dϕ∞
D ), �KM,D :=

�(ϕ0
KM,Dϕ∞

D ), �Sh,k,D := �(ϕ0
Sh,k,Dϕ∞

D ), and �M,k,D := �(ϕ0
M,k,Dϕ∞

D ) and are called the

Siegel, Kudla–Millson, Shintani, and Millson theta functions, respectively. For simplic-

ity, we drop k from the notation when k = 0.

Remark 4.1. By replacing λ with −λ in the summations, we see that the Siegel and

Kudla-Millson theta function vanish for D < 0, whereas the Shintani and Millson theta

functions vanish for (−1)kD > 0.

We summarize their transformation properties in the following proposition.

Proposition 4.2. The theta functions defined above have the following automorphic

properties:

(i) �S,D(·, z) ∈ Amod
− 1

2 ,̃�L
and the components of �S,D(τ , ·) are contained in Amod

0 ;

(ii) �KM,D(·, z) ∈ Amod
3
2 ,̃�L

and the components of �KM,D(τ , ·) are contained in Amod
0 ;

(iii) �Sh,k,D(·, z) ∈ Amod
− 3

2 −k,̃�L
and the components of �Sh,k,D(τ , ·) are contained

in Amod
2k+2;

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/6331/5700599 by Anja Becker-H
aum

ann user on 27 April 2021



Modular Completion of Generating Functions 6351

(iv) �M,k,D(·, z) ∈ Amod
1
2 −k,̃�L

and the components of �M,k,D(τ , ·) are contained in

Amod
2k .

Proof. For the twisted Siegel theta function see [12, Theorem 4.1]. The transformation

properties of the Millson and Shintani theta functions are stated in [2, Theorems 3.1

and 3.3]. We remark that the Millson theta function has been studied earlier in [21, Satz

2.8]. The twisted Kudla–Millson theta function is investigated in [1, Proposition 4.1]. In

general, the transformation rules of such theta functions can be proved for D = 1 by

Poisson summation as in [13, Theorem 4.1] and for D �= 1 by using the twisting operator

introduced in [1]. �

The theta functions are related by various differential equations.

Proposition 4.3.

(i) The Siegel and the Kudla–Millson theta function are related by

L 3
2 ,τ

(
�KM,D(τ , z)

) = 1

4π
	0,z

(
�S,D(τ , z)

)
, R− 1

2 ,τ

(
�S,D(τ , z)

) = −π�KM,D(τ , z).

(ii) The Shintani and the Millson theta function are related by

L 1
2 ,τ

(
�M,D(τ , z)

)= 1

2
L2,z

(
�Sh,D(τ , z)

)
, R− 3

2 ,τ

(
�Sh,D(τ , z)

)= 1

2
R0,z

(
�M,D(τ , z)

)
.

Proof. These relations can be proved by a direct calculation. See [6, Theorem 4.2] for

the Siegel and the Kudla–Millson theta function and [2, Lemma 3.4] for the Shintani and

the Millson theta function. �

We also need the following expansions of the Kudla–Millson and the Millson

theta function.

Proposition 4.4.

(ii) The Kudla–Millson theta function has the expansion

�KM,D(τ , z) = − y3

|D|ε(D)

∞∑
n=1

n2
(

D

n

)

×
∑

γ∈�̃∞\�̃

(
exp

(
−π

y2n2

v|D|
)

v− 3
2
∑
b∈Z

e
(
−|D|b

2

4
τ − bnx

)
eDb

)∣∣∣∣
3
2 ,̃�L

γ .
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(ii) The Millson theta function has the expansion

�M,D(τ , z) = − y2

2i
√|D|ε(D)

∞∑
n=1

n
(

D

n

)

×
∑

γ∈�̃∞\�̃

(
exp

(
−π

y2n2

v|D|
)

v− 1
2
∑
b∈Z

e
(
−|D|b

2

4
τ − bnx

)
eDb

) ∣∣∣∣
1
2 ,̃�L

γ .

Proof. The formula for the Kudla–Millson theta function follows from [12, Theorem

4.8] together with Proposition 4.3, (i). The expansion of the Millson theta function is

given in [21, Satz 2.22] (correcting a minor typo). �

5 The Kudla–Millson and the Siegel Theta Functions

Throughout this section, we let D > 0 be a fundamental discriminant. By

Proposition 3.6, the function

�
#,z
KM,D(τ , z) :=

∑
m∈Z

〈〈Fm − Pm,y, �KM,D(τ , ·)〉〉e(mz)

is a L2,z-preimage of �KM,D(τ , z), which transforms like a modular form of weight two

in z and is smooth in z. Furthermore, we see that it transforms like a modular form of

weight 3
2 for �L in τ , but its analytic properties as a function of τ and its growth as

v → ∞ are not clear from the definition. We first compute a more explicit formula for

�
#,z
KM,D(τ , z).

Theorem 5.1. We have the formula

�
#,z
KM,D(τ , z) = 2δD=1H(τ ) + g̃0(τ , y) + 2

√
D
∑
m>0

∑
n|m

(
D

m/n

)
n
(̃
gDn2(τ , my) − gDn2(τ )

)
e(mz)

+ 2
√

D
∑
m<0

∑
n|m

(
D

m/n

)
ng̃Dn2(τ , my)e(mz),

where H(τ ) is defined in (2.4), and

g̃0(τ , y) := 1

2π

∞∑
n=1

(
D

n

) ∑
γ∈�̃∞\�̃

(
v− 1

2 exp
(

−πn2y2

vD

)
e0

) ∣∣∣∣ 3
2 ,�L

γ ,

g̃Dn2(τ , y) := 1

2

∑
γ∈�̃∞\�̃

(
Ky

(
Dn2v

)
e
(

−Dn2τ

4

)
eDn2

) ∣∣∣∣ 3
2 ,�L

γ ,
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with the special function

Kw(v) := w2

v
3
2

∫ ∞

1
exp

(
−π

(
wt√

v
− √

v
)2
)

tdt.

Remark 5.2. We have

Kw(v) = sgn(w)

2
erfc

(
sgn(w)

√
π

(
w√

v
− √

v
))

+ 1

2π
√

v
exp

(
−π

(
w√

v
− √

v
)2
)

,

where erfc(x) := 2√
π

∫∞
x e−t2

dt is the complementary error function.

Proof of Theorem 5.1. For m ≥ 0 the Kudla–Millson lift of Fm has been computed in [7,

Section 6] for D = 1, and in [1, Theorem 1.1] for D > 1. It is given by

〈〈Fm, �KM,D(τ , ·)〉〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if m < 0,

2δD=1H(τ ) if m = 0,

−2
√

D
∑

n|m
(

D
m/n

)
ngDn2(τ ) if m > 0.

For the Kudla–Millson lift of Pm,y, we plug in the expansion of �KM,D(τ , z) given in

Proposition 4.4, and use the unfolding argument, to obtain

〈〈Pm,y, �KM,D(τ , ·)〉〉 = − 1

D

∞∑
n=1

n2
(

D

n

) ∑
γ∈�̃∞\�̃

∫ ∞

y

∫ 1

0
e(−mz1)

×
(

exp

(
−π

y2
1n2

vD

)
v− 3

2
∑
b∈Z

e
(

−Db2

4
τ − bnx1

)
y3

1
dx1dy1

y2
1

eDb

) ∣∣∣∣ 3
2 ,�L

γ .

First, let m = 0. Evaluating the integral over x1, we obtain

〈〈P0,y, �KM,D(τ , ·)〉〉 = − 1

D

∞∑
n=1

n2
(

D

n

) ∑
γ∈�̃∞\�̃

(
v− 3

2

∫ ∞

y
exp

(
−π

y2
1n2

vD

)
y1dy1e0

) ∣∣∣∣ 3
2 ,�L

γ

= − 1

2π

∞∑
n=1

(
D

n

) ∑
γ∈�̃∞\�̃

(
v− 1

2 exp
(

−π
y2n2

vD

)
e0

)∣∣∣∣ 3
2 ,�L

γ .
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Next, for m �= 0, we compute the integral over x1 and obtain

〈〈Pm,y, �KM,D(τ , ·)〉〉

= − 1

D

∑
n|m

n2
(

D

n

) ∑
γ∈�̃∞\�̃

(
v− 3

2 e
(
−D

m2

4n2 τ

)∫ ∞

y
exp

(
2πmy1 − π

y2
1n2

vD

)
y1dy1eD m

n

)∣∣∣∣ 3
2 ,�L

γ .

Replacing n by |m|
n yields the stated formulas. �

From Proposition 3.6 we know that �
#,z
KM,D(τ , z) is a smooth function in z for each

fixed τ . We now show that it is actually smooth in τ and z.

Proposition 5.3. The function τ �→ �
#,z
KM,D(τ , z) is smooth and can be differentiated

termwise.

Proof. Recall that the m-th Fourier coefficient of z �→ �
#,z
KM,D(τ , z) is given by

a(τ ; m, y) := 2
√

D
∑
n|m

(
D

m/n

)
n
(
gDn2(τ )δn>0 − g̃Dn2(τ , my)

)
.

By Propositions A.1 and A.3 of the appendix, we have, on any compact K ⊂ H × H for

m > 0 that

a(τ ; m, y) = OK

(
m4 exp

(
3

2
πmy

))
and similarly for the iterated partial derivatives in u and v. For m < 0 we have that

a(τ ; m, y) and all iterated partial derivatives in u and v decay exponentially as m → −∞.

This implies that for all α, β ∈ N0, the series

∑
m

(
∂α

∂uα

∂β

∂vβ
a(τ ; m, y)

)
e(mz)

converges normally on H and thus defines a smooth function in τ ∈ H and we have

∂α

∂uα

∂β

∂vβ

∑
m

a(τ ; m, y)e(mz) =
∑
m

(
∂α

∂uα

∂β

∂vβ
a(τ ; m, y)

)
e(mz).

This finishes the proof. �
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We are now ready to prove how �
#,z
KM,D behaves under the lowering operators

in τ and z, as well as a differential equation involving the Laplace operators in both

variables.

Proposition 5.4. The function �
#,z
KM,D satisfies the differential equations

4	 3
2 ,τ

(
�

#,z
KM,D(τ , z)

)
= 	2,z

(
�

#,z
KM,D(τ , z)

)
, (5.1)

L 3
2 ,τ

(
�

#,z
KM,D(τ , z)

)
= − 1

4π
R0,z

(
�S,D(τ , z)

)
, (5.2)

L2,z

(
�

#,z
KM,D(τ , z)

)
= �KM,D(τ , z). (5.3)

Proof. The formula (5.3) is clear from the construction of �
#,z
KM,D(τ , z).

We next prove (5.2). For this, we first write

L 3
2 ,τ

(
�

#,z
KM,D(τ , z)

)
=
∑
m∈Z

〈〈
Fm − Pm,y, L 3

2 ,τ

(
�KM,D(τ , ·))〉〉 e(mz).

Thus, Proposition 3.6 implies that L 3
2 ,τ (�

#,z
KM,D(τ , z)) is a L2,z-preimage of L 3

2 ,τ

(
�KM,D(τ , z)

)
.

By Proposition 4.3 and (2.3), we have

L 3
2 ,τ

(
�KM,D(τ , z)

) = 1

4π
	0,z

(
�S,D(τ , z)

) = − 1

4π
L2,z ◦ R0,z

(
�S,D(τ , z)

)
.

Hence, the function −1
4π

R0,z(�S,D(τ , z)) is also an L2,z-preimage of L 3
2 ,τ

(
�KM,D(τ , z)

)
.

Consequently, these two functions can only differ by a weakly homomorphic modular

form but since R0,z(�S,D(·, z)) ∈ Amod
2 and M2 = {0}, they actually agree.

Next we show (5.1). Using Proposition 4.3 and (2.3), (5.2), and (5.3), we compute

	2,z

(
�

#,z
KM,D(τ , z)

)
= −R0,z ◦ L2,z

(
�

#,z
KM,D(τ , z)

)
= −R0,z(�KM,D(τ , z))

= 1

π
R0,z ◦ R− 1

2 ,τ

(
�S,D(τ , z)

) = −4R− 1
2 ,τ ◦ L 3

2 ,τ

(
�

#,z
KM,D(τ , z)

)
= 4	 3

2 ,τ

(
�

#,z
KM,D(τ , z)

)
,

completing the proof. �
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By Proposition 3.9 we have that

(R0,z(�S,D))#,τ (τ , z) :=
∑
d∈Z

〈〈
fd − Pd,v, R0,z

(
�S,D(·, z)

) 〉〉
e
(

dτ

4

)
ed

is a L 3
2 ,τ -preimage of R0,z(�S,D(τ , z)). By construction, it transforms like a modular form

of weight 3
2 for �L in τ and is smooth in τ . Furthermore, it is modular of weight 2 for �

in z.

We have the following explicit formula for (R0,z(�S,D))#,τ (τ , z).

Theorem 5.5. We have the Fourier expansion

(R0,z(�S,D))#,τ (τ , z) =
∑
d∈Z

F∗
d,D(z; v)e

(
dτ

4

)
ed,

where

F∗
d,D(z; v) := Fd,D(z) + 2

∑
λ∈L dD

4
\{0}

χD(λ)
pλ(z)

Qλ(z)
exp

(
−2πvR(λ, z)

D

)
,

with

Fd,D(z) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−4i
∑

Q∈�\Q−dD
Q>0

χD(Q)
ωQ

j′(z)
j(z)−j(zQ)

if d > 0,

2π
3 E∗

2(z) if d = 0 and D = 1,

0 if d < 0, or if d = 0 and D > 1.

Here the subscript Q > 0 indicates that we only sum over positive definite quadratic

forms Q. If zQ is a CM point then the value (R0,z(�S,D))#,τ (τ , zQ) is obtained by taking

the limit z → zQ in the expression given for F∗
d,D(z; v).

Proof. We first compute the twisted Borcherds lift 〈〈fd, �S,D( · , z)〉〉 of fd. Although it

is certainly well-known, we sketch the idea of the computation for the convenience of

the reader. By [12, Theorem 6.1], for z ∈ H not being a CM point of discriminant −dD in

the case d > 0, we have the formula

〈〈 fd, �S,D( · , z)〉〉 =

⎧⎪⎨⎪⎩
−4 log

∣∣∣∣�D( fd, z)y
cfd

(0)

2

∣∣∣∣− cfd
(0)
(

log(4π) + �′(1)
)

if D = 1,

−4 log |�D( fd, z)| + 2
√

Dcfd
(0)LD(1) if D > 1,
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where cfd
(0) denotes the constant coefficient of fd and �D( fd, z) is the twisted Borcherds

product associated to fd, which is defined in [12, Theorem 6.1]. Furthermore, LD(s)

denotes the usual Dirichlet L-function associated to the character of the real quadratic

field Q(
√

D). Recall that fd = 0 for d < 0, f0 = θ is the Jacobi theta function, and

fd = q−d +O(q) for d > 0. For d = 0 we use the explicit product expansion of the twisted

Borcherds product to obtain �1(θ , z) = η2(z) and �D(θ , z) = 0 for D > 1. For d > 0

we know from [12, Theorem 6.1] that �D(fd, z) is the unique normalized meromorphic

modular form of weight 0 for SL2(Z) having roots or poles of order χD(Q) at the CM

points zQ for Q ∈ Q−dD. This implies that

�D( fd, z) =
∏

Q∈�\Q−dD
Q>0

( j(z) − j(zQ))
χD(Q)

wQ .

Altogether, we obtain the formula

〈〈 fd, �S,D( · , z)〉〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d < 0,

−4 log
∣∣∣η2(z)y

1
2

∣∣∣− log(4π) − �′(1) if d = 0 and D = 1,

2
√

DL(1, χD) if d = 0 and D > 1,

−4
∑

Q∈�\Q−dD
Q>0

χD(Q)
ωQ

log
∣∣ j(z) − j(zQ)

∣∣ if d > 0.

For d = 0 and D = 1, we obtain

R0,z

(
−4 log

∣∣∣η2(z)y
1
2

∣∣∣− log(4π) − �′(1)
)

= 2π

3
E∗

2(z).

Here we are using the fact that ∂
∂z

Log(η(z)) = 2π i
24 (E∗

2(z) + 3
πy ); compare the proof of

Proposition 7 in Section 2 in Zagier’s part of [15]. For d > 0 and z not a CM point of

discriminant −dD, we have

R0,z

⎛⎝−4
∑

Q∈�\Q−dD

χD(Q)

ωQ
log

∣∣ j(z) − j(zQ)
∣∣⎞⎠ = −4i

∑
Q∈�\Q−dD

Q>0

χD(Q)

ωQ

j′(z)

j(z) − j(zQ)
.
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We next assume that z ∈ H and suppose that it is not a CM point of discriminant

−dD. Then we compute, by unfolding,

〈〈
Pd,v, �S,D( · , z)

〉〉 = ∫ ∞

v

∫ 1

0
e
(

−dτ1

4

)
�S,D(τ1, z)

du1dv1

v2
1

=
∑

λ∈L dD
4

\{0}
χD(λ)

∫ ∞

v
exp

(
−2πv1R(λ, z)

D

)
dv1

v1
.

Applying the raising operator R0 on both sides and using the identities

∂

∂z
R(λ, z) = − i

2y2 pλ(z)Qλ(z), 2R(λ, z) = y−2|Qλ(z)|2,

we obtain

〈〈Pd,v, R0,z

(
�S,D( · , z)

)〉〉 = −2
∑

λ∈L dD
4

\{0}
χD(λ)

pλ(z)

Qλ(z)
exp

(
−2πvR(λ, z)

D

)
.

This gives the stated formula for F∗
d,D(z; v) if z is not a CM point. On the other hand, it

is not hard to see that for fixed d the expression given for F∗
d,D(z; v) in the statement

of the theorem actually extends to a real analytic function in z on H if we define its

value at a CM point zQ of discriminant −dD by taking the limit z → zQ. The function

〈〈 fd − Pd,v, R0,z

(
�S,D( · , z)

)〉〉 is real analytic in z on H since fd − Pd,v is of moderate

growth at the cusp i∞. Hence, it agrees with the formula given for F∗
d,D(z; v) on all of H.

This finishes the proof. �

The following proposition shows that �
#,z
KM,D(τ , z) and (R0,z(�S,D))#,τ (τ , z) agree

up to a constant and therefore Theorem 5.5 in fact gives the Fourier expansion in τ

of �
#,z
KM,D(τ , z).

Proposition 5.6. The identity

�
#,z
KM,D(τ , z) = − 1

4π
(R0,z(�S,D))#,τ (τ , z)

holds.

Proof. Fix z ∈ H. The difference of both sides is modular of weight 3
2 for �L and

holomorphic on H by Proposition 5.4. The Fourier coefficients (in the expansion with
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respect to τ ) of negative index of the right-hand side vanish as v → ∞ by construction,

and it is easy to see that the same holds true for the left-hand side as well. Hence, the

difference is in M 3
2 ,�L

= {0}, which finishes the proof. �

Proof of Theorem 1.1. The theorem in the introduction now follows from Theorem

5.5 together with Propositions 5.6 and 5.3 by applying the map from vector-valued to

scalar-valued modular forms given in Remark 2.2. �

6 L2,z-preimages of the Millson and the Shintani Theta Functions for k = 0

In this section, we let −d < 0 be a negative fundamental discriminant. By

Proposition 3.6 the function

�
#,z
M,−d(τ , z) =

∑
m∈Z

〈〈Fm − Pm,y, �M,−d(τ , ·)〉〉e(mz)

is a L2,z-preimage of �M,−d(τ , z). It has weight two in z and weight 1
2 in τ for �L. Further,

it is smooth in z. Since it can be studied in an analogous way as the function �
#,z
KM,D(τ , z),

we leave out some details in the proofs of the following theorem.

Theorem 6.1. We have the formula

�
#,z
M,−d(τ , z) = −f̃0(τ , y) − 2

∑
m>0

∑
n|m

( −d

m/n

)(√
dfdn2(τ ) − f̃dn2(τ , my)

)
e(mz)

− 2
∑
m<0

∑
n|m

( −d

m/n

)
f̃dn2(τ , my)e(mz),

where

f̃0(τ , y) := 1

4

∞∑
n=1

(−d

n

) ∑
γ∈�̃∞\�̃

(
erfc

(
yn

√
π√

vd

)
e0

)∣∣∣∣ 1
2 ,�L

γ ,

f̃dn2(τ , y) := 1

4

∑
γ∈�̃∞\�̃

(
e
(

−dn2τ

4

)
erfc

(√
πsgn(y)

(
y√

vdn2
−
√

vdn2

))
e−dn2

)∣∣∣∣ 1
2 ,�L

γ .

Proof. The Millson lift of Fm has been computed in [2, Theorem 4.6], and the Millson

lift of Pm,y can be computed by unfolding as in the proof of Theorem 5.1. �
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Analogously to Proposition 5.3, we obtain that the above representation

of �
#,z
M,−d(τ , z) is nicely convergent, so the function is smooth in both variables.

Proposition 6.2. The function �
#,z
M,−d(τ , z) is smooth in τ , and can be differentiated

termwise.

The function �
#,z
M,−d(τ , z) also satisfies some interesting differential equations.

Proposition 6.3. The function �
#,z
M,−d(τ , z) satisfies the differential equations

4	 1
2 ,τ

(
�

#,z
M,−d(τ , z)

)
= 	2,z

(
�

#,z
M,−d(τ , z)

)
, (6.1)

L 1
2 ,τ

(
�

#,z
M,−d(τ , z)

)
= 1

2
�Sh,−d(τ , z), (6.2)

L2,z

(
�

#,z
M,−d(τ , z)

)
= �M,−d(τ , z). (6.3)

Proof. Using Proposition 4.3 we compute

L 1
2 ,τ

(
�

#,z
M,−d(τ , z)

)
= 1

2

∑
m∈Z

〈〈
Fm − Pm,y, L2,z

(
�Sh,−d(τ , ·)) 〉〉e(mz).

By the same arguments as in the proof of Proposition 5.4 we see that the series on the

right-hand side equals �Sh,−d(τ , z).

The Laplace equation (6.1) can be proved using equations (6.3) and (6.2) and

Proposition 4.3. �

By Proposition 3.9 the function

�
#,τ
Sh,−d(τ , z) =

∑
D∈Z

〈〈 gD − PD,v, �Sh,−d(·, z)〉〉e
(

Dτ

4

)
eD

is a L 1
2 ,τ -preimage of �Sh,−d(τ , z). It has weight 1

2 for �L in τ and weight two for � in z,

and it is smooth in τ .

Theorem 6.4. We have the Fourier expansion

�
#,τ
Sh,−d(τ , z) =

∑
D∈Z

G∗
d,D(z; v)e

(
Dτ

4

)
eD,
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where

G∗
d,D(z, v) := Gd,D(z) −

√
d

π

∑
λ∈L dD

4
\{0}

χ−d(λ)

Qλ(z)
exp

(
−2πvR(λ, z)

d

)

with

Gd,D(z) :=

⎧⎪⎪⎨⎪⎪⎩
− 2i

π
√

D

∑
Q∈�\Q−dD

Q>0

χ−d(Q)

ωQ

j′(z)
j(z)−j(zQ)

if D > 0,

0 if D ≤ 0.

If zQ is a CM point then the value �
#,τ
Sh,−d(τ , zQ) is obtained by taking the limit z → zQ in

the definition of G∗
d,D(z, v).

Proof. The non-twisted Shimura lift of weakly holomorphic modular forms has been

studied in [13, Example 14.4]. Using similar methods, one can show that the twisted

Shimura lift

〈〈gD, �Sh,−d(τ1, z)〉〉
of the weakly holomorphic modular form gD for D > 0 is a meromorphic modular form

of weight two for �, which vanishes at i∞ and has simple poles at the CM points zQ of

discriminant −dD with residues − 2i
π

√
D

χ−d(Q). This implies the formula for Gd,D(z).

The inner product involving PD,v can be computed by unfolding in a similar way

as in the proof of Theorem 5.5. �

Finally, we obtain that the above representation of �
#,τ
Sh,−d(τ , z) in fact gives the

Fourier expansion of �
#,z
M,−d(τ , z) in τ .

Proposition 6.5. The identity

�
#,z
M,−d(τ , z) = 1

2
�

#,τ
Sh,−d(τ , z)

holds.

Proof. Fix z ∈ H. The difference of the left-hand side and the right-hand side

transforms like a modular form of weight 1
2 for �L and is holomorphic in τ by Proposition

6.3. By construction, the coefficients of negative index in the Fourier expansion (with

respect to τ ) of �
#,τ
Sh,−d(τ , z) vanish as v → ∞, and using the explicit formula given in

Theorem 6.4 we see that its coefficient of index 0 also vanishes as v → ∞. Further,
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using Theorem 6.1 it is easy to see that �
#,z
M,−d(τ , z) vanishes as v → ∞, as well. Hence,

the difference of the two functions is a cusp form in S 1
2 ,�L

= {0}, so they coincide. �

7 Higher Weight

We discuss two interesting generating functions in higher weights that can be obtained

by the method of this paper. The results can be proved in a similar way as above, so we

are brief and leave some of the details to the reader. As mentioned in the introduction,

for the functions considered in this section, convergence is not an issue and therefore,

proving that the generating functions we consider are smooth in both variables is much

easier than before. However, the higher weight examples highlight an important feature

that remained hidden in our exposition so far: namely, all the examples that we consider

are in fact a kind of degenerate theta series. We refer to Remark 7.1 for some details.

7.1 A L−k+ 1
2 ,τ -preimage of the Shintani theta function

Let D be a fundamental discriminant with (−1)kD < 0. We assume that k > 0, since the

case k = 0 is treated in Section 6. We consider the function

�Sh,k,D,⊥(τ , z) := �Sh,k,D(τ , z) − πbil(�Sh,k,D(·, z)),

where

πbil( f (τ )) := vk+ 3
2

�
(
k + 1

2

) ∑
d<0

(−1)kd≡0,3 (mod 4)

(π |d|)k+ 1
2 〈〈Fd, f 〉〉e

(
dτ̄

4

)
ed

denotes the “holomorphic projection” of a smooth automorphic form f of weight −k − 3
2

for ρ̃L with respect to the bilinear pairing. We have πbil( f ) = vk+ 3
2 πhol(v

−k− 3
2 f ), where

πhol denotes the usual holomorphic projection of weight k + 3
2 smooth automorphic

forms. Here

Fd(τ ) := 1

4

∑
γ∈�̃∞\Mp2(Z)

(
e
(

−dτ

4

)
ed

) ∣∣∣∣
k+ 3

2 ,ρ̃L

γ ∈ M!
k+ 3

2 ,ρ̃L

is the usual holomorphic Poincaré series of weight k + 3
2 for ρ̃L, which is a cusp form

if d < 0 and an Eisenstein series if d = 0. For d ∈ Z we have

〈〈Fd, �Sh,k,D(τ , z)〉〉 = k!
|D| k+1

2

πk+1
fk+1,−d,D(z),
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where

fk+1,d,D(z) :=
∑

λ∈L− d|D|
4

\{0}

χD(λ)

Qλ(z)k+1
=

∑
Q∈Qd|D|\{0}

χD(Q)

Q(z, 1)k+1
,

which can easily be shown using the unfolding argument. Note that fk+1,d,D is a cusp

form if d > 0, an Eisenstein series if d = 0, and a meromorphic modular form if d < 0.

By construction �Sh,k,D,⊥(τ , z) is orthogonal to cusp forms of weight k + 3
2 with

respect to the bilinear pairing. Hence, by Proposition 3.9 the function

�
#,τ
Sh,k,D,⊥(τ , z) =

∑
d∈Z

(−1)kd≡0,3 (mod 4)

〈〈Fd − Pd,v, �Sh,k,D,⊥(·, z)〉〉e
(

dτ

4

)
ed

is a L−k+ 1
2 ,τ -preimage of �Sh,k,D,⊥(τ , z). It has weight −k + 1

2 in τ , weight 2k + 2 in z,

and it is smooth in both variables. By computing the bilinear pairings with Fd and

Pd,v explicitly, we obtain a completion of the generating function of the forms fk+1,−d,D

for d ∈ Z. The proof of Theorem 1.5 now follows from a straightforward calculation by

unfolding against Fd and Pd,v.

Remark 7.1. As we mentioned above, the function �
#,τ
Sh,k,D,⊥(τ , z) can be written as a

theta function, although it is not obtained from a Schwartz function. However, we have

�
#,τ
Sh,k,D,⊥(τ , z) = �(ϕ

#,τ
Sh,k,D, τ , z), where the “singular Schwartz function” ϕ

#,τ
Sh,k,D(λ; τ , z) is

given as

ϕ
#,τ
Sh,k,D(λ; τ , z) := k! |D| k+1

2 χD(λ)

πk+1Qλ(z)k+1
e
(

Q(λ)τ

|D|
)⎧⎪⎪⎨⎪⎪⎩

1 − 1
k!�

(
k + 1, 2πvR(λ,z)

|D|
)

if Q(λ)≥0,

�
(
k+ 1

2 ,−πQ(λ)v
)

�
(
k+ 1

2

) − 1
k!�

(
k + 1, 2πvR(λ,z)

|D|
)

if Q(λ)<0.

It would be interesting to investigate the properties of similar singular Schwartz

functions and the associated theta functions, and we hope to come back to this problem

in the near future.

Applying the lowering operator in z to the expression above, we immediately

obtain

L2k+2,z

(
�

#,τ
Sh,k,D,⊥(τ , z)

)
= 2�M,k,D(τ , z).

To compute the Fourier expansion in z, one can use the Millson theta lift of Fm,

which can be found in [3, Theorem 4.2.3], and the Millson lifts of the truncated Poincaré

series can again be computed by unfolding. We leave the details to the reader.
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6364 K. Bringmann et al.

7.2 A ξk+ 3
2 ,τ -preimage of the Millson theta function

Suppose that D is a fundamental discriminant with (−1)kD < 0, and assume that k > 0

for simplicity. By Proposition 3.9 applied to y2kv−k+ 1
2 �M,k,D(τ , z), the function

∑
d∈Z

(−1)kd≡0,3 (mod 4)

〈〈
Fd − Pd,v, y2k�M,k,D(·, z)

〉〉
e
(

dτ

4

)
ed

is a ξk+ 3
2
-preimage of �M,k,D(τ , z). It has weight k + 3

2 in τ and weight −2k in z, and it is

smooth in both variables. The inner products against Fd for d > 0 have been computed

in [10] and yield locally harmonic Maass forms of weight −2k, which map to multiples

of the cusp forms fk+1,−d,D(z) under ξ−2k. The inner products involving Pd,v can easily

be computed by unfolding. In this way, we can recover the generating function �̂(τ , z)

studied in [11].
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A Growth estimates

A.1 Weakly holomorphic modular forms of weight 3
2

For D > 0 a discriminant we let gD be the weakly modular form of weight 3
2 given in

(2.5), and we use the same symbol for its vector-valued companion. The purpose of this

section is to prove the following growth estimate.

Proposition A.1. Fix a compact subset K ⊂ H. For a discriminant D > 0 consider the

function

GD(τ ) = gD(τ ) − 1

4

∑
γ∈�̃∞\�̃

DIm(γ τ)≥v0

(
e
(

−Dτ

4

)
eD

) ∣∣∣∣ 3
2 ,�L

γ ,
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where v0 := min{Im(τ ) : τ ∈ K}. We have

GD(τ ) = OK(D),

as D → ∞ through positive discriminants, where the implied constant only depends on

K. Moreover, the same statement is true for all partial derivatives of GD of all orders

with respect to u and v.

Proof. We prove the claim for GD. The corresponding statement for the partial

derivatives follows analogously.

By [9,Theorem 3.7], the Fourier expansion of gD ∈ M!
3
2 ,�L

is given by

gD(τ ) = e
(

−Dτ

4

)
eD − 2δD=�e0 +

∑
ν∈ 1

4N−4ν≡0,1 (mod 4)

cD(ν)e(ντ)e4ν

with

cD(ν) = 24H(4ν)δD=� +
∑

c∈Z\{0}

Hc

(−D
4 , ν
)

√
2D|c| sinh

(
4π

|c|
√

Dν

)
,

where

Hc(m, n) = e
(

−3sgn(c)

8

) ∑
d (mod c)∗

〈
�−1

L

((
a b
c d

)
,
√

cτ + d
)
e4m, e4n

〉
e
(

ma + dn

c

)

is a Kloosterman sum. Here a, b ∈ Z are chosen such that
(

a b
c d

) ∈ SL2(Z). Furthermore,

δD=� equals 1 or 0 according to whether D is a square in Z or not. Since the Weil

representation factors through a double cover of SL2(Z/2Z), there exists a constant C > 0

such that ∣∣∣〈�−1
L (γ ) e4m, e4n

〉∣∣∣ ≤ C

for all m, n and γ ∈ Mp2(Z). The constant term and the Hurwitz class numbers (if D is a

square) in the Fourier expansion of gD only contribute OK(1).

We split the sum over c in the coefficient cD(ν) at
√

D
v0

. First we consider the

infinite part with |c| >
√

D
v0

,

∑
ν>0

∑
|c|>

√
D

v0

Hc

(−D
4 , ν
)

√
2D|c| sinh

(
4π

|c|
√

Dν

)
e(ντ)e4ν .

Using the series expansion sinh(z) =∑∞
k=0

z2k+1

(2k+1)! , we can write

sinh
(

4π

|c|
√

Dν

)
= 4π

|c|
√

Dν + O

((
4π

|c|
√

Dν

)3

e4πv0
√

ν

)
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for |c| >
√

D
v0

, where the implied constant is independent of D, n, ν, and K. Hence, we

obtain

∑
|c|>

√
D

v0

Hc

(−D
4 , ν
)

√
2D|c| sinh

(
4π

|c|
√

Dν

)
= 2π

√
2ν

∑
|c|>

√
D

v0

Hc

(−D
4 , ν
)

|c| 3
2

+O

⎛⎜⎜⎝Dν
3
2 e4πv0

√
ν
∑

|c|>
√

D
v0

|c|− 5
2

⎞⎟⎟⎠,

where we estimate |Hc(−D
4 , ν)| ≤ C|c| in the 2nd sum. Multiplying the 2nd sum by e(ντ)

and summing over ν gives a contribution of OK(D). The first term behaves like

2π
√

2ν
∑

c∈Z\{0}

Hc

(−D
4 , ν
)

|c| 3
2

+ OK

(√
Dν
)

with an implied constant only depending on K. The first sum is the Kloosterman zeta

function Z(−D
4 , ν, 3

4 ) and Lemma A.2 below shows that this amounts to O(Dν
3
2 ), yielding

a total contribution of OK(D) to the result.

It remains to bound the part

e
(

−Dτ

4

)
eD +

∑
ν>0

∑
|c|≤

√
D

v0

Hc

(−D
4 , ν
)

√
2D|c| sinh

(
4π

|c|
√

Dν

)
e(ντ)e4ν . (A.1)

To this end, we consider the absolutely convergent sum

1

4

∑
γ∈�̃∞\�̃
|c|≤

√
D

v0

(
e
(

−Dτ

4

)
eD

) ∣∣∣∣ 3
2 ,�L

γ (A.2)

It is one-periodic and thus has a Fourier expansion, which can be computed in the

same way as the expansion of the Maass Poincaré series. It turns out that the Fourier

expansion equals (A.1). Furthermore, (A.2) differs from

1

4

∑
γ∈�̃∞\�̃

DIm(γ τ)≥v0

(
e
(

−Dτ

4

)
eD

) ∣∣∣∣ 3
2 ,�L

γ

(which is the main part of the growth of gD in the theorem) by less than

∑
|c|≤

√
D

v0

∑
d∈Z

gcd(c,d)=1

|cτ + d|− 3
2 e

πv0
2 �

∑
|c|≤

√
D

v0

∑
d∈Z

(
c2 + d2

)− 3
4

eπ
v0
2 = OK

(√
D
)

.

Up to the estimates for the Kloosterman zeta function given in the following lemma, this

finishes the proof. �
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The growth behaviour of Kloosterman zeta functions is well-known to experts

but somewhat difficult to find in the literature. Therefore, we state it in a form which

is suitable for our purposes.

Lemma A.2. For m < 0 and n > 0 consider the Kloosterman zeta function

Z(m, n; s) :=
∑

c∈Z\{0}

Hc(m, n)

|c|2s .

It converges to a holomorphic function for Re(s) > 1 and has a meromorphic continu-

ation to Re(s) > 1
2 , which is holomorphic at s = 3

4 . Furthermore, we have the estimate

Z
(
m, n, 3

4

) = O(|mn|),
as |m|, |n| → ∞.

Proof of Lemma A.2. The proof follows from the generalization of Proposition 11 of

Appendix E in [20] as described in Section 6 of Appendix E loc. cit. We are giving the

necessary adjustments below. However, we also refer the reader to the shorter work [24],

where the main steps of the proof of the above lemma were carried out in a simplified

setup.

To obtain exactly the Kloosterman zeta function that we are defining above, note

that we can write �L as the product of a representation of SL2(Z) and a multiplier system

for weight −1
2 as follows: Let ν be the multiplier system on SL2(Z) defined via

ν(S) := e− 3π i
4 , ν(T) := e

3π i
12 , ν(γ1γ2) := σ(γ1, γ2)ν(γ1)ν(γ2),

where S := (
0 −1
1 0

)
, T := (

1 1
0 1

)
, and where σ(γ1, γ2) = σ− 1

2
(γ1, γ2) is the usual weight

−1
2-cocycle as defined on page 332 of [20]. It can be checked that

χ(γ ) := �L(γ̃ )ν(γ )−1

defines a representation of SL2(Z), where γ̃ := (γ ,
√

cτ + d). This follows from the fact

that the cocycle of the Weil representation is equal to σ− 1
2

= σ 1
2
. Then the definition

of Z(n, m; s,W) with W(γ ) := χ(γ )ν(γ ) = �L(γ̃ ) on page 700 of [20] agrees with Z(m, n; s)

above.

We remark that in the statement of Proposition 11 of Appendix E in [20] the

special value s = 3
4 was actually excluded, since s = 3

4 lies in the exeptional set N := {sn :

sn(1 − sn) is an eigenvalue of 	̃− 1
2
}, where 	̃− 1

2
is Roelcke’s weight −1

2 Laplace operator

(defined on page 338 in [20]; not to be confused with the Laplace operator 	k defined
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in (2.1)). The Kloosterman zeta function might have poles at the points in N . To see that

s = 3
4 lies in N , note that the modular form τ �→ v

1
4 ϑ(τ) with ϑ(τ) := ∑

n∈Z e2π in2τ of

weight −1
2 (in Hejhal’s convention, compare the factor of automorphy jσ (z; m) defined

on page 338 of [20]) has eigenvalue 3
4 under 	̃− 1

2
. Furthermore, observe that square-

integrable modular forms f of weight −1
2 in Hejhal’s sense with eigenvalue 3

4 under

	̃− 1
2

correspond to holomorphic modular forms of weight 1
2 in our sense by the map

f (τ ) �→ v− 1
4 f (τ ). Hence, the function τ �→ v

1
4 ϑ(τ) is the unique form with eigenvalue

3
4 up to scalar multiples. Coming back to the proof of Proposition 11 of Appendix E in

[20], we see that it suffices to show that Proposition 8 of Appendix E loc. cit. also holds

for s = 3
4 . Its proof has to be adjusted as follows. The eigenform τ �→ v

1
4 ϑ(τ) appears

as one of the forms ϕn in the spectral expansion at the bottom of page 670 in [20]. The

coefficient cn in front is given by the Petersson inner product of the Poincaré series

Pm(z, s, χ) (in Hejhal’s notation; we have set m = nj) with ϕn. However, by unfolding we

see that cn is, up to a scalar multiples, the m-th Fourier coefficient of ϑ(τ). Since we

are assuming that m < 0, we find that cn = 0, so ϕn(τ ) = v
1
4 ϑ(τ) does not occur in the

spectral expansion. The rest of the proof goes through with minor changes, and shows

that the estimate in Proposition 11 loc. cit. also holds for s = 3
4 . This finishes the proof

of the estimate of Z(m, n, 3
4 ). �

A.2 Non-holomorphic Poincaré series of weight 3
2

In this subsection, we derive growth estimates for the non-holomorphic Poincaré series

g̃D(τ , y) defined in Theorem 5.1.

Proposition A.3. Fix a compact subset K ⊂ H × R+. For a discriminant D > 0 consider

the function

G̃D(τ , y) := g̃D(τ , y) − 1

4

∑
γ∈�̃∞\�̃

DIm(γ τ)≥v0

(
e
(

−Dτ

4

)
eD

) ∣∣∣∣ 3
2 ,�L

γ ,

where v0 := min{Im(τ ) : (τ , r) ∈ K for some r ∈ R+}. We have the estimate

∑
n|m

(
D

m/n

)
nG̃Dn2(τ , my) = OK

(
m4 exp

(
3

2
πmy

))

as m → ∞, where the implied constant depends only K and D. Moreover, as m → −∞,

we have

g̃D(τ , my) = OK

(
m2 exp(2πmy)

)
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with an implied constant only depending on K and D. Moreover, similar estimates hold

for all iterated partial derivatives (only the power of m changes, depending on the order

of the derivative).

Proof. We start with m > 0. Using erfc(x) = 2 − erfc(−x), we may write

g̃Dn2(τ ; my) = 1

4

∑
γ∈�̃∞\�̃

Dn2Im(γ τ)≥v0

(
e
(−Dn2τ

4

)
e−Dn2

) ∣∣∣∣ 3
2 ,�L

γ

− 1

8

∑
γ∈�̃∞\�̃

Dn2Im(γ τ)≥v0

(
e
(−Dn2τ

4

)
erfc

(√
πDn2v −

√
πmy√
Dn2v

)
e−Dn2

) ∣∣∣∣ 3
2 ,�L

γ (A.3)

+ 1

8π

∑
γ∈�̃∞\�̃

Dn2Im(γ τ)≥v0

(
1√

Dn2v
exp

(
−π iDn2u

2

)
exp

(
−π

(
m2y2

Dn2v
− 2my + Dn2v

2

))
e−Dn2

)∣∣∣∣ 3
2 ,�L

γ

(A.4)

+ 1

4

∑
γ∈�̃∞\�̃

Dn2Im(γ τ)<v0

(
Kmy(Dn2v)e

(−Dn2τ

4

)
e−Dn2

) ∣∣∣∣ 3
2 ,�L

γ . (A.5)

We split (A.3) and (A.4) into two sums over Dn2Im(γ τ) ≥ my and Dn2Im(γ τ) < my,

respectively, and use the estimate erfc(x) ≤ exp(−x2) for x ≥ 0 and erfc(x) ≤ 2 for x < 0

to obtain a bound for these two sums as follows:

1

8

(
1 + 1

π
√

v0

)
exp

(
3

2
πmy

) ∑
γ∈�̃∞\�̃

Dn2Im(γ τ)≥max{v0,my}

e−Dn2

∣∣∣ 3
2 ,�L

γ + 1

4

∑
γ∈�̃∞\�̃

my>Dn2Im(γ τ)≥v0

e−Dn2

∣∣∣ 3
2 ,�L

γ

= OK

(
m2 exp

(
3

2
πmy

))
.

Here, we use the estimate |cτ + d|− 3
2 = OK(1) and the fact that the coefficients of the

Weil representation are universally bounded. Moreover, the number of terms in the first

sum is bounded by OK(m) and in the 2nd sum by OK(m2). For the remaining part (A.5),

we note that∣∣∣∣Kmy

(
Dn2v

)
e
(

−Dn2τ

4

)∣∣∣∣
= e− πDn2v

2
m2y2

(Dn2v)
3
2

∫ ∞

1
exp

(
−πm2y2t2

2Dn2v

)
exp

(
2πmyt − πm2y2t2

2Dn2v

)
tdt.
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The term 2πmyt− πm2y2t2

2Dn2v
attains a global maximum at t = 2Dn2v

my (which can only happen

if v ≥ my
2Dn2 ). Moreover, since n | m, we have that m2

n2 ≥ 1 and thus we obtain the bound∣∣∣∣Kmy

(
Dn2v

)
e
(

−Dn2τ

4

)∣∣∣∣ ≤ e
3πDn2v

2
m2y2

(Dn2v)
3
2

∫ ∞

1
exp

(
−πm2y2t2

2Dn2v

)
t dt ≤ 2

π
√

Dv
e

3πDn2v
2 − πy2

2Dv .

Since the series ∑
γ∈�̃∞\�̃

(
e− πy2

2Dv v− 1
2 e−Dn2

) ∣∣∣∣ 3
2 ,�L

γ

is absolutely convergent, for our purposes it is enough to estimate the divisor sum as

O(m2) to finish the proof for m > 0. For m < 0 we can simply use that∣∣∣∣Kmy

(
Dn2v

)
e
(

−Dn2τ

4

)∣∣∣∣ ≤ 2

π
√

Dv
e2πmy− πy2

Dv .

With the same bound on the divisor sum, we obtain the statement of the proposition.

To see that the same estimate also holds for the partial derivatives, first note

that it is enough to show this for the partial derivatives with respect to τ and τ and that

∂

∂τ
= −iRk + i

k

v
and

∂

∂τ
= Lk

2iv2 .

To work with Rk and Lk is more convenient since these operators satisfy Lk(f |kγ ) =
(Lkf )|k−2γ and Rk(f |kγ ) = (Rkf )|k+2γ , respectively. Now a simple calculation shows that

Lk

(
Kmy

(
Dn2v

))
= 4 π D2n4v2 + 2 π Dn2vmy − 2 π m2y2 + Dn2v

4(Dn2)
3
2
√

vπ
e− π (Dn2v−my)

2

Dn2v

and

Rk

(
Kmy

(
Dn2v

)
e
(−Dn2τ

4

))
e
(

Dn2τ

4

)

= 3 − 2πv

4v
erfc

(√
π

(
my − Dn2v

Dn2v

))
+ 2πDn2v + πmy + πv − 1

2π(Dn2v)
3
2

exp

(
−π

(
my − Dn2v

Dn2v

)2)

− m2y2

2(Dn2v2)
5
2

exp

(
−π

(
my − Dn2v

Dn2v

)2)
.

Hence, we can use similar estimates as the ones given above to obtain the growth

estimates for these derivatives and it is now clear that for higher derivatives, at most

the power of m changes. �
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