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We complete several generating functions to non-holomorphic modular forms in two
variables. For instance, we consider the generating function of a natural family of
meromorphic modular forms of weight two. We then show that this generating series
can be completed to a smooth, non-holomorphic modular form of weights % and
two. Moreover, it turns out that the same function is also a modular completion of

the generating function of weakly holomorphic modular forms of weight 2, which

27
prominently appear in work of Zagier [27] on traces of singular moduli.

1 Introduction and Statement of Results
1.1 Modular completions

When studying an interesting sequence (a it is often helpful to consider the

n)nGZ'

generating function

Zanq".

nez

An important class of examples is given by theta functions associated with positive
definite quadratic forms, which are generating functions of representation numbers.

Studying the analytic properties of such a generating function provides rich analytic
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6332 K. Bringmann et al.

tools to obtain information about the sequence a,,. Famous examples include explicit
formulas for the number of representations of a positive integer as a sum of four and
eight squares, whose generating functions are modular forms of weight two and four,
respectively, or the partition function p(n), whose generating function is essentially a
modular form of weight —%. The latter fact plays a crucial role in the ingenious proof of
Rademacher’s exact formula [4, Theorem 5.1] for p(n).

In a different direction, the following generating function of certain cusp forms
Jr,q was considered by Kohnen and Zagier [28]. For integers k > 2, they defined (e(x) :=

2" ¢, zeH:={zeC:Im(z) > 0}

Q(r,2) 1= > dif y(@edo),
d=1

where ford € N

fra(@ = Z Q(z, 1)k
QeQy
Here, for a discriminant §, Q; denotes the set of integral binary quadratic forms of
discriminant §. It is not hard to see that each f 4 is a cusp form of weight 2k for the full
modular group I' := SL,(Z). These functions were introduced by Zagier [25] in his study
of the Doi-Naganuma lift. Katok [22] showed that they can be written as hyperbolic
Poincaré series. Using the modularity of the f ;'s it follows that z — (7, z) is modular
of weight 2k. It turns out that 7 — Q. (t, 2) is also modular (of weight k + %). To see this,

one rewrites €2, as (up to a constant)

o0
D > dP 1 p(Dena),

n=1 din

where the functions P, 1,42 are certain exponential Poincaré series. A key property of
Q, (7, 2z) is that it is the holomorphic kernel function for the Shimura and Shintani lifts.
To be more precise, for f a cusp form of weight 2k and g a cusp form of weight k + % in
Kohnen's plus-space, the Shimura lift of g basically equals (g, 24 (-, —2)) and the Shintani
lift of f is essentially (f, Q (-7, -)) [23].

In the following we consider a related generating function, where several
complications arise. We let j be the usual modular j-invariant. Its derivative j' is a
weakly holomorphic modular form of weight two for I'. It is well-known that I" acts

on Q_, with finitely many orbits if d # 0. For each positive d, we consider the
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meromorphic modular form of weight two given by

1@
0q (@) —J(zg)’

Fy(z):=-2i Z

QelN\Q_4

where w,, is the size of the stabilizer of Q in PSL,(Z) and z, is the complex multiplication
(CM) point associated with Q, that is, z, is the unique root of Q(z,1) contained in H.
These functions are CM traces of
J(@) S~

— = —271 (v)e(nz), (1.1)

j@ —J@) nZ:;;J”
where j, for n € N; is the unique weakly holomorphic modular function for I' with
Fourier expansion j,(r) = e(—nt) + O(e(r)), and the equality holds whenever Im(z) >
Im(Mr+) for all M € I'. Note that (1.1) is equivalent to the famous denominator formula

for the Monster Lie algebra.

In this paper, we are interested in the (formal) generating function

A(t,z) = Z Fy(2)e(dr).

d>0

However, leaving convergence issues aside, since F; has poles at all of the CM points
of discriminant —d and the set of all CM points is dense in H, the resulting function
would be undefined on a dense set in H and thus badly behaved. In this article, we
study how to “complete” such a formal generating function to converge everywhere on
H x H to a smooth function, which is modular in both variables. This is analogous to
the modular completion of the mock theta functions in the work of Zwegers [29], which
turn out to be harmonic Maass forms. To state our result, we extend the definition of F
to include non-positive discriminants. To be more precise, for d € —N; such that —d is
a discriminant, we set
F o) = ZE5(z) ifd=0,
0 ifd <0,
where E; is the non-holomorphic Eisenstein series of weight 2 for I' defined in (2.6)

below. Furthermore, we let (z=x+iy,7 = u +iv)

- Q Q(z,1)|?
Fy(z,v):=-2 Z Z__ exp —47TVM,
Q(z,1) y?
QeQ_g4\{0}
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where for Q = [a, b, c], we set Q,, := }l,(a|z|2 + bx + ¢). We obtain the following result (see

Theorem 5.5 for a proof).

Theorem 1.1. For d > 0 the function (z,v) — F;(2) + f‘d(z, v) extends to a smooth
function on H x RT if we define its value at a CM point z, of discriminant —d by

lim (Fq(2) + f‘d (z,v)). Furthermore, the series

Z—Z0

A*(1,2) = Y (Fg(2) + Fy(z,v)) e(d),
deZ

converges locally uniformly on H x H to a smooth function. It is modular of weight two
for I in z and of weight % for I'y(4) in 7 for I'y(4).

Remark 1.2.

() Note that in contrast to F,;, the function 1~5'd(z, v), which is used to complete
the generating function is defined in elementary terms and resembles the
d-th Fourier coefficient of a theta function —except for the denominator
which causes the poles.

(ii) We also remark that our completion A*(z,z) is closely related to upcoming
work of Bruinier, Funke and Imamoglu [8], in which the lift of meromorphic

modular forms like (1.1) against the Siegel theta function is studied.

Theorem 1.1 immediately begs the question whether the Fourier coefficients
of A*(tr,z) in z are also of interest. As it turns out, the very same function is also a
completion of a formal generating function of another natural family of modular forms,
which we describe in the following. For a positive discriminant D we denote by g, the
unique weakly holomorphic modular form of weight % for I'y(4) in Kohnen's plus space
having principal part e(—Dr). In their influential paper [16], Duke, Imamoglu, and Té6th

considered the finite sum

Go(T) — Z annz(r)e(mz), (1.2)

O<m<M n|m
where g, := H is Zagier's non-holomorphic Eisenstein series of weight % for I'y(4)
defined in (2.4). After taking the (regularized) inner product of this sum against g
for a positive non-square discriminant D > 0 the limit as M — oo exists. They then
show that this limit is the generating function of the D-th traces of cycle integrals of

the modular functions j,, and a modular integral of weight two with rational period
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function. Without taking the inner product first, the limit as M — oo in (1.2) does
not exist. However, we show that it can again be completed to a convergent generating
function, which is modular in both variables. It turns out that this generating function
in fact equals A*(t, z), giving its Fourier expansion in z (see Theorem 5.1 for a precise
statement in the vector-valued setting).

The function A*(z, z) satisfies differential equations under the Laplace operators
and it is related to the Siegel and the Kudla-Millson theta functions by the Maass
lowering operator. In our particular situation, the two theta functions are explicitly

given by

2
Og(7,2) == 4VZ Z exp (—4nv%) e(dr),

deZ QeQ_4

2
Oy (t,2) = Z Z (4v02 - Lﬂ) exp (—471 IO(;J) e(dr),

deZ QeQ_g4

and they are smooth functions in 7 and z that transform like modular forms of

weight —% and % in 7 for I'y(4), respectively, and weight 0 in z for I.

Proposition 1.3. The function A*(t, z) satisfies the differential equations
473 . (A*(z,2)) = A, , (A*(1,2),

where Ay is the weight k hyperbolic Laplace operator defined in (2.1), and

Ls . (A*(t,2)) = ———Ry, (O5(1,2)), (1.3)

1
167
Ly, (A*(1,2)) = Ogy(t,2),
= —2iy2%, and R , := 2i-2 are Maass lowering and raising

920
whereL%IT = =2iveaz, Ly,

operators.

In Proposition 5.4, we prove the corresponding identity in a vector-valued
setting, which immediately implies Proposition 1.3. For the proof we use a method
from [18], which yields distinguished L,-preimages of a certain class of smooth
automorphic forms of moderate growth, generalizing the surjectivity of the &, -operator
from harmonic Maass forms to holomorphic modular forms [6, Theorem 3.7]. To deal
with the above generating function, the following simplified version is sufficient. The

reader is referred to Section 3 for details.
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6336 K. Bringmann et al.

Proposition 1.4 ([18], Theorem 2.14). Let F(z) = » .7 Cz(Mm,y)e(mz) be a smooth
modular function for I' of moderate growth, and assume that cz(0,y) = 0(e %) as
y — oo for some C > 0. Then there exists a unique smooth weight two modular form
Ft(z) = > mez Cr#(m, y)e(mz) with at most linear exponential growth at the cusp and
limy_>Oo cp#(m,y) = 0 for m < 0O, such that L, (F*) = F. Its Fourier coefficients are given
by

cpe(m,y) = <Fm - Pm’y,F>,

where (-,-) is the regularized Petersson inner product defined in (3.3), F,,

= j, for
m € Nj is the unique weakly holomorphic modular form for I' with Fourier expansion
e(—mz) + O(e(2)), F,, = 0 for m € —N, and Py is a truncated Poincaré series defined

in (3.1).

Here and throughout, we mean by moderate growth that F and all iterated
partial derivatives in z and Z are O(y*) for some ¢ € Z (¢ and the implied constant are
allowed to depend on the order of the partial derivative) as y — oco. By Proposition 1.3,

for fixed 7, the function

@%M(‘L',Z) = Z <Fm — Pm'y, @KM(T,Z)>8(TI’LZ)

meZ

is a smooth weight two modular form in z for I', which maps to ®x,(z, z) under L, ,. For
m € Nj the inner product with F,, = j,, is the Kudla-Millson theta lift studied in [7]. By

[7, Theorems 1.1 and 1.2], we have

' Oru\t,2)) =
" =23 m NGn2(r) ifm>0.

The integral involving the truncated Poincaré series can be computed by unfolding
against P, .. In this way we obtain the Fourier expansion in z. The modularity of
Oy (t,2) in t implies that 7 — @I#{M(‘(,Z) transforms like a modular form of weight
%. The series converges locally uniformly and defines a smooth function on H x H
(which is in fact quite difficult to prove). It can be differentiated termwise with respect
to 7, which then easily implies the relation (1.3). Equivalently stated, (1.3) says that
@I"’*{M(r,z) maps to a multiple of R, ,(O4(7,2)) under L%. Applying the same technique
to construct a L%—preimage of Ry ,(®g(7,2z)) with respect to r, we obtain Theorem 1.1,
and from the uniqueness we see that this preimage agrees up to a constant factor

with ©%, (7, ).
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Modular Completion of Generating Functions 6337
1.2 Higher weight

While we focus on the generating functions in low weights in this paper, we also
consider lowering preimages of the Shintani and Millson theta functions in higher
weight. Our interest in these functions is twofold. First of all, we obtain again
completions of the formal generating functions of very natural families of modular
forms. In particular, the construction yields completions of the generating functions of
the modular forms f; |, p 4 (defined above for D = 1 and d < 0), which are holomorphic
cusp forms for d > 0 (and a holomorphic Eisenstein series for d = 0) but meromorphic
modular forms for d < 0.

Second, the modular completions we consider in higher weight feature an
interesting phenomenon: it really becomes clear that the preimages under the lowering
operator that we obtain with the method of this paper should in fact be seen as a very
close relative of theta functions build from Schwartz functions. Namely, it is possible to
write them as theta functions coming from a “degenerate” Schwartz function. We refer
to Section 7 for details.

To state one of our results in this direction, let k be a positive integer and let D
be a fundamental discriminant with (—1)¥D < 0. For all D and d, the function

Jer1,a02) = z 1p(Q)

TP
acdapio) 2@ 1

has weight 2k + 2, where xj, denotes the usual genus character (see Section 4). Define

the series
D|"
k(1.2) =k Tkt1 Z (fk+l,d,D(V' Z) = Jk41,d,0Vs z))e(dr) ,
deZ
(-1)¥d=0,3 (mod4)
where
_ 1 ifd <0,
S (v,2) =1 (2) yr(k+14n)d
+1,d,D k+1,d,D ( 1 4r| |v) i£d =0,
r(k+%)
1 xp(Q) |Q(z, 1)|
Ik+1,ap(V:2) i= o Z —=—T (k+ 1,4nv—7s——|.
G ! 1)k+1 2D
QeQ_gp/\{0} Az 1) yeID|

Using the same method as above, we obtain the following result.
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6338 K. Bringmann et al.

Theorem 1.5. We have that B*(t,z) converges to a smooth function on H x H and is

modular of weight 2k 4+ 2 in z for I and modular of weight —k + % in 7 for I'y(4).

For the proof we refer to Section 7.1.

1.3 How this article is organized

In Section 2, we set up the notation for the rest of the paper and recall important facts
from the theory of harmonic Maass forms. Section 3 is then concerned with the L;-
preimages; the results of this section are essentially contained in [18]. However, since
we need special cases and also slightly stronger versions for our very explicit results,
we nevertheless provide a lot of details and proofs. The four theta functions that we use
are all introduced in Section 4. In Sections 5, 6, and 7, we construct the preimages of
all theta functions and study their analytic behaviour in detail. The appendix contains
growth estimates for families of weakly holomorphic modular forms, which are needed
in order to prove normal convergence of the completed generating function. These
results might be of independent interest but are also quite technical and only included
because, to our surprise, we could not find similar results in the literature. We only
provide details in weight %, which is the most delicate regarding convergence, but our

arguments generalize to other weights.

2 Preliminaries on Vector-valued Harmonic Maass Forms for the Weil Representa-

L= I(_b _C) ra,b,ce Z]
a b

with the quadratic form Q()) := det(X) and bilinear form (A,v) := —tr(iv). It has

signature (1, 2) and level four, and its dual lattice equals

b
L’=[( 2 b):a,b,ceZ].
a 3
1

Hence, L'/L = Z/27. The modular group I' acts on L' and L by conjugation y.A := yAy~*,

tion

Consider the even lattice

and fixes the classes of L'/L. For a discriminant D € Z let

D
L p:= IAEL’:O(A):——].
1 4
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Note that an element A € L_% corresponds to a binary quadratic form I[a,b,c] of
discriminant D, and this identification is compatible with the actions of SL,(Z) on L_»p
and Q.

We let Mp, (R) be the metaplectic group, realized as the set of pairs y = (y,¢)
with y = (25) € SL,(R) and ¢ : H — C a holomorphic function with ¢2(r) = ¢t + d. The
group I' := Mp,(Z) is generated by the elements T := ((§ 1),1) and S:= ((9 }), /7). Let
Foo be the subgroup of I generated by T.

N

We let ¢, with u € L'/L be the standard basis vectors of the group algebra
CIL'/L]. We frequently identify L'/L with Z/2Z and for n € Z we use the notation
¢, to denote ¢, (042, Where ¢y corresponds to ¢, and e¢; corresponds to e, ; with
y € L'\ L. The group algebra is equipped with the natural inner product (¢, ¢,) =3, ,,
which is antilinear in the 2nd variable. Furthermore, let ¢; denote the associated Weil

representation of T', which is defined by

oy (T)e, :=e@u)e,, 0, (S)e, = W > e(—(wv))e,.

vel//L

Moreover, o; denotes the complex conjugate representation, which corresponds to the
Weil representation attached to the lattice given by L with the negative of the quadratic
form.

For k € % + Z, define the weight k slash operator of Mp,(Z) on functions f : H —
CIL'/L] by

Flio, 7 #)(@) =00y (v, ¢)  f(y1).

The weight k Laplace operator

o 3% 92 . 3 .0
Ak = -V m—i—m +lkV E‘i‘la/ (21)

acts component-wise on smooth functions f : H — C[L'/L] and commutes with the
weight k slash-action.

We recall the definition of harmonic Maass forms from [6].

Definition 2.1. A harmonic Maass form of weight k € % + Z for o; is a twice

continuously differentiable function f : H — CIL'/L], which satisfies the following
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conditions:
i) A(H=0;

(i) flio, (v, ¢) = f for every (y,¢) € T;
(iii) f(r) = 0(e®) as v — oo for some constant C > 0, uniformly in u.

We denote the space of all harmonic Maass forms by H,'c oL Furthermore, we
let Hy ,, be the subspace of harmonic Maass forms for which there exists a Fourier

polynomial

Pr(r)= . cf (me(nr)
—ookn<0
with coefficients C}L(n) e CIL//L] such that f(r) — Pp(r) = O(e™®) as v — oo for
some ¢ > O, uniformly in u. The function Py is called the principal part of f. The
subspaces of weakly holomorphic modular forms (meromorphic modular forms which
are holomorphic on H), holomorphic modular forms and cusp forms are denoted by
1
Mk:QL
and of integral weight for I' are defined analogously, and the corresponding spaces are

My, and Sk.oL” respectively. Harmonic Maass forms of half-integral weight for o;

denoted by H! a3 (fork e % + 7Z) and H,'c (for k € Z), respectively.

An element f € H,'c oL has a Fourier expansion of the shape

f@) = ¢, vemnr), (2.2)
neQ

with ¢¢(n,v) € C[L'/L]. The right-hand side of (2.2) decomposes into a holomorphic part
f* and a non-holomorphic part f~, which are for k # 1 given by

ffo=> ¢f (me(nr), f*(z):cj:(O)v“kJr > ¢ (MW (2rnv)e(nr),
neQ neQ\{0}

n3»—oco n<&oo
with coefficients CJJ{(n), CJZ (n) € C[L'/L]. Here, following [5] and [6] for x € R, we set

W (%) = (—2x%)! "*Re(E(-2x))

with E;, the generalized exponential integral (see [17], 8.19.3) defined by

o
E.(z) ::/ e 2t T dt.
1
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This function is related to the incomplete Gamma function via (8.19.1) of [17] by ['(r, 2) =
Z'E,_,(2). For k = 1, one has to replace v!~* by log(v) in the non-holomorphic part f~ of
f. Note that f € H , is equivalent to cr (n) =0foralln > 0.

The Maass lowering operator and the Maass raising operator

L, = 2iv28 R'—2ia+k
ko T’ B L

lower or raise the weight of an automorphic form of weight k by 2. The & -operator

— .. 0
§(f (1) = V"L (F@) = R (VF@) = 2ivk = f(o)

; oot ! !
defines surjective maps Hy , — M, ;.

operators are related to the Laplace operator by

and Hy , — Sj_j;,- The raising and lowering

—AszzikoékZLkJrz ORk+k=Rk72 OLk. (23)

Remark 2.2. The action o;(Z)e, = ic_j of Z := S? in the Weil representation implies
that the components f; of f = >, /1 fhen € H,'c oL satisfy the symmetry relation
fon = (—1)k+%fh. We obtain that HI!C,QL = {0} if k + % is odd and that H;c.EL = {0}
if £+ % is even. Denote by H,!C(4) the space of scalar-valued harmonic Maass forms
fo = >, cr(n, vie(nr) of weight k for I'y(4) satisfying the Kohnen plus space
condition cr(n,v) =0 unless (—l)k*%n = 0,1 (mod4). One can show as in the proof
of [19, Theorem 5.4] that vector-valued modular forms of half-integral weight for the
(dual) Weil representation can be identified with (skew-holomorphic) Jacobi forms via

the theta decomposition. Hence, again by [19, Theorem 5.4], the map

Jo(@eg + f1(0)ey = fo(4r) + f(471)

defines an isomorphism Hl!c,gL =~ H,(4) if k +  is even, and Hl!c,EL = H (4 if k+ 3 is
odd. Throughout this work, we switch freely between the vector-valued and the scalar-
valued viewpoint without further notice. In particular, we use the same symbol for a

vector-valued harmonic Maass form and its scalar-valued version.

Example 2.3. We collect some examples of harmonic Maass forms and modular forms

that are used below.
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(i)

(ii)

(iii)

Zagier's non-holomorphic Eisenstein series

H(r) := ZH(n)e(nt) + Z nl’ ( ,4nn V) e(—n’t) + %ﬁ' (2.4)

with
11 1
H(O) = ——, EH(d) = > —

12 QeMQ_4 (976}

is a harmonic Maass form in H} (4) = H}, . [26]. It is related to the Jacobi
2 2+0L

theta function 6(z) := X, e(n?1) € M, 4) = M, o by S% (H) = —15=9.

For each negative discriminant —d < 0, there exists a unique weakly

holomorphic modular form f; € M' (4) having a Fourier expansion of the
2

shape

fa =e(=dny+ D, AD,deD).

D>0
D=0,1 (mod4)

Similarly, for each positive discriminant D > O there is a unique weakly

holomorphic modular form g, € M '3 (4) with
2

gp(t)=e(-Dr)+ > B(D,de(dr). (2.5)
d>0
d=0,3 (mod4)
Here B(D,0) = —2 if D is a square, and B(D,0) = 0 otherwise. If we

define f, := 6, then the sets {f;} and {gp} form bases of M!l (4) and MI§ 4),
respectively. The coefficients satisfy the Zagier duality A(Dz, d) = —B(B, d)
and can be expressed in terms of twisted traces of CM values of the modular
j-function [27].

The non-holomorphic Eisenstein series

Ej(z) := ——+1—24ZZde(nz) (2.6)

n=1dn

is a harmonic Maass form of weight two for I'. It satisfies &,(E3) = %
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3 Normalized L, -preimages

In this section, we recall a special case of a result from [18], which produces a
distinguished preimage F € L,;iz (f) of an automorphic form f of weight k under the L, , ,-
operator. We formulate this result for scalar-valued integral weight modular forms on
the full modular group I' = SL,(Z) and for half-integral weight vector-valued modular
forms for the Weil representation o; (or o;). To ease the notation, we deal with the two

cases separately.

3.1 Integral weight

For k € Z, we define a family of harmonic Maass forms F,, € H, (m € Z). For m > 0,
we let F,, € H; be a harmonic Maass form with principal part e(—mz) + C;-_m (0) for some
constant C;fm (0) € C, which is unique up to addition of holomorphic modular forms. If
M; # {0}, then we let F, = 1 if k = 0 and F;, = E|, (the normalized Eisenstein series) if
k # 0, and we additionally require that c;fm (0) = 0 for all m > 0. If M; = {0}, then we

set F,,, =0 form < 0.

Example 3.1. For k = 0 and m > 0 the function F,, is the unique weakly holomorphic
modular function whose Fourier expansion has the form e(—mz) + O(e(2)). It is usually
denoted by j,, and it is a polynomial in the modular j-function, for example, j, = 1,j; =
j—744.

Furthermore, for m € Z and w € R*, we define the truncated Poincaré series

1 ify >w,
> (ow(ne(-m2)|,y, where o, (y) = ' (3.1)
y€loo\I' 0 ify <w,

1
Pow(2) = 2

with |, the usual weight k slash operator, and I',, :={(} %) : n € Z}.

We introduce some more notation.

Definition 3.2. The space A‘,L‘Od consists of all smooth functions F : H — C satisfying
the following conditions:
(i) Flgyy =Fforally eT;
. 9e 9B
) 5= =5

a, B eNg.

F(z) = O(y'«+#) for some ¢,, 4 € Ny as y — oo, uniformly in x, for all
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(iii) If F(2) = > ,,cz Cr(m,y)e(mz) denotes the Fourier expansion of F, then the

integral

0
/ cp(0, )t 27 5dy,
1

which converges for Re(s) > 0 large enough, has a meromorphic continua-

tion to a half-plane Re(s) > —¢ for some ¢ > 0.

Remark 3.3. The integral in Definition 3.2 (iii) converges for Re(s) > 0 since F is of
polynomial growth as y — oo. The condition that it has a meromorphic continuation
to s = 0 ensures that all of the regularized Petersson inner products (see (3.3) below)
appearing in the following are well-defined. Also note that we modify the definition of

the space A};‘Od slightly in comparison to [18].

Next we define a space of smooth modular forms in which the L, ,-preimages

of functions in A‘,‘g"d live.

Definition 3.4. The space A;c+2 consists of all smooth functions G : H — C such that

(i) Glgyoy =Gforally eT;
(i) G(z) = 0(e%) as y — oo for some constant C > 0, uniformly in x;
(iil) Ly,,(G) € AF

We next describe some basic properties of the Fourier coefficients of functions

. !
1nAk+2.

Lemma 3.5. Let G(z) =>,,.7Ccc(Mm,y)e(mz) € A;chZ' For m € —N the limit
kg(m) := lim cg(m,y)

exists and vanishes for all but finitely many m € —N. For m € N, we have the estimate
cg(m,y) = O(y‘'e*™™)

as y — oo, for some £ € N,.
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Proof. Letm € Z.If L;_ ,(G) =F € A}°?, then we can write
Y
ce(m,y) =cg(m,1) +/ CF(m,t)t_zdt. (3.2)
1

Since F(z) = O(y") for some £ € Ny, we have |cz(m, y)| < Cy*e*™ for some C > 0. This

easily implies the statements of the lemma. |

Following [13], we define the regularized Petersson inner product of two

automorphic forms F and G of weight k by

[ dxd
(F,G):=CT lim | FG@y"* —r, (3.3)
s=0T—o0 ) Fp )4
where Fr = {z € H : |x] < %,|z| > 1,y < T} is a truncated fundamental domain

for '\H and SC_Z(; f(s) denotes the constant term in the Laurent expansion at s = 0 of
the meromorphic continuation of a function f. Of course, the inner product (3.3) does
not always exist, but this description is sufficient for the purposes of this work. In
particular, (F, G) always exists for F € A}c and G € M, (see [18, Lemma 2.10] for a proof).
For notational convenience we define a bilinear pairing between automorphic forms F
and G of weight k and —k, respectively, by

(F,G) := CT lim F(z)G(z)y_s% = (F,y%G),

§s=0T—o0 JFp

whenever this exists.
The following result (essentially a special case of [18, Proposition 2.12]) yields

distinguished L ,-preimages of certain functions in AT°%.

Proposition 3.6. LetF € A‘,‘f’d, such that ((F, G)) = 0 for all G € S_. Then there exists
!

a unique F* € A,

with Fourier expansion

F#(z) = z cpr(m, y)e(mz),
mez
such that
(i) Ly ,(F") =F;

(ii) «p(m)=0forall m <O;
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(i) if My, # {0}, then
o0
cp#(0,y) = —CT / cy(0, H)t~572dt; (3.4)
s=0 v

(iv) F* is orthogonal to cusp forms, that is, (F¥,G) = 0 for all G € S;,.

The Fourier coefficients of F* are given by
CF#(mIY) = ((Fm - Pm,yrF>>l

where F,, and P, , are the harmonic Maass forms and truncated Poincaré series of

weight —k defined at the beginning of this subsection.

Remark 3.7. Note that

[} 9 o] y
Lo (— CT / CF(O,t)t_S_zdt) = y*— (— CT / cp(0,t)t™S72dt + / CF(O,t)t_zdt)
s=0 y By s=0/1 1

cp(0,y).

Thus, the constant term of any L, ,-preimage of F and the expression on the right-hand
side of (3.4) can only differ by a constant. In the case M, # {0}, we normalize this

constant to be zero.

Proof of Proposition 3.6. For the convenience of the reader we only use the existence
of some function F* ¢ A;c+2 with Ly, 5 (F*) = F from [18, Proposition 2.12] and sketch the
proofs for the remaining claims, which can be found in more detail in [18, Theorem 2.14].
For simplicity, we assume that M_, = {0} and thus M, # {0}; the case that M_; # {0}
and that M, = {0} is completely analogous.

We first show how the normalization in (ii), (iii), and (iv) can be achieved. An
application of Stokes’ theorem as in the proof of [6, Proposition 3.5] shows that for

every cusp form G(z) = >_,,_ o cg(m)e(mz) € S_; we have the formula

0=(F,G)= <<Lk+2(F#), G>> = > comyp(—m).

m>0

It now follows from [6, Proposition 3.11 and Theorem 3.6] (see also [14, Theorem 3.1])

that there exists a weakly holomorphic modular form of weight k + 2 with principal
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part > . _okp:(m)e(mz). Subtracting it from F* we can assume that kp#(m) = 0 for all
m < 0. Furthermore, by subtracting a suitable cusp form from F# we can assume that
F* is orthogonal to cusp forms and by subtracting a suitable constant (if k = —2) or a
suitable multiple of an Eisenstein series we obtain the normalization in (iii). It is clear
that the properties (i)-(iv) determine F* uniquely.

We next compute the Fourier coefficients of F¥. For m € Z a standard argument

(see, e.g., [18, Proposition 2.14]) shows that

. dx,d
((Fyp — Py y F)) = lim ( / (Fp(21) — Py (2)F(2)) — 1571

T—o0 Fr 1

(3.5)
> —s-2
+ (cf,© = 8,0) CT / ce(0, y)yT* dyl).
s=0JT
For m > 0, Stokes’ theorem yields
dx,d - dx.d 1+iT
/ Fp(2))F(z) =270 = — / F* (2))E o B2y 2 LN / F, (2)F*(2,)dz,.
Fr )4 Fr ¥ ir

The 1st integral on the right-hand side vanishes as T — oo since F* is orthogonal to

cusp forms. The remaining path integral can be evaluated as

no -1
cpr (M, T) + ¢ (0)cps(0,T) + D ¢ (e (—n, T)+ D ¢ ()Cps(—n, TYWy (2w nT)

n=1 n=-ng

1+iT
+ / > ¢ (nyenz)F(z))dz,
ir n>no+1

+ / o > MW 2rinlyyenz,)F(z))dz,,

T p<—np-1

where n; is any positive integer chosen such that the integrands in the last two
integrals are exponentially decreasing as y; — oo, which is possible since F* is of
linear exponential growth. In particular, the last two integrals vanish as T — oo. The
finite sums in the 2nd line vanish as T — oo since lim;_,  Cp#(—1, T) = kps(—n) = 0
for n > 0 and cm(—n,T) = O(T¢e=?""T) for n < 0 (see Lemma 3.5) and W (27nT) =
O(T~*e*™"T) for n < 0. Using the normalization of c+(0, T) in item (iii) we see that
the term c;Em(O)CF#(O,T) cancels out with one of the extra terms coming from the
regularization in (3.5). In particular, in the limit T — oo only the term cp+(m, T) gives

a contribution.
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Furthermore, for m € Z and for sufficiently large T the unfolding argument gives

dx,d T rl dx,d
/ Py, (2)F(2)) 1 =/ / e(—mz))F(z;) —L 11
Fr Y1 y Jo i

T
=/ cp(m,y))yy *dy; = cpr(m, T) — Cpe(m, y).
y

Note that we are also using the last equality in (3.2). Combining everything, we obtain

the stated formula for cz+(m, y). [ |

3.2 Half-integral weight

We next explain how the analogs of the families F,, and P, , of harmonic Maass forms
and the truncated Poincaré series are defined in the vector-valued case. For simplicity,
we only do this for the representation o;, since the case p; can be treated in the same
way.

Let k € % + Z. The spaces A}Q%‘z and A}C,QL are defined in the obvious way.
We can assume that k + % is even since otherwise Hy, = {0}. For D > 0 with
D =0,1 (mod4) we let F € H,‘;QL be any harmonic Maass form with principal part
e(—%)eD + C}D (0)eg, which is unique up to addition of holomorphic modular forms. If
there exists a holomorphic modular form in My o, which has constant term equal to one,
then we take this as 7, and we further require that C}D (0) =0 for all D > 0. If there is

no such holomorphic modular form, then we set 7, = 0. Finally, for D < 0, we let 7, = 0.

Example 3.8. If k= %, then we take the weakly holomorphic forms 75, = g, for D > 0
and F, =0 for D < 0.

We also define the truncated Poincaré series

1 D
PD'W(‘L’) = 1 Z (ow(v)e (—TT) eD)

)/Efoo\F

y.
k.o

With these definitions, the following analog of Proposition 3.6 holds in the

vector-valued case.

Proposition 3.9. Letf e A‘,‘C‘og‘i, such that (f,g) =0forallg e S_ kg, Then there exists
|

a unique f* € Ap, o

with Fourier expansion

ffo= D cudveDr),

DeZ
D=0,1 (mod4)
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such that the following conditions hold:
@) Lo (fH =f;
(ii) kex(D) =0 forall D < O;
(iii) If My, # {0}, then

oo

cf#(O, V) =— CCZ;/ cf(O, HtS2dg;
S=

\%4

(iv) f*is orthogonal to cusp forms, that is, (f#,g) =0 forall g € Sk+2,01-

The Fourier coefficients of f# are given by

Cf#(DI V) = ((‘FD - PDIVIf>>eDI

where 7, and Pp, are the harmonic Maass forms and truncated Poincaré series of

weight —k for g; defined at the beginning of this subsection.

4 Theta Functions

In this section we briefly recall the main players of this article, well-known non-
holomorphic theta functions for the lattice L.

Forz=x+iy € Hand A € L', we define the quantities

1 1
Q,(2) :=az’ +bz+c, p,(2):= —}—/(a|z|2 +bx+c), ROz := Epf(z) — (A 0.

Note that (&, A) = —%(b2 —4ac) for » € L'. Let D be a fundamental discriminant (possibly

1). For a quadratic form Q = [a, b, c] € Q, of discriminant A such that D divides A, we let

@ (%) if gcd(a,b,c,D) =1 and Q represents n with gcd(n,D) =1,
XD =
0 otherwise,

be the genus character as in [23, Section 1]. We can view xp, as a function on L'/L via the

identification of elements A € L’ with binary quadratic forms. Define

~ o ifD>0, 1 ifD>0,
oL = e(D) =
o, ifD<0O, i ifD<o.
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For a rapidly decaying (Schwartz) function ¢ : L ®, R — C we consider the

following twisted vector-valued theta function

Op) = > > XpMWe(he,.

uel! /L AeL+Dp

Q(»)=DQ(x) (modD)
The Schwartz functions that we use are defined as follows. We always write ¢(A; 7, 2),
also depending on t and z, as a product ¢(A;7,2) = wo(k;t,z)gogo(k;t,z), with the

Gaussian

0o (—27TV(Q()») + R(k,z)))
op (A, T,2) :=exp .

DI

The four cases that we need for ¢° are

QMu vpi(z) 1 aMu
0 0 x
vep(A;T,2) = Ve( ), 1) ANt,z2)= ————Je ,
P D| KM.D D 27 D]
0 Gurz k2 Q@) . aMu 0 itz k_Hp)L(Z)OI)f(E)e aMu
Pshrp*iT,2) =V T . PurpAiT,Z) =V o
y2k+2|D| "z ID| y2k|D| 2 |D|
The corresponding theta functions are then defined as 0%, := ©(p2 ,93), Ogmp =
@((ng,DqJBO), Ospkp = ®((pghlk’D<pf)°), and O rp = ®(<p1?,1’k’D<pg°) and are called the

Siegel, Kudla—Millson, Shintani, and Millson theta functions, respectively. For simplic-

ity, we drop k from the notation when k = 0.

Remark 4.1. By replacing A with —X in the summations, we see that the Siegel and
Kudla-Millson theta function vanish for D < 0, whereas the Shintani and Millson theta

functions vanish for (—1)¥D > 0.
We summarize their transformation properties in the following proposition.

Proposition 4.2. The theta functions defined above have the following automorphic

properties:
i) ©gp(,2) € AmOdE and the components of ®g j(t, ) are contained in AT°Y;
" ~lar ,

(ii) Ogpyp(-,2) € AE?L and the components of Oy, p(z, ) are contained in Af°%;
(i) Ogprpl,2) € A"} and the components of Ogy, . p(7,-) are contained

3 kD
—3—R.0L
in AT99 ;
2k+2'
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(iv) Oppp(.2) € AT

. and the components of ®;;; p(r,:) are contained in
7 —K.0L o
Amod‘

2k

Proof. For the twisted Siegel theta function see [12, Theorem 4.1]. The transformation
properties of the Millson and Shintani theta functions are stated in [2, Theorems 3.1
and 3.3]. We remark that the Millson theta function has been studied earlier in [21, Satz
2.8]. The twisted Kudla—Millson theta function is investigated in [1, Proposition 4.1]. In
general, the transformation rules of such theta functions can be proved for D = 1 by
Poisson summation as in [13, Theorem 4.1] and for D # 1 by using the twisting operator
introduced in [1]. |

The theta functions are related by various differential equations.

Proposition 4.3.

(i) The Siegel and the Kudla—Millson theta function are related by
1
Ls . (Okn,p(7, 2)) :EAO,Z (©s,p(7.2), R 1, (O5p(1,2) = 7Oy (T, 2).
(ii) The Shintani and the Millson theta function are related by

1 1
Ly, (Oyp(r,2)= ELz,z (Osn,p(7.2)) R s, (Osn,p(T,2)) = ERo,z (On,p(7,2).

27

Proof. These relations can be proved by a direct calculation. See [6, Theorem 4.2] for
the Siegel and the Kudla—Millson theta function and [2, Lemma 3.4] for the Shintani and
the Millson theta function. [ |

We also need the following expansions of the Kudla—Millson and the Millson

theta function.

Proposition 4.4.

(ii) The Kudla—Millson theta function has the expansion
3 o
y 2 (D
® (t,z) = ——¢(D) n (—)
KM,D D] n§=1 n

2.2 2
yn*\ _s b*_
X exp|—m Vo2 e —|D|—t—an)e
2 ( p( v|D|) e ( 1 o

yefoo\F

Y.

3
20L
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(ii) The Millson theta function has the expansion
2 o0
)4 D
—— e(D) n (—)
2i/|D| nZ:‘I n

3 (o))

Y€l \I"

Oy p(t,2) =

Proof. The formula for the Kudla-Millson theta function follows from [12, Theorem
4.8] together with Proposition 4.3, (i). The expansion of the Millson theta function is

given in [21, Satz 2.22] (correcting a minor typo). |

5 The Kudla-Millson and the Siegel Theta Functions

Throughout this section, we let D > 0 be a fundamental discriminant. By

Proposition 3.6, the function

Oy p(T.2) = D ((Fy = Py, Oy p(T,)))e(mz)
meZ
is a L, ,-preimage of Oy, p(t,2), which transforms like a modular form of weight two
in z and is smooth in z. Furthermore, we see that it transforms like a modular form of
welght for o; in 7, but its analytic properties as a function of v and its growth as
v — oo are not clear from the definition. We first compute a more explicit formula for

#,z
Oy (1, 2).

Theorem 5.1. We have the formula

0% p(1,2) = 265, H(T) +Go(z,y) +2VD D Z( )n(ﬁDnz(z,my) — Gpn2(1))e(mz)

m>0n|m

m/n

+2vD > > ( ) NGpn2 (T, my)e(mz),

m<0nim

where H(7) is defined in (2.4), and

~ 1 — (D 1 Tney
9o(t,y) :EZ(E) Z~(V Z exp (— D ) 0) N Vi
n=1 yeloo\T 2/0L
~ 1 Dn*“t
Ipn2(T,¥) = o z (ICy (Dnzv) e (— ) eDnz) ‘ Vi
= oL
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with the special function

Remark 5.2. We have

2
K, v) = Sgllz(w) erfc (sgn(w)ﬁ (% - ﬁ)) + 27_[1\/; exp (—7‘[ (K _ ﬁ) ),

where erfc(x) := % Iy e~t*dt is the complementary error function.

Proof of Theorem 5.1. For m > 0 the Kudla-Millson lift of F,, has been computed in [7,
Section 6] for D = 1, and in [1, Theorem 1.1] for D > 1. It is given by

0 if m <0,
<<le ®KM,D(T’ ))) = 28D:1H(T) ifm= 0,
-2VD3 im (mi/n) ngpy2(t) if m> 0.

For the Kudla-Millson lift of P, ,, we plug in the expansion of ©gy, (7, 2) given in

Proposition 4.4, and use the unfolding argument, to obtain

1 0 D 00 1
ot -5 50(2) 5 [ [l
({ R% KM,D(T ) D%n ” Z g ; e( mzl)

)’e’l—‘voo\F
2.2 2
yin?\ _s Db?_ dx, dy
X (exp(—n ‘I/D )V ) Ze(—T‘t - bnxl) Yi— 5 tepp
beZ V41

First, let m = 0. Evaluating the integral over x,, we obtain

1S D g [ y?n?
<<PO'Y’®KM'D(T,.)>>:_Bnilnz (E) Z (V Z/y' eXP(—” ‘1/'D 71dyi¢g

yeleo\T

230 5 ()

n=1 yeloo\I

Y-

3
2/QL
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Next, for m # 0, we compute the integral over x; and obtain

((Pm'y, @KM'D(‘[, )

1 D 3 mZ B 00 Y2n2
= —anZ (ﬁ) Z (V ze(—Dmr)/y exp(271my1 -7 VI'D yldyleD%

nim YT\ T

3
2/0L

Replacing n by % yields the stated formulas. |

From Proposition 3.6 we know that @?&D(r, z) is a smooth function in z for each

fixed t. We now show that it is actually smooth in r and z.

Proposition 5.3. The function 7 — (9%4 p(1,2) is smooth and can be differentiated

termwise.

Proof. Recall that the m-th Fourier coefficient of z — @I?IfllD(r,z) is given by

D _
a(t;m,y) :=2vD Y. (m—/n) 1 (9pn2 (1)n-0 — Gpnz (T, my)) .

nlm

By Propositions A.1 and A.3 of the appendix, we have, on any compact K C H x H for
m > 0 that

3
a(t;m,y) = Og (m4 exp (Enmy))

and similarly for the iterated partial derivatives in u and v. For m < 0 we have that
a(t; m,y) and all iterated partial derivatives in u and v decay exponentially as m — —oo.

This implies that for all «, 8 € N, the series

3% 9k
Z (Mma(f, m, y)) e(mZ)

converges normally on H and thus defines a smooth function in t € H and we have

9% 9p 9% 9Ff
S 3P Z a(t;m,y)e(mz) = Z (awx aWa(t; m,y)) e(mz).
m m

This finishes the proof. u
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#,2
KM,D

in 7 and z, as well as a differential equation involving the Laplace operators in both

We are now ready to prove how ® behaves under the lowering operators

variables.

Proposition 5.4. The function @?f,[ p satisfies the differential equations

a8; (050 2) = 2y, (0851 p(T.2), (5.1)
1

Ly, (@%&,D(T,Z)) =~ R0z (05p(7,2), (5.2)

Ly, (@I’?;J,D(r,z)) = Oxap(T.2). (5.3)

Proof. The formula (5.3) is clear from the construction of @z']f/[,D(‘L',Z).

We next prove (5.2). For this, we first write

Ly, (@%ID(r,z)) > <<Fm — PryiLy - (Oxup (T, -))>> e(mz).

meZ

Thus, Proposition 3.6 implies that Ls . (@%IT/LD(‘L’, z))isalL, ,-preimage ofL%’t (Oxu (1, 2).

By Proposition 4.3 and (2.3), we have
Ls  (Ogyp(t,2) = LAo,z (©s,p(r,2) = _LLz,z °Rg, (05,p(7,2).
2 4r 4r

Hence, the function 2Ry ,(®gp(t,2)) is also an L, ,-preimage of Ls . (Oxmp(t,2).
Consequently, these two functions can only differ by a weakly homomorphic modular
form but since Ry, ,(Og p(-,2)) € ATZnOd and M, = {0}, they actually agree.

Next we show (5.1). Using Proposition 4.3 and (2.3), (5.2), and (5.3), we compute

avy (®§;/I,D(I'Z)) =-Roz0L;, (®%If/[,D(r'Z)) = —Ro(Ogum,p(7,2))
1 #,z
= —Ro,oR_) (05p(r,2) = —4R_, oLy (9%t p(.2)

-7

#,
=440; (@K;I'D(r,z)) ,

completing the proof. |
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By Proposition 3.9 we have that

(Ro(Osp)""(7:2) 1= 2 <<fd — Py Roz (Osp(2) >>e (%) ¢q

deZ

isa L% .-preimage of R ,(®g p(7,2)). By construction, it transforms like a modular form
of weight % for o; in r and is smooth in 7. Furthermore, it is modular of weight 2 for T’
in z.

We have the following explicit formula for (RO,Z(G)S,D))#'T(T' z).

Theorem 5.5. We have the Fourier expansion

% dT
(Ro (05,00 (1,2) = 3 Fgp(@i V)e (Z) ¢

deZ
where
p;(2) 27 vR(A, Z)
Fipv)i=Fap@+2 2, xp) QA 2) &P (_T '
*€Lap \{0} A

with

—4i wQ _j@

4l OeF\ZQ: 4 o Jj(2)—j(za) ifd > 0,
—dD
Q>0
F Z) =
d'D( ) Z?HE;(Z) ifd=0and D = 1,
0 ifd <0, orifd=0and D > 1.

Here the subscript Q > 0 indicates that we only sum over positive definite quadratic
forms Q. If z, is a CM point then the value (ROVZ(®S'D))#’T(T,ZQ) is obtained by taking

the limit z — z, in the expression given for Fy ,(z; V).

Proof. We first compute the twisted Borcherds lift ((fz, ®5p(-,2))) of f;. Although it
is certainly well-known, we sketch the idea of the computation for the convenience of
the reader. By [12, Theorem 6.1], for z € H not being a CM point of discriminant —dD in
the case d > 0, we have the formula

cf, )

_4log ‘\IJD(fd,z)ydz - cfd(O)(log(4n) + F/(l)) ifD =1,

(f2,95p(-,2) =
—410g |Wp(f1,2)| + 2+/Dcy, (0)L (1) ifD>1,
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where cr,(0) denotes the constant coefficient of f; and W, (f;, 2) is the twisted Borcherds
product associated to f;, which is defined in [12, Theorem 6.1]. Furthermore, Ly(s)
denotes the usual Dirichlet L-function associated to the character of the real quadratic
field Q(+/D). Recall that fq = 0ford < 0, fy = 6 is the Jacobi theta function, and
fa= g %+ 0(q) for d > 0. For d = 0 we use the explicit product expansion of the twisted
Borcherds product to obtain ¥,(0,z) = n%(z) and V,@,z) =0forD > 1. Ford > 0
we know from [12, Theorem 6.1] that ¥, (f;, 2) is the unique normalized meromorphic
modular form of weight 0 for SL,(Z) having roots or poles of order x,(Q) at the CM
points z, for Q € Q_;p. This implies that

. . rCl)
Up(fea= ] U@ -iEe) *a .
Qel\Q_gp
Q>0
Altogether, we obtain the formula
0 ifd <0,
—4log ‘nz(z)y% —log(4n) —T’(1) ifd=0andD=1,
(fa:Osp(+2) = 12/DL(1, xp) ifd=0andD > 1,
-4 3 2Blog|jz) —jzg)| ifd>o0.
061“0\%411)

Ford =0 and D = 1, we obtain

, 2
_log(4n) — T (1)) = T E@.

1
Ry, (~4log|n*@y?

2mi
24

Proposition 7 in Section 2 in Zagier’s part of [15]. For d > 0 and z not a CM point of

Here we are using the fact that %Log(n(z)) = (E3(2) + niy); compare the proof of

discriminant —dD, we have

xp(Q) . . . @  J (@
4 > 2 og|j2) —jzg)| | = -4 D) _J@
0erQ g “0 aci\3 4 0 J(2) —j(z)

Ry
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6358 K. Bringmann et al.

We next assume that z € H and suppose that it is not a CM point of discriminant

—dD. Then we compute, by unfolding,

0o 1 d du.d
(<Pdv'®SD('lz)))=/ / e _&n @SD(-CIIZ)M
’ " v Jo 4 " V%

e 27v;R(A,2)\ dv
= 3 [ e (- FERE)
reL gp \{0} v 1
4
Applying the raising operator R, on both sides and using the identities

B i _ _
5, R0.2) = —z—yngz)ak(z), 2R(, 2) =y 21Q,(2)1%,

we obtain

(PayRos (Osp(2)) ==2 > xp()
)»EL(%TD\{O}

p;(2) exp (_ 271VR(A,Z))
Q,(2) D '

This gives the stated formula for Fé,D(Z; v) if z is not a CM point. On the other hand, it
is not hard to see that for fixed d the expression given for F(’;,D(z; v) in the statement
of the theorem actually extends to a real analytic function in z on H if we define its
value at a CM point z, of discriminant —dD by taking the limit z — z,. The function
((fg — Pay+Ro (Osp(+,2))) is real analytic in z on H since f; — Py, is of moderate
growth at the cusp ico. Hence, it agrees with the formula given for Fjl,D (z; v) on all of H.
This finishes the proof. |

The following proposition shows that @%&D(r,z) and (Ro,z(®s,D))#'T(frZ) agree

up to a constant and therefore Theorem 5.5 in fact gives the Fourier expansion in 7
of OF7, (T, 2).
Proposition 5.6. The identity
#,2 1 #,T
Oxmp(T,2) = _E(ROIZ(G)S,D)) (7,2)

holds.

Proof. Fix z € H. The difference of both sides is modular of weight 3 for ¢, and

holomorphic on H by Proposition 5.4. The Fourier coefficients (in the expansion with

1202 Iudy /g uo Jesn uuewneH-1exoag eluy Aq 66600.S/LEC9/8/1Z0Z/2101E/UIW/WOoo"dNo oIS PEDE//:SAY WOl PaPEojUMOC



Modular Completion of Generating Functions 6359

respect to t) of negative index of the right-hand side vanish as v — oo by construction,
and it is easy to see that the same holds true for the left-hand side as well. Hence, the

difference is in M%'QL = {0}, which finishes the proof. |

Proof of Theorem 1.1. The theorem in the introduction now follows from Theorem
5.5 together with Propositions 5.6 and 5.3 by applying the map from vector-valued to

scalar-valued modular forms given in Remark 2.2. |

6 L, -preimages of the Millson and the Shintani Theta Functions for k = 0

In this section, we let —d < O be a negative fundamental discriminant. By

Proposition 3.6 the function

O 4(T.2) = D ((Fyy = Ppyyr Oa (T, )))e(M2)

meZ

is a L, ,-preimage of ©y; _4(7,z). It has weight two in z and weight 5 ! in t for g;. Further,
it is smooth in z. Since it can be studied in an analogous way as the function @KMD(‘L' z),

we leave out some details in the proofs of the following theorem.

Theorem 6.1. We have the formula

O™ 2 =~foe =23 > (—/) (Vaf g2 (®) = Fane (. mp)) ema)

m>0n|m

-2 > ( )fdnz(r my)e(mz),

m<0nim

where
~ 1 - [(—d ynJm
fHoo,y)=-— Z (—) z (erfc (—) 90) Y
4 n=1 n y €L\ m %'EL
_ 2
Fan2(t,y) = 1 Z (e (— dn T) erfc (ﬁsgn(y) ( Yy __ \/Vdnz)) e_dnz) V.
* yelo\T 4 vdn? 3L

Proof. The Millson lift of F,, has been computed in [2, Theorem 4.6], and the Millson
lift of P, , can be computed by unfolding as in the proof of Theorem 5.1. |
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6360 K. Bringmann et al.

Analogously to Proposition 5.3, we obtain that the above representation

of @fl;[zf 4(t,2) is nicely convergent, so the function is smooth in both variables.

Proposition 6.2. The function ®§,’sz 4(t,2) is smooth in 7, and can be differentiated

termwise.
The function @ﬁf_ 4(t,2) also satisfies some interesting differential equations.

Proposition 6.3. The function @fw'z_ 4(t, 2) satisfies the differential equations

#, #,
4A%,r (®Mf—d(f'z)) = A2,z (®Mf_d(‘[rz)) , (6.1)
1
#,
L%,r <®Mf—d(flz)) = §@Sh,—d(ffz)r (6.2)
Ly, (@f“/f_d(r,z)) = Ony,—q(7,2). (6.3)

Proof. Using Proposition 4.3 we compute

Ly, (@jf_ d(r,z)) - % > <<Fm — Py Ly, (Ogy_g(r,) >>e(mz).

meZ

By the same arguments as in the proof of Proposition 5.4 we see that the series on the
right-hand side equals Og;, _4(7, 2).

The Laplace equation (6.1) can be proved using equations (6.3) and (6.2) and
Proposition 4.3. |

By Proposition 3.9 the function

Dt
Oh (.2 = DZ;(QD — Ppv Ogh_al2))e (T) 0
€

isa L%,r—preimage of Ogp, _4(7,2). It has weight 3 for ¢, in v and weight two for I' in £,

and it is smooth in 7.

Theorem 6.4. We have the Fourier expansion

Dt
@ﬁ'hfl_d(r,z) = Z Gypzvie (T) ep,
DeZ

1202 Iudy /g uo Jesn uuewneH-1exoag eluy Aq 66600.S/LEC9/8/1Z0Z/2101E/UIW/WOoo"dNo oIS PEDE//:SAY WOl PaPEojUMOC



Modular Completion of Generating Functions 6361

where
d A 27VvR(2,
G p(z,v) =Gy p(2) — £ Z X—a) exp (_ TVR( Z))
' ' Q,(2) d
AGL%\{O}
with
2i x-a(Q Jj(@ .
D oa% w e J@)—j(za) if D >0,
Gd,D(Z) = O>07 D
0 if D <0.

If z, is a CM point then the value ®§;f _4(t,2p) is obtained by taking the limit z — z, in
the definition of G}, (2, v).

Proof. The non-twisted Shimura lift of weakly holomorphic modular forms has been
studied in [13, Example 14.4]. Using similar methods, one can show that the twisted

Shimura lift

{((gp: Osn,—a(11,2)))

of the weakly holomorphic modular form g for D > 0 is a meromorphic modular form

of weight two for I', which vanishes at ico and has simple poles at the CM points z, of
nf/iﬁx_d(a). This implies the formula for G; ().

The inner product involving Pp, , can be computed by unfolding in a similar way

discriminant —dD with residues —

as in the proof of Theorem 5.5. |

Finally, we obtain that the above representation of @g'hf _q(t,2) in fact gives the

Fourier expansion of @fV['Z_d(r,z) in 7.
Proposition 6.5. The identity
#,2 1 #,T
Oy _4q(1,2) = §®S}L_d(flz)
holds.

Proof. Fix z € H. The difference of the left-hand side and the right-hand side
transforms like a modular form of weight % for o; and is holomorphic in r by Proposition
6.3. By construction, the coefficients of negative index in the Fourier expansion (with
respect to 1) of @Eyfd(t,z) vanish as v — oo, and using the explicit formula given in

Theorem 6.4 we see that its coefficient of index O also vanishes as v — oo. Further,
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Z

using Theorem 6.1 it is easy to see that @fw' a(t.2) vanishes as v — oo, as well. Hence,

the difference of the two functions is a cusp form in S% 7 = {0}, so they coincide. |

7 Higher Weight

We discuss two interesting generating functions in higher weights that can be obtained
by the method of this paper. The results can be proved in a similar way as above, so we
are brief and leave some of the details to the reader. As mentioned in the introduction,
for the functions considered in this section, convergence is not an issue and therefore,
proving that the generating functions we consider are smooth in both variables is much
easier than before. However, the higher weight examples highlight an important feature
that remained hidden in our exposition so far: namely, all the examples that we consider

are in fact a kind of degenerate theta series. We refer to Remark 7.1 for some details.

7.1 AL -preimage of the Shintani theta function

—k+3%.1

Let D be a fundamental discriminant with (—1)¥D < 0. We assume that k > 0, since the

case k = 0 is treated in Section 6. We consider the function

Osh k0,1 (T:2) := Ogp 1 p(7,2) — 1,51 (Ogp k,p (-1 2)),

where

1 dt
T (f() 1= —— > @ld)E(F e (—’) ¢

4
d<0
(-=1)kd=0,3 (mod4)

denotes the “holomorphic projection” of a smooth automorphic form f of weight —k — %
for p; with respect to the bilinear pairing. We have m;(f) = Vk+%7Th01(V_k_%f)r where

o denotes the usual holomorphic projection of weight k + % smooth automorphic

el T ((4)

y €l 00 \Mps (Z)

forms. Here

|
e M ~
Y k+%u0L

k+%ﬁL

is the usual holomorphic Poincaré series of weight k + % for p;, which is a cusp form

if d < 0 and an Eisenstein series if d = 0. For d € Z we have

k+1
|D|"Z"
((Fq/Ogpk.p(t,2)) = k! Wfk-}-l,—d,D(Z)l
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where

xp(A) xp(Q)
Jier1,a0(2) = 2 Q ?Z)k-‘rl - Z O(le)k“'
+eL_api\(0) s QeQqgp\0}

which can easily be shown using the unfolding argument. Note that f;,, 4 is a cusp
form if d > 0, an Eisenstein series if d = 0, and a meromorphic modular form if d < 0.
By construction ®gy, ;. p | (7,2) is orthogonal to cusp forms of weight k + % with

respect to the bilinear pairing. Hence, by Proposition 3.9 the function

dr
@gﬁyle'J—(f,z) = Z ((Fgq — Pd,v’ ®Sh,k,D,J_("Z))>e (Z) ¢q
deZ
(-1)¥d=0,3 (mod4)

is a L_k%lr-preimage of Ogp, . p,.(t,2). It has weight —k + % in 7, weight 2k + 2 in z,
and it is smooth in both variables. By computing the bilinear pairings with F; and
P4 explicitly, we obtain a completion of the generating function of the forms f,, _4p
for d € Z. The proof of Theorem 1.5 now follows from a straightforward calculation by
unfolding against F; and Py ,,.

#,T
Sh,k,D,L

theta function, although it is not obtained from a Schwartz function. However, we have

Remark 7.1. As we mentioned above, the function ® (t,2) can be written as a

#,‘L’ #,‘L’ “u_ . ” #, . .
®Sh,k,D,L(t'Z) = ®(¢sh,k,D' 7,2), where the “singular Schwartz function (pshf,k,D()L, 7,2) is

given as

1—%F(k+LW) if Q(») >0,

k! |D|"¥1XD(/\)e(a(x)z)

#,7 . —
e NP 7]

r(k+3,~7a0)v)

o) AT (k+1,22809) 3£ Gy <o.

|
It would be interesting to investigate the properties of similar singular Schwartz
functions and the associated theta functions, and we hope to come back to this problem

in the near future.

Applying the lowering operator in z to the expression above, we immediately

obtain
#,T
Loki2z (®Sh,k,D,J_(T'Z)) =20k p(7,2).
To compute the Fourier expansion in z, one can use the Millson theta lift of F,,,

which can be found in [3, Theorem 4.2.3], and the Millson lifts of the truncated Poincaré

series can again be computed by unfolding. We leave the details to the reader.
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6364 K. Bringmann et al.
7.2 A§ s -preimage of the Millson theta function
2 ’

Suppose that D is a fundamental discriminant with (—1)D < 0, and assume that k > 0

for simplicity. By Proposition 3.9 applied to y2kV_k+%®Mlk’D(‘C, z), the function

> <<]:d - Pd,ny2k®M,k,D('rz)>>e (%) ¢q

(71)kds%§3z (mod 4)
isa $k+%—preimage of ®y; . p(t,2). It has weight k + % in v and weight —2k in z, and it is
smooth in both variables. The inner products against F,; for d > 0 have been computed
in [10] and yield locally harmonic Maass forms of weight —2k, which map to multiples
of the cusp forms f;,; _4p(2) under &£_,;. The inner products involving P, can easily
be computed by unfolding. In this way, we can recover the generating function U(t,2)
studied in [11].
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A Growth estimates

A.1 Weakly holomorphic modular forms of weight %

For D > 0 a discriminant we let g, be the weakly modular form of weight % given in
(2.5), and we use the same symbol for its vector-valued companion. The purpose of this

section is to prove the following growth estimate.

Proposition A.1. Fix a compact subset K C H. For a discriminant D > 0 consider the

function

1 D
Gy =gpm -7 . (e(—{)ep)

yefoo\f
DIm(yt)=vo

Y
301
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where v, := min{Im(r) : v € K}. We have
GD(T) = OK(D):

as D — oo through positive discriminants, where the implied constant only depends on
K. Moreover, the same statement is true for all partial derivatives of G, of all orders

with respect to u and v.

Proof. @ We prove the claim for Gp. The corresponding statement for the partial
derivatives follows analogously.

By [9,Theorem 3.7], the Fourier expansion of g, € M, 0 is given by
2:0L

Dt
9p(0) =e (== ) ep — 2p_reo + > cp(n)e(vr)ey,
ve%N
—4v=0,1 (mod4)

with
H (—2,1)) 47
cp(v) = 24H@4v)sp_o+ > —S -~ sinh (—va),
ceZn(0) v/2D|c| Icl
where
3sgn(c) _ ma +dn
H,(m,n)=e (_T) > <QL1 ((3 by Ver+ d) Cams e4n>e (T)

d (modc)*

is a Kloosterman sum. Here a,b € Z are chosen such that (‘g g) € SL,(Z). Furthermore,
8p_ equals 1 or 0 according to whether D is a square in Z or not. Since the Weil
representation factors through a double cover of SL,(Z/2Z), there exists a constant C > 0
such that

‘(QZI (V) e4m'e4n>‘ = c

for all m,n and y € Mp,(Z). The constant term and the Hurwitz class numbers (if D is a
square) in the Fourier expansion of g, only contribute O (1).

We split the sum over c in the coefficient c,(v) at ‘F First we consider the

infinite part with |c| > “/,—5,
0

. 4
Z Z m sinh (H\/ﬁ) e(vT)ey,.

v>0 lc|> 3D D

. . . . 2k+1
Using the series expansion sinh(z) = >7;7 rr;, We can write

Smh(| |J_) FACE O((| |‘/_)3e4mﬁ)
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D

for |c| > Vo where the implied constant is independent of D, n, v, and K. Hence, we

obtain

D
H, ( 4"’ . il Hy(—-7.v) AT vV
sinh {— )—271 2v —+O Dyzetmvo ,
z s (VP =2 3 e > ke
lc|> lc|>¥2 lc|>¥2

0 0
where we estimate |HC(—%, V)| < Clc| in the 2nd sum. Multiplying the 2nd sum by e(vt)

and summing over v gives a contribution of O (D). The first term behaves like

D
27+ 2v Z —) + Ok (va)
cezvoy  IC 12
with an implied constant only depending on K. The first sum is the Kloosterman zeta
function Z(— LV, f‘;) and Lemma A.2 below shows that this amounts to O(Dv%), yielding
a total contribution of Og (D) to the result.

It remains to bound the part

(——) ep + Z Z «/W sinh (T | Jﬁ) e(vT)ey,. (A.1)

v>0| cl< D
=%

To this end, we consider the absolutely convergent sum
1 Dt
i 2 ((-F)w)].

yeroc\r 2/0L
D
lel=¥,

14 (A.2)

It is one-periodic and thus has a Fourier expansion, which can be computed in the
same way as the expansion of the Maass Poincaré series. It turns out that the Fourier
expansion equals (A.1). Furthermore, (A.2) differs from

1 Dt

2 ((F)e)], v

yelos\T 2 /0L
DIm(yt)>vo

(which is the main part of the growth of g, in the theorem) by less than

3

Z z lct+d| 5e? <« z Z(Cz+d2)_4e”v70:0K(\/E).

dez VD deZ
|CL VO ged(c,d)=1 |C\§W

Up to the estimates for the Kloosterman zeta function given in the following lemma, this

finishes the proof. n
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The growth behaviour of Kloosterman zeta functions is well-known to experts
but somewhat difficult to find in the literature. Therefore, we state it in a form which

is suitable for our purposes.

Lemma A.2. Form < 0 and n > 0 consider the Kloosterman zeta function
H.(m,n)
Z(m,n, S) = Z W
CceZ)\(0)
It converges to a holomorphic function for Re(s) > 1 and has a meromorphic continu-

ation to Re(s) > % which is holomorphic at s = %. Furthermore, we have the estimate

Z(m,n, ) O(lmny|),

as |m|, |In| — oo.

Proof of Lemma A.2. The proof follows from the generalization of Proposition 11 of
Appendix E in [20] as described in Section 6 of Appendix E loc. cit. We are giving the
necessary adjustments below. However, we also refer the reader to the shorter work [24],
where the main steps of the proof of the above lemma were carried out in a simplified
setup.

To obtain exactly the Kloosterman zeta function that we are defining above, note
that we can write o; as the product of a representation of SL,(Z) and a multiplier system

for weight —% as follows: Let v be the multiplier system on SL,(Z) defined via

3ri

VS =e E, w(T):i=e, vy, =0 yvr)vn),

where S := (97'), T := (§1), and where o(y;,y,) = 07%(;/1,)/2) is the usual weight

—%—cocycle as defined on page 332 of [20]. It can be checked that

X)) = o)}

defines a representation of SL,(Z), where 7 := (y,+/ct + d). This follows from the fact
that the cocycle of the Weil representation is equal to o_ 1 =01 Then the definition
of Z(n, m; s, W) with W(y) := x(y)v(y) = o;(¥) on page 700 of [20] agrees with Z(m, n; s)
above.

We remark that in the statement of Proposition 11 of Appendix E in [20] the
special value s = % was actually excluded, since s = % lies in the exeptional set N := {s,,
s,(1 —s,,) is an eigenvalue of Z_%}, where Z_% is Roelcke’s weight —% Laplace operator

(defined on page 338 in [20]; not to be confused with the Laplace operator A; defined
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in (2.1)). The Kloosterman zeta function might have poles at the points in . To see that

s = f‘; lies in N, note that the modular form 7 — Viﬁ(r) with 9(7) := > 5 e2rin®t of

weight —% (in Hejhal’s convention, compare the factor of automorphy j_(z; m) defined
3

on page 338 of [20]) has eigenvalue ; under A_1. Furthermore, observe that square-

2
integrable modular forms f of weight —% in Hejhal's sense with eigenvalue % under

A_1 correspond to holomorphic modular forms of weight % in our sense by the map
2

f@) — V_%m. Hence, the function 7 — V%W is the unique form with eigenvalue
% up to scalar multiples. Coming back to the proof of Proposition 11 of Appendix E in
[20], we see that it suffices to show that Proposition 8 of Appendix E loc. cit. also holds
for s = %. Its proof has to be adjusted as follows. The eigenform 7 V}Tm appears
as one of the forms ¢,, in the spectral expansion at the bottom of page 670 in [20]. The
coefficient c,, in front is given by the Petersson inner product of the Poincaré series
P, (z,s, x) (in Hejhal's notation; we have set m = n]-) with ¢,,. However, by unfolding we
see that c, is, up to a scalar multiples, the m-th Fourier coefficient of ¢ (r). Since we
are assuming that m < 0, we find that ¢, = 0, so ¢, (r) = V%m does not occur in the
spectral expansion. The rest of the proof goes through with minor changes, and shows
that the estimate in Proposition 11 loc. cit. also holds for s = f"y This finishes the proof

of the estimate of Z(m, n, %). [ |
A.2 Non-holomorphic Poincaré series of weight %
In this subsection, we derive growth estimates for the non-holomorphic Poincaré series

gp(t,y) defined in Theorem 5.1.

Proposition A.3. Fix a compact subset K C H x R*. For a discriminant D > 0 consider

the function

- . 1 D
Gp(r,y) :==gp(t.y) — 7 > (e(—f)ep)

}’Gfoo\f
DIm(yt)>vo

where v := min{Im(z) : (r,r) € K for some r € R*}. We have the estimate
Z i) nG 2(zr, my) = O (m4 ex §er
nim m/n D2 (T Y0 = Pk P 2 Y

as m — oo, where the implied constant depends only K and D. Moreover, as m — —oo,

we have

gp(t,my) = Og (m2 exp(2nmy))
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with an implied constant only depending on K and D. Moreover, similar estimates hold
for all iterated partial derivatives (only the power of m changes, depending on the order

of the derivative).

Proof. We start with m > 0. Using erfc(x) = 2 — erfc(—x), we may write

- 1 —Dn?t
ol 5 ()
VEFOO\F 2:eL
Dnzlm(yt)zvo
1 ( (—Dnzr ) ( JrTmy )
- = Z e erfc | vaDn2v — ¢_pn2 Y (A.3)
8 yelo\T 4 VDn?v " 301

Dn2Im(y1)>vo

N 1 Z 1 . wiDn?u . m2y? om +DTL2V
— xp|——— Jexp|—7 — e
8r L= Dn2v P 2 p Dn2v Y 2 -on2) |, ¥
yeloo\F n 3.0
Dn2Im(yt)>vp
(A.4)
1 9 —Dn?t
+ 1 Z~ Ky (Dncv)e 1 ¢_pp2 X 14 (A.5)
yeloo\I’ 7/0L
DnZIm(yr)<V0

We split (A.3) and (A.4) into two sums over Dn?Im(yt) > my and DnIm(yt) < my,
respectively, and use the estimate erfc(x) < exp(—x?) for x > 0 and erfc(x) < 2 forx < 0

to obtain a bound for these two sums as follows:

1 1 3 1
-1+ exp | -mrmy Z ¢_pn2 y+ - Z ¢_pn2 14
8 ( /v, ) (2 ) e _ s, 4 e s,
0 yelo\T 2/ yeToo\T 2eL
Dn?Im(yt)>max{vy,my} my>Dn?Im(yt)>vo

3
= Oy (mz exp (Enmy)).

Here, we use the estimate |ct + d|*% = Og(1) and the fact that the coefficients of the

Weil representation are universally bounded. Moreover, the number of terms in the first
sum is bounded by Ox(m) and in the 2nd sum by OK(mz). For the remaining part (A.5),

we note that

‘Kmy (Dnzv) e (—Drft ) ‘

wn?y mly? [ Tm?y?t? Tm?y?t?
- (e (. P P e e P
(Dn2v)z 1 2Dncv 2Dncv
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The term 2rmyt— = mm? T r?

attains a global maximum at t =

2Dn? :
W'Lly" (which can only happen

2 .
ifv> W)' Moreover, since n | m, we have that % > 1 and thus we obtain the bound

’/cmy (pn?v)e (—D’f’)

Since the series

2Dn?v

w+/Dv

(Dnzv)%
2

_ayt 1
E e vV Ze_p,2
3

VEFOO\F 2/0L

14

is absolutely convergent, for our purposes it is enough to estimate the divisor sum as

0(m?) to finish the proof for m > 0. For m < 0 we can simply use that

Dn?t 2 y?
ICmy (Dnzv) el — < MY =B
4 w/Dv

With the same bound on the divisor sum, we obtain the statement of the proposition.

To see that the same estimate also holds for the partial derivatives, first note

that it is enough to show this for the partial derivatives with respect to r and T and that

T 2iv?’
To work with R; and L; is more convenient since these operators satisfy L; (fl;y) =

LN lg_2v and Ri(flxy) = (Rgf) Ik, 2V, respectively. Now a simple calculation shows that

2,42 2 _ 2.2 2 7 (Dn2v—my)?
Lk(IC (Dnzv))=4nDnV +2nDn vn:y 2nm*y* +Dn Ve_T
4(Dn2)2 Jvn

and

R (o () (7))« (°57)

3 4271verfc (\/_ (my Dn? v)) L 2nDn?v +amy + v — 1 Xp(_ﬂ(my—DnZV)Z)
v

Dn2v 27T(DTLZV)2 Dn2v

m2y? my — Dn?v\>
2(Dn2v2)2 Dn*v

Hence, we can use similar estimates as the ones given above to obtain the growth

estimates for these derivatives and it is now clear that for higher derivatives, at most

the power of m changes. |
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