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Abstract. In this paper, we study modularity of several functions which naturally arose
in a recent paper of Lau and Zhou on open Gromov-Witten potentials of elliptic orbifolds.
They derived a number of examples of indefinite theta functions, and we provide modular
completions for several such functions which involve more complicated objects than ordi-
nary modular forms. In particular, we give new closed formulas for special indefinite theta
functions of type (1, 2) in terms of products of mock modular forms. This formula is also of
independent interest.

1. Introduction and statement of results

In the recent paper [4], Lau and Zhou studied a number of generating functions of im-
portance in Gromov-Witten theory and mirror symmetry, and they showed modularity for
several of them. To be more precise, they considered the four elliptic P1 orbifolds denoted
by P1

a for a ∈ {(3, 3, 3), (2, 4, 4), (2, 3, 6), (2, 2, 2, 2)}. In particular, for these choices of a,
they explicitly computed the open Gromov-Witten potential Wq(x, y, z) of P1

a, which is in
particular a polynomial in x, y, z over the ring of power series in q (where q is interpreted
as the Kähler parameter of the orbifold), and which is closely tied with constructions of the
associated Landau-Ginzburg mirror. The reader is also referred to [2, 3] for related results,
as well as to Sections 2 and 3 of [4] for the definitions of the relevant geometric objects. Lau
and Zhou then proved the following in Theorem 1.1 of [4]. Here as usual for c ∈ N

Γ(c) :=
{
M =

(
α β
γ δ

)
∈ SL2(Z);M ≡ I2 (mod c)

}
.

Theorem 1.1 (Lau, Zhou). Let a ∈ {(3, 3, 3), (2, 4, 4), (2, 2, 2, 2)}. Then the functions aris-
ing as the various coefficients of Wq(x, y, z) are, up to rational powers of q, linear combina-
tions of modular forms of weights 0, 1/2, 3/2, 2 with respect to Γ(c) and with certain multiplier
systems.

This theorem is particularly useful as it allows one to extend the potential to a certain
global moduli space, and in fact this is the geometric intuition for why such a modularity
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statement is expected (cf. [2]). Moreover, such modularity results give an efficient way to cal-
culate complete results of the open Gromov-Witten invariants. Lau and Zhou also discussed
the case of a = (2, 3, 6) and gave explicit representations for the potential Wq(x, y, z). As in
the discussion following Theorem 1.3 of [4], the same heuristic which shows that modularity
is “expected” for a ∈ {(3, 3, 3), (2, 4, 4)} also predicts that modularity-type properties should
hold and which should allow one to extend the potential to a global Kähler moduli space.
In particular, from a geometric point of view, the case of a = (2, 3, 6) is very analogous to
those cases covered in Theorem 1.1 and it is the next simplest test case. In particular, as
for a ∈ {(3, 3, 3), (2, 4, 4)}, in this case the Seidel Lagrangian can be lifted to a number of
copies of the Lagrangian for the elliptic curve of which the orbifold is a quotient. Motivated
by these calculations and heuristics, Lau and Zhou asked the following.

Question 1.2 (Lau, Zhou). What are the modularity properties of the coefficients of
Wq(x, y, z) when a = (2, 3, 6)?

We describe our partial answer to Question 1.2 in the form of several theorems which give
the modular completions of several functions arising in the (2, 3, 6) case. In each of these
cases, we prove modularity by first representing the functions in terms of the µ-function, the
Jacobi theta function, and well-known modular forms (see Section 2 for the definitions).

In order to prove these results, we first establish an identity, which is also of independent
interest. To state it, we let

F (z1, z2, z3; τ) := q−
1
8 ζ
− 1

2
1 ζ

1
2
2 ζ

1
2
3

( ∑
k>0, `,m≥0

+
∑

k≤0, `,m<0

)
(−1)kq

k(k+1)
2

+k`+km+`mζk1 ζ
`
2ζ
m
3 ,

with q := e2πiτ (τ ∈ H) and ζj := e2πizj (zj ∈ C) for j = 1, 2, 3. We note that F is an
indefinite theta function of type (1, 2).

Theorem 1.3. For all z1, z2, z3 ∈ C with 0 < Im(z2), Im(z3) < Im(τ), we have that

F (z1, z2, z3; τ) = iϑ(z1; τ)µ(z1, z2; τ)µ(z1, z3; τ)− η3(τ)ϑ(z2 + z3; τ)

ϑ(z2; τ)ϑ(z3; τ)
µ(z1, z2 + z3; τ). (1.1)

Remark. The right-hand side of (1.1) provides a meromorphic continuation of F to C3, and
we frequently identify the left hand side with this meromorphic continuation implicitly.

Our main results can then be stated as follows, where the functions cy1 , cyz2, and cyz4 are
certain coefficients of Wq(2, 3, 6) (see (2.13)).

Theorem 1.4. The function cy is modular, and cyz2 and cyz4 have explicit non-holomorphic
modular completions ĉyz2 and ĉyz4. More specifically, we have:

(i) The function cy is a cusp form of weight 3/2 on SL2(Z) with multiplier system ν3η .
(ii) The function ĉyz2 is modular (i.e., transforms as a modular form) of weight 2 on

SL2(Z) with shadow y
3
2 |η|6.

(iii) The function ĉyz4 is modular of weight 5/2, and is a polynomial of degree 2 in R(0; τ)
over the ring of holomorphic functions on H.
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Remarks.

(i) The explicit statements and proofs of the modularity of the functions in Theorem
1.4 are given in Section 3.

(ii) Results concerning the modularity properties of these functions could also be proven
using work (in progress) of Westerholt-Raum or of Zagier and Zwegers. Moreover,
the general shape of the completion of cz should also follow from the same works.
We note that the indefinite theta function F we consider here is of a degenerate
type and is not representative of the generic case. Due to this degeneracy, we are
able to express it in terms “classical” objects, which simply is not possible in the
generic case.

The paper is organized as follows. In Section 2, we collect some important facts and
definitions from the theory of modular forms, Jacobi forms, and mock modular forms, and
we define the functions described in Theorem 1.4. In Section 3.1, we prove Theorem 1.3. We
conclude Section 3 by giving the explicit statements and proofs comprising Theorem 1.4.

Acknowledgements
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2. Preliminaries

2.1. Basic modular-type objects. Throughout the paper, we require a few standard ex-
amples of modular forms and related objects. Firstly, we recall the Dedekind eta function

η(τ) := q
1
24

∏
n≥1

(1− qn) .

We recall that η is a weight 1/2 cusp form on SL2(Z) (with a multiplier which we denote by
νη). We shall also frequently use the quasimodular Eisenstein series E2, which is essentially
the logarithmic derivative of η:

E2(τ) := 1− 24
∑
n≥1

∑
d|n

dqn.

As is well-known, E2 is not a modular form, but has a slightly more complicated modularity
property, known as quasimodularity. Specifically, E2 is 1-periodic and satisfies the following
near-modularity under inversion:

τ−2E2

(
−1

τ

)
= E2(τ) +

6

πiτ
. (2.1)

Using this transformation, one can also show that the completed function

Ê2(τ) := E2(τ)− 3

πv
, (2.2)
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where τ = u + iv, is modular of weight 2. More generally we require the higher weight
Eisenstein series, defined by for even natural numbers k by

Ek(τ) := 1− 2k

Bk

∑
n≥1

∑
d|n

dk−1qn,

where Bk is the k-th Bernoulli number. For k ≥ 4, these are modular forms.
In addition to these q-series, we also need the Jacobi theta function, defined by

ϑ(z; τ) :=
∑

n∈ 1
2
+Z

q
n2

2 e2πi(z+
1
2)n.

The Jacobi triple product identity is the following product expansion:

ϑ(z; τ) = −iq
1
8 ζ−

1
2

∏
n≥1

(1− qn)
(
1− ζqn−1

) (
1− ζ−1qn

)
,

where ζ := e2πiz. In particular, this identity implies that the zeros of z 7→ ϑ(z; τ), lie exactly
at lattice points z ∈ Zτ + Z. We also need the following standard formula:

∂

∂z
[ϑ(z; τ)]z=0 = −2πη3(τ). (2.3)

Moreover, ϑ is an important example of a Jacobi form (of weight and index 1/2), which es-
sentially means that it satisfies a mixture of transformation laws resembling those of elliptic
functions and of modular forms. In particular, we have the following well-known transfor-
mation laws. We note that throughout we suppress τ -dependencies whenever they are clear
from context.

Lemma 2.1. For λ, µ ∈ Z and γ = ( a bc d ), we have that

ϑ(z + λτ + µ) = (−1)λ+µq−
λ2

2 e−2πiλzϑ(z), (2.4)

and

ϑ

(
z

cτ + d
; γτ

)
= ν3η(γ)(cτ + d)

1
2 e

πicz2

cτ+d ϑ(z; τ). (2.5)

We next prove an identity for E2 in terms of an Appell-Lerch sum, which we need to
compute the completion of cyz4. We note in passing that while it is plausible that this
identity has been considered before, the authors could not find a specific reference in the
literature.

Lemma 2.2. The following holds:

2
∑
n6=0

(−1)nq
n(n+3)

2

(1− qn)2
=

1

12
(E2 − 1) . (2.6)

Proof. By (7) of [7] and (2.3), we have

−2πη3

ϑ(z)
= z−1 exp

(∑
n≥1

ζ(2n)E2nz
2n

n

)
, (2.7)



MODULARITY OF GROMOV-WITTEN POTENTIALS 5

where ζ(s) denotes the Riemann zeta function. Using this, we directly find that the coefficient
of z1 in −2πη3/ϑ(z) is π2E2/6. We now compare this with the well-known partial fraction
expansion of 1/ϑ(z). Namely, a standard application of the Mittag-Leffler theorem gives the
following formula (cf. page 136 of [6] or page 1 of [5]):

η3

ϑ(z)
= iζ

1
2

∑
n∈Z

(−1)nq
n(n+1)

2

1− ζqn
.

An elementary calculation then shows that the coefficient of z1 in −2πη3/ϑ(z) is equal to

4π2

(∑
n 6=0

(−1)nq
n(n+3)

2

(1− qn)2
+

1

24

)
,

which, together with the computation above, implies (2.6). �

We conclude this subsection by giving an identity for a certain quotient of theta functions
in terms of an indefinite theta function which we need for the proof of Theorem 1.4 below.
Throughout, we set yj := Im(zj) for j ∈ {1, 2, 3}.

Lemma 2.3. For 0 < y1, y2 < v, we have∑
`∈Z

ζ`1
1− ζ2q`

= −iη
3ϑ(z1 + z2)

ϑ(z1)ϑ(z2)
. (2.8)

Hence, the identity (2.8) provides a meromorphic continuation of the left hand side for
z1, z2 ∈ C \ (Zτ + Z).

Proof. In the given range, we may use geometric series to expand:∑
`∈Z

ζ`1
1− ζ2q`

=

(∑
`,m≥0

−
∑
`,m<0

)
ζ`1ζ

m
2 q

`m =
∑
`,m≥1

(
ζ`1ζ

m
2 − ζ−`1 ζ−m2

)
q`m − ζ1ζ2 − 1

(ζ1 − 1)(ζ2 − 1)
.

In the notation of Theorem of Section 3 of [7], this last expression is exactly−Fτ (2πiz1, 2πiz2)
(cf. the first line of the proof of Theorem 3 there). The result then follows directly from
(vii) of Theorem 3 of [7] and (2.3). �

2.2. The µ function and explicit weight 1/2 mock modular forms. Throughout,
we require an important function used in [8] to study several of Ramanujan’s mock theta
functions. The µ-function is given in terms of an Appell-Lerch series for z1, z2 ∈ C\(Zτ + Z)
and τ ∈ H as

µ(z1, z2; τ) :=
ζ

1
2
1

ϑ(z2)

∑
n∈Z

(−ζ2)nq
n(n+1)

2

1− ζ1qn
,

where ζj := e2πizj (j = 1, 2). The function µ is a mock Jacobi form, which in particular
means that it “nearly” transforms as a Jacobi form of two variables. It turns out that µ is
symmetric in z1 and z2 (see Proposition 1.4 of [8]), i.e., that

µ(z1, z2) = µ(z2, z1), (2.9)



6 KATHRIN BRINGMANN, LARRY ROLEN, AND SANDER ZWEGERS

and so, for example, the “elliptic” transformations of µ may be summarized by the following
identities.

Lemma 2.4. For z1, z2 ∈ C \ (Zτ + Z), we have

µ(z1 + 1, z2) = −µ(z1, z2), (2.10)

µ(z1, z2) + ζ2ζ
−1
1 q−

1
2µ(z1 + τ, z2) = −iζ

1
2
2 ζ
− 1

2
1 q−

1
8 . (2.11)

We note that the poles of zj 7→ µ(z1, z2) are at z1, z2 ∈ Zτ + Z, and by Lemma 2.4 and
(2.9) the residues are determined by

Resz1=0 (µ(z1, z2)) = − 1

2πiϑ(z2)
.

The results of [8] give a completion of µ to a (non-holomorphic) Jacobi form. To describe
this, we first require the special function R, given by

R(z; τ) :=
∑

n∈ 1
2
+Z

(
sgn(n)− E

((
n+

y

v

)√
2v
))

(−1)n−
1
2 q−

n2

2 ζ−n,

where z = x+ iy and E is the entire function

E(z) := 2

∫ z

0

e−πt
2

dt.

Defining the completion

µ̂(z1, z2) := µ(z1, z2) +
i

2
R(z1 − z2),

Theorem 1.11 of [8] shows that µ̂ transforms like a Jacobi form.

Theorem 2.5. The function µ̂ satisfies the following:

µ̂(z1 + kτ + `, z2 +mτ + n) = (−1)k+`+m+nq
(k−m)2

2 ζk−m1 ζm−k2 µ̂(z1, z2) for k, `,m, n ∈ Z,

µ̂

(
z1

cτ + d
,

z2
cτ + d

;
aτ + b

cτ + d

)
= ν−3η (γ)(cτ + d)

1
2 e−

πic(z1−z2)
2

cτ+d µ̂(z1, z2; τ) for γ = ( a bc d ) ∈ SL2(Z).

The reason that µ is called a mock Jacobi form is closely connected to Theorem 2.5.
Namely, it follows directly from the theory of Jacobi forms that if z1 and z2 are specialized
to torsion points, then the completed function µ̂ is a harmonic Maass form of weight 1/2.
This essentially means that in addition to transforming like a modular form of weight 1/2, it
also satisfies a nice differential equation which in particular implies that it is a real-analytic
function. This differential equation can be phrased in terms of an important differential

operator in the theory of mock modular forms. Namely, the shadow operator ξk := 2ivk ∂
∂τ

maps a harmonic Maass form of weight k to cusp form of weight 2− k. We are interested in
computing the images of certain functions used to prove Theorem 1.4 under such operators,
and for this, we require the following formula, which follows from Lemma 1.8 of [8]:

ξ 1
2

(R(0; τ)) = −
√

2η3(τ). (2.12)

A mock Jacobi form similarly is a holomorphic part of harmonic Maass-Jacobi form. It turns
out that µ is essentially the holomoprhic part of a harmonic Maass-Jacobi form (see [1]).
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2.3. Formulas of Lau and Zhou in the (2, 3, 6) case. To describe the functions occurring
in Theorem 1.4, we assume throughout that a = (2, 3, 6) and study the function Wq(2, 3, 6)
defined in [4]. Namely, noting that in the notation of [4], where q = q48d , and writing the
resulting coefficients as functions of τ , by (3.29) of [4] we have

Wq(2, 3, 6) = q
1
8x2 − q

1
48xyz + cy(τ)y3 + cz(τ)z6 + cyz2(τ)y2z2 + cyz4(τ)yz4, (2.13)

where

cy(τ) : = q
3
16

∑
n≥0

(−1)n+1(2n+ 1)q
n(n+1)

2 ,

cyz2(τ) : = q−
1
12

∑
n≥a≥0

(
(−1)n+a(6n− 2a+ 8)q

(n+2)(n+1)
2

−a(a+1)
2 + (2n+ 4)qn+an+1−a2

)
,

cyz4(τ) : = q−
17
48

∑
a,b≥0
n≥a+b

(−1)n+a+b(6n− 2a− 2b+ 7)q
(n+1)(n+2)

2
−a(a+1)

2
− b(b+1)

2 ,

and cz is another explicit q-series, which seems to be of a more complicated nature. In
Section 3.2, we determine the modularity properties of cy, cyz2, and cyz4. Firstly, however,
we prove Theorem 1.3, which we need for our study of cyz4.

3. Statement and proof of Theorem 1.4

Before stating the exact formulas and modularity properties of Theorem 1.4, we begin
with an identity of a special family of indefinite theta functions.

3.1. A useful identity for a degenerate type (1, 2) indefinite theta series. In this
section, we prove Theorem 1.3.

Proof of Theorem 1.3. For y3 < v, we can use a geometric series expansion to write the left
hand side of (1.1) as

q−
1
8 ζ
− 1

2
1 ζ

1
2
2 ζ

1
2
3

( ∑
k>0, `≥0

−
∑

k≤0, `<0

)
(−1)kq

k(k+1)
2

+k`ζk1 ζ
`
2

1− ζ3qk+`

= q−
1
8 ζ
− 1

2
1 ζ

1
2
2 ζ

1
2
3

∑
k,`∈Z

ρ(k − 1, `)
(−1)kq

k(k+1)
2

+k`ζk1 ζ
`
2

1− ζ3qk+`
=: fL(z3),

where

ρ(k, `) :=


1 if k, ` ≥ 0,

−1 if k, ` < 0,

0 otherwise.
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This sum converges for all z3 ∈ C \ (Zτ + Z) (as long as y2 < v). Now, for 0 < y2 < v, we
compute that

ζ
− 1

2
2 ϑ(z1)µ(z1, z2) = ζ

− 1
2

2 ϑ(z1)µ(z2, z1) =
∑
k∈Z

(−1)kq
k(k+1)

2 ζk1
1− ζ2qk

=
∑
k,`∈Z

ρ(k, `)(−1)kq
k(k+1)

2
+k`ζk1 ζ

`
2 =

∑
k,`∈Z

ρ(k, `)(−1)kq
k(k+1)

2
+k`ζk1 ζ

`
2

1− ζ3qk+`+1

1− ζ3qk+`+1

=
∑
k,`∈Z

ρ(k, `)
(−1)kq

k(k+1)
2

+k`ζk1 ζ
`
2

1− ζ3qk+`+1
− ζ3

∑
k,`∈Z

ρ(k, `)
(−1)kq

k(k+3)
2

+1+k`+`ζk1 ζ
`
2

1− ζ3qk+`+1
.

Using the easily checked identity

ρ(k, `) = ρ(k − 1, `) + δk

(where δk = 1 if k = 0 and δk = 0 otherwise) in the first sum and replacing k by k − 1 in
the second, we find

ζ
− 1

2
2 ϑ(z1)µ(z1, z2) =

∑
k,`∈Z

ρ(k − 1, `)
(−1)kq

k(k+1)
2

+k`ζk1 ζ
`
2

1− ζ3qk+`+1
+
∑
`∈Z

ζ`2
1− ζ3q`+1

+ ζ−11 ζ3
∑
k,`∈Z

ρ(k − 1, `)
(−1)kq

k(k+1)
2

+k`ζk1 ζ
`
2

1− ζ3qk+`

= q−
3
8 ζ

1
2
1 ζ
− 1

2
2 ζ

− 1
2

3 fL(z3 + τ)− iζ−12

η3ϑ(z2 + z3)

ϑ(z2)ϑ(z3)
+ q

1
8 ζ
− 1

2
1 ζ

− 1
2

2 ζ
1
2
3 fL(z3),

where in the second equality we used Lemma 2.3. Some rewriting then implies that

fL(z3) + q−
1
2 ζ1ζ

−1
3 fL(z3 + τ) = q−

1
8 ζ

1
2
1 ζ
− 1

2
3 ϑ(z1)µ(z1, z2) + iq−

1
8 ζ

1
2
1 ζ
− 1

2
2 ζ

− 1
2

3

η3ϑ(z2 + z3)

ϑ(z2)ϑ(z3)
. (3.1)

Next we consider the right hand side of (1.1) (as a function of z3) for z1 6∈ Zτ + Z, and
define

fR(z3) := iϑ(z1)µ(z1, z2)µ(z1, z3)−
η3ϑ(z2 + z3)

ϑ(z2)ϑ(z3)
µ(z1, z2 + z3).

Our goal is to show that fR satisfies the same transformation formula as satisfied by fL
according to (3.1). This follows from a short calculation using (2.4), (2.9), and (2.11), which
yields

fR(z3) + q−
1
2 ζ1ζ

−1
3 fR(z3 + τ) = q−

1
8 ζ

1
2
1 ζ
− 1

2
3 ϑ(z1)µ(z1, z2) + iq−

1
8 ζ

1
2
1 ζ
− 1

2
2 ζ

− 1
2

3

η3ϑ(z2 + z3)

ϑ(z2)ϑ(z3)
. (3.2)

Comparing (3.1) and (3.2) then gives

fL(z3)− fR(z3) = −q−
1
2 ζ1ζ

−1
3

(
fL(z3 + τ)− fR(z3 + τ)

)
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and so the function f given by f(z3) := ϑ(z3−z1)
(
fL(z3)−fR(z3)

)
satisfies f(z3) = f(z3+τ).

Furthermore, we also (trivially) have

fL(z3 + 1) = −fL(z3), fR(z3 + 1) = −fR(z3), and f(z3 + 1) = f(z3).

Hence, f is an elliptic function, which we aim to show is identically zero. Both fL and
fR are meromorphic functions, which could have simple poles in Zτ + Z, but could not
possibly have any other poles. In z3 = 0, both functions actually do not have a pole: a pole
of fL has to come from terms in the sum satisfying k + ` = 0, which does not occur for
k > 0 and ` ≥ 0 or for k ≤ 0 and ` < 0. The functions z3 7→ iϑ(z1)µ(z1, z2)µ(z1, z3) and

z3 7→ η3ϑ(z2+z3)
ϑ(z2)ϑ(z3)

µ(z1, z2 + z3) both have a simple pole in z3 = 0 with residue − 1
2π
µ(z1, z2), so

the residue of fR at z3 = 0 vanishes. Hence f is holomorphic in z3 = 0 and since it is both 1-
and τ -periodic it is actually an entire function. By Liouville’s theorem, f is then constant,
and since it has a zero at z3 = z1, it is identically zero. �

3.2. Modularity of cy. In this section, we determine the modularity properties and explicit
formulas of the functions described in Theorem 1.4. The first function, cy, is essentially a
modular form, as shown in (3.42) of [4].

Theorem 3.1 (Lau-Zhou). The function cy is a cusp form of weight 3/2 on SL2(Z) with
multiplier system ν3η .

Remark. Throughout this paper, we slightly abuse terminology and refer to an object as a
modular form, cusp form, etc., if it is a rational power of q times such an object.

In fact, Theorem 3.1 was shown [4] as a consequence of the following identity.

Lemma 3.2. We have that

cy(τ) = −q
1
16η3(τ).

3.3. Modularity of cyz2. The remaining functions in Theorem 1.4 are not simply modular
forms, but rather mock modular and more complicated modular-type functions. Beginning
with the cyz2 case, and defining a natural “corrected” function by

ĉyz2(τ) := q
1
12 cyz2(τ)− 1

4
+

3

2
η3(τ)R(0; τ)− 1

4
E2(τ),

we show the following.

Theorem 3.3. The function ĉyz2 is modular of weight 2 on SL2(Z). In particular, cyz2 is
essentially a linear combination of products of mock modular and modular forms, and the
image of ĉyz2 under ξ2 is − 3√

2
|y 3

2η(τ)|6.

Remarks.

(i) The “reason” that ĉyz2 is actually modular on SL2(Z), as opposed to a congruence
subgroup, is closely related to the fact that the shadow of R(0) is essentially η3,
and the fact that the term R(0) is therefore paired with its shadow.
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(ii) Theorem 3.3 directly gives transformation formulas for the non-completed function
cyz2, and for example can be applied to determine the asymptotic behavior of the
Fourier coefficients of cyz2.

(iii) Using the modularity of Ê2 (defined in (2.2)), the last term in the definition of ĉyz2
could be replaced by a multiple of v−1. This then yields a function which is modular
of weight 2 and which has cyz2 as its “holomorphic” part.

The modularity of ĉyz2 follows immediately from Theorem 2.5 and from the following
identity, where we denote

Dz :=
1

2πi

∂

∂z
, Dz,0(·) := Dz(·)|z=0.

Proposition 3.4. We have the following:

q
1
12 cyz2(τ) =

1

2
Dz,0

(
−ϑ(6z; τ)µ(8z, 6z; τ) +

ζ4

1− ζ8

)
+

1

4
(1− E2(τ)) .

Deferring the proof of Proposition 3.4 to later in this section, we may now prove the
modularity of ĉyz2.

Proof of Theorem 3.3. From Proposition 3.4, we find directly that

ĉyz2 =
1

2
Dz,0

(
−ϑ(6z)µ̂(8z, 6z) +

ζ4

1− ζ8

)
− 1

3
E2,

since

Dz,0

(
− i

4
ϑ(6z)R(2z)

)
= −3i

2
R(0)Dz,0 (ϑ(z)) =

3

2
η3R(0).

Note that in the last expression, we used the fact that ϑ is an odd function of z. To finish

the proof, it suffices to show that F̂cyz2 transforms like a modular form under inversion. We
note that this follows from general facts concerning differential operators acting on Jacobi
forms. However, we proceed directly in this case since it is elementary. Namely, using (2.1),
Lemma 2.1, and Theorem 2.5, we compute

ĉyz2

(
−1

τ

)
=

1

2
Dz,0

(
−τe(16z2τ)ϑ(6zτ ; τ)µ̂(8zτ, 6zτ ; τ) +

ζ4

1− ζ8

)
− 1

3
τ 2E2(τ)− 2τ

πi

= τ 2ĉyz2(τ) +
1

2
lim
z→0

(
−32τ 2ze(16z2τ)ϑ(6zτ ; τ)µ̂(8zτ ; 6zτ) +

ζ4

1− ζ8
− τe8πizτ

1− e16πizτ

)
− 2τ

πi

= τ 2ĉyz2(τ)− 16τ 2 lim
z→0

(zϑ(6zτ ; τ)µ(8zτ ; 6zτ))− 2τ

πi

= τ 2ĉyz2(τ)− 16τ 2 lim
z→0

(
z

1− e8πizτ

)
− 2τ

πi
= τ 2ĉyz2(τ).

In the third equality above, we used that the poles of µ̂ only arise from µ, as R does not
have any poles. The claimed formula of the image of ĉyz2 under ξ2 follows directly from
(2.12). �
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We now turn to the proof of Proposition 3.4. We begin by splitting cyz2 = cyz2,1 + cyz2,2,
where

cyz2,1(τ) := q−
1
12

∑
n≥a≥0

(−1)n+a(6n− 2a+ 8)q
(n+2)(n+1)

2
−a(a+1)

2 ,

cyz2,2(τ) := q−
1
12

∑
n≥a≥0

(2n+ 4)qn+an+1−a2 .

We first analyze the piece cyz2,1.

Lemma 3.5. We have the identity

q
1
12 cyz2,1(τ) = Dz,0

(
−ϑ(3z; τ)µ(4z, 3z; τ) +

ζ2

1− ζ4

)
+

1

12
(1− E2(τ)) .

Proof. We begin with the elementary observation that

q
1
12 cyz2,1(τ) = Dz,0 (c(z; τ)− c (−z; τ)) ,

where

c(z; τ) :=
∑
n≥a≥0

(−1)n+aζ3n−a+4q
(n+2)(n+1)

2
−a(a+1)

2 .

Noting that
(n+ 2)(n+ 1)

2
− a(a+ 1)

2
=

1

2
(n+ a+ 2)(n+ 1− a)

and setting j := n+ a+ 2 and ` := n+ 1− a, we rewrite

c(z) =
∑
j>`≥1

`≡j+1 (mod 2)

(−1)jζj+2`q
j`
2 .

Splitting this sum into 2 pieces, depending on the parity of j, yields

c(z) =
∑
j≥`≥1

(
ζ2j+4`−2qj(2`−1) − ζ2j+4`+1q(2j+1)`

)

=
∑
j≥1

ζ2j+2qj
(

1− ζ4jq2j2
)

1− ζ4q2j
−
ζ2j+5q2j+1

(
1− ζ4jqj(2j+1)

)
1− ζ4q2j+1

 ,

where we shifted ` 7→ ` + 1 and used a geometric series expansion. Note that in the second
summand of the last expression we can add the term j = 0 freely as it contributes zero
overall. We now combine the second piece of each summand in the last formula as

−
∑
j≥1

ζ6j+2q2j
2+j

1− ζ4q2j
+
∑
j≥0

ζ6j+5q2j
2+3j+1

1− ζ4q2j+1
=
∑
j≥1

(−1)j+1ζ3j+2q
j(j+1)

2

1− ζ4qj
.

This term contributes the following to c(z)− c(−z):∑
j≥1

(−1)j+1ζ3j+2q
j(j+1)

2

1− ζ4qj
−
∑
j≥1

(−1)j+1ζ−3j−2q
j(j+1)

2

1− ζ−4qj
=

∑
j∈Z\{0}

(−1)j+1ζ3j+2q
j(j+1)

2

1− ζ4qj
,
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where we sent j 7→ −j in the second term. To consider the remaining pieces of c, we need
to prove that

Dz,0

(∑
j≥1

ζ2j+2qj

1− ζ4q2j
−
∑
j≥0

ζ2j+5q2j+1

1− ζ4q2j+1

)
= −

∑
n≥1

σ1(n)qn.

To see this, we use geometric series expansions to rewrite the second piece of c as∑
j≥1
`≥0

ζ2j+2+4`qj(1+2`) −
∑
j,`≥0

ζ2j+5+4`q(2j+1)(`+1) =
∑
j,`≥0

(
ζ2j+4+4` − ζ2`+5+4j

)
q(2`+1)(j+1)

and let j 7→ j + 1 in the first sum and switch the roles of ` and j in the second sum.
Differentiating with respect to z and then setting z = 0 gives

−
∑
j,`≥0

(2j − 2`+ 1)q(2`+1)(j+1) = −
∑
m,n≥1
m odd

(2n−m)qmn,

where we set m := 2`+ 1 and n := j + 1. Since∑
m,n≥1
m even

(2n−m)qmn = 2
∑
m,n≥1

(n−m)q2mn = 0,

this is equal to

−
∑
m,n≥1

(2n−m)qmn = −
∑
n≥1

nqn

1− qn
=

1

24
(1− E2) .

Repeating the calculuation for the contribution at −z yields the exact same expression.
Hence, we have shown that

q
1
12 cyz2,1 = −Dz,0

 ∑
j∈Z\{0}

(−1)jζ3j+2q
j(j+1)

2

1− ζ4qj

+
1

12
(1− E2) . (3.3)

The proof now follows directly from the definitions of µ and ϑ. �

The following identity was proven in (3.43) of [4]. This, together with Lemma 3.5, com-
pletes the proof of Proposition 3.4.

Lemma 3.6. We have the identity

cyz2,2(τ) =
q−

1
12

6
(1− E2(τ)).

3.4. Modularity of cyz4. Define the corrected function

ĉyz4(τ) := q
11
48 cyz4(τ) +R(0; τ)

(
−q

1
12 cyz2(τ)

2
+

1

6
+

1

12
E2(τ)

)
+

3i

4
R2(0; τ)η3(τ).

Then we aim to show the following.

Theorem 3.7. The function ĉyz4 is modular of weight 5/2.
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Remark. It is interesting to note that there is a certain intertwining between the modularity
of the different coefficients of the Gromov-Witten potential, as the function cyz2 naturally
arises in considering the completion of cyz4, and the term cy, which is essentially η3 also
occurs in the completions of cyz2 and cyz4. It would be interesting to see if there is a natural
geometric explanation for such relations.

In order to prove this theorem, we first express the function cyz4 in terms of the function
F studied in Section 3.1.

Proposition 3.8. The following identity holds:

cyz4(τ) = −q−
11
8 Dz,0

(
iϑ(3z; τ)µ2(3z, 2z; τ)− η3(τ)ϑ(4z; τ)

ϑ2(2z; τ)
µ(3z, 4z; τ)

)
.

Proof. As in the proof of Proposition 3.4, we write

q
17
48 cyz4(τ) = Dz,0 (f (z; τ)− f (−z; τ))

with

f (z; τ) :=
∑
a,b≥0
n≥a+b

(−1)n+a+bζ3n−a−b+
7
2 q

(n+2)(n+1)
2

−a(a+1)
2
− b(b+1)

2 .

Setting N := n− a− b+ 1, we compute

f (z)− f (−z) =

∑
a,b≥0
N≥1

+
∑
a,b<0
N≤0

 (−1)N+1ζ3N+2a+2b+ 1
2 q

N(N+1)
2

+N(a+b)+ab.

The definition of F directly implies that

cyz4 = −q−
11
8 Dz,0 (F (3z, 2z, 2z)) .

The proof then follows from Theorem 1.3. �

We are now in a position to prove the modularity of ĉyz4

Proof of Theorem 3.7. We first claim that

ĉyz4(τ) = −Dz,0

(
iϑ(3z; τ)µ̂2(3z, 2z; τ)− η3(τ)ϑ(4z; τ)

ϑ2(2z; τ)
µ̂(3z, 4z; τ)

)
. (3.4)

For this, we use Proposition 3.8 to compute

−Dz,0

(
iϑ(3z; τ)µ̂2(3z, 2z; τ)− η3(τ)ϑ(4z; τ)

ϑ2(2z; τ)
µ̂(3z, 4z; τ)

)
− q

11
48 cyz4

=Dz,0

(
ϑ(3z)µ(3z, 2z)R(z) +

i

4
ϑ(3z)R2(z) +

i

2

η3ϑ(4z)

ϑ2(2z)
R(z)

)
=Dz,0

(
ζR(z)

1− ζ2
+R(z)ζ

∑
n 6=0

(−1)nq
n(n+1)

2 ζ3n

1− ζ2qn
+
i

4
ϑ(3z)R2(z) +

i

2

η3ϑ(4z)R(z)

ϑ2(2z)

)
.
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We split this into several pieces, which we denote by

H1 := Dz,0

(
ζR(z)

1− ζ2
+
i

2

η3ϑ(4z)R(z)

ϑ2(2z)

)
,

H2 := Dz,0

(
R(z)

∑
n6=0

(−1)nq
n(n+1)

2 ζ3n+1

1− ζ2qn

)
,

H3 :=
i

4
Dz,0

(
ϑ(3z)R2(z)

)
.

Again using the fact that R is even (in particular, that R′(0) = 0), we find that

H2 = R(0)

(
2
∑
n6=0

(−1)nq
n(n+3)

2

(1− qn)2
+ 3

∑
n6=0

(−1)nnq
n(n+1)

2

1− qn
+
∑
n6=0

(−1)nq
n(n+1)

2

1− qn

)
.

The last sum in the last expression is identically zero, and by Lemma 2.2, we have

H2 =
R(0)

12
(E2 − 1) + 3R(0)

∑
n6=0

(−1)nnq
n(n+1)

2

1− qn
. (3.5)

We also directly find that

H3 = +
3i

4
η3R2(0). (3.6)

Finally, we consider the first piece H1. Using (2.7) again, we find

ζR(z)

1− ζ2
+
i

2

η3ϑ(4z)R(z)

ϑ2(2z)

=

(
− 1

4πiz
+
πi

6
z +O

(
z2
))(

R(0) +
R′′(0)

2
z2 +O

(
z3
))

+
1

4πi

(
1

4z2
+ 2E2ζ(2) +O

(
z2
)) (

4z − 64ζ(2)E2z
3 +O

(
z4
))(

R(0) +
R′′(0)

2
z2 +O

(
z4
))

,

and after a short computation using (2.3) we see that

H1 = R(0)

(
1

12
+

1

6
E2

)
. (3.7)

Combining (3.5), (3.6), and (3.7) then gives

−Dz,0

(
iϑ(3z; τ)µ̂2(3z, 2z; τ)− η3(τ)ϑ(4z; τ)

ϑ2(2z; τ)
µ̂(3z, 4z; τ)

)
= q

11
48 cyz4 +

1

4
R(0)E2 + 3R(0)

∑
n 6=0

(−1)nnq
n(n+1)

2

1− qn
+

3i

4
η3R2(0).
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Using (3.3), Lemma 2.2, and Lemma 3.6, we obtain

q
1
12 cyz2 = −1

2
Dz,0

(∑
n6=0

(−1)nζ3n+2q
n(n+1)

2

1− ζ4qn

)
+

1

4
(1− E2)

= −1

2

∑
n6=0

(−1)n(3n+ 2)q
n(n+1)

2

1− qn
− 2

∑
n6=0

(−1)nq
n(n+3)

2

(1− qn)2
+

1

4
(1− E2)

= −3

2

∑
n6=0

(−1)nnq
n(n+1)

2

1− qn
+

1

3
(1− E2),

which directly implies (3.4).
Hence, using (2.5), (3.4), and Theorem 2.5, we find that

ĉyz4

(
−1

τ

)
= Dz,0

(
iϑ

(
3z;
−1

τ

)
µ̂2

(
3z, 2z;

−1

τ

)
−
η3
(−1
τ

)
ϑ
(
4z; −1

τ

)
ϑ2
(
2z; −1

τ

) µ̂

(
3z, 4z;

−1

τ

))
= (−iτ)

5
2 ĉyz4(τ)

+ (−iτ)
3
2 (28πiτ) lim

z→0

(
z

(
ϑ(3zτ ; τ)µ2(3zτ, 2zτ ; τ) + i

η3(τ)ϑ(4zτ ; τ)

ϑ2(2zτ ; τ)
µ(3zτ, 4zτ ; τ)

))
,

where we used the fact that R does not have a pole, so that all poles of µ̂ come from µ. The
inner sum in the limit is essentially just a specialization of F , and by a similar computation
of Laurent coefficients as in the proof of Theorem 1.3, it converges to a finite limit as z → 0.
Hence, the entire limit converges to zero, and so the modularity of ĉyz4 is proven. �
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[6] J. Tannery and J. Molk, Éléments de la Théorie des Fonctions Elliptiques, Vol. III, Gauthier-Villars,
Paris, 1896 [reprinted: Chelsea, New York, 1972].

[7] D. Zagier, Jacobi theta function and periods of modular forms, Invent. Math. 104 (1991), 449–465.
[8] S. Zwegers, Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, (2002).

Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Ger-
many

E-mail address: kbringma@math.uni-koeln.de
E-mail address: lrolen@math.uni-koeln.de
E-mail address: sander.zwegers@uni-koeln.de


	1. Introduction and statement of results
	Acknowledgements
	2. Preliminaries
	2.1. Basic modular-type objects
	2.2. The  function and explicit weight 1/2 mock modular forms
	2.3. Formulas of Lau and Zhou in the (2,3,6) case

	3. Statement and proof of Theorem ??
	3.1. A useful identity for a degenerate type (1,2) indefinite theta series
	3.2. Modularity of cy
	3.3. Modularity of cyz2
	3.4. Modularity of cyz4

	References

