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Abstract. In this paper, we investigate the automorphic properties of certain characters in-
troduced by Kac and Wakimoto pertaining to s`(m,n)∧ highest weight modules. Extending
previous work of the first author and Ono, the first author and Folsom, and the second au-
thor, we investigate the general case, not specializing the Jacobi variables. We prove that the
Kac-Wakimoto characters are essentially holomorphic parts of multivariable mixed H-harmonic
Maass-Jacobi forms, which are certain non-holomorphic generalizations of classical holomorphic
Jacobi forms. This also gives extra structure to the previous considered cases.

1. Introduction and Statement of Results

It is now well-known that there is a connection between classical modular forms and the
representation theory of infinite dimensional Lie algebras. Probably the most famous example is
given by “Monstrous moonshine” (observed by McKay, generalized by Conway and Norton [11],
and proved by Frenkel-Lepowsky-Meurman [15] and the Fields medalist Borcherds [2]). It relates
the coefficients of the modular invariant J(τ) to dimensions of irreducible representations of the
Monster group, the largest sporadic finite simple group. Note that there is also an interesting
connection to conformal field theory and string theory. Prior to this, important work of Kac
[17] established the so-called Kac-Weyl character formula and denominator identity. Among
numerous consequences one obtains many beautiful identities involving modular forms. For
example, the classical Rogers-Ramanujan identity

(1.1)
∑
r≥0

qr
2

(q; q)r
=
∏
r≥1

(
1− q5r−1

)−1 (
1− q5r−4

)−1

may be viewed as a specialized character formula for the standard modules for A
(1)
1 . Here, for

r ∈ N0 ∪ {∞}, let (a; q)r :=
∏r−1
j=0

(
1− aqj

)
. Note that the right-hand side of (1.1) may easily

be seen as a weakly holomorphic modular form, i.e., a meromorphic modular form whose poles
can only lie at the cusps.

Recent works [4, 6, 14] showed that harmonic Maass forms and their generalizations also
play an important role in understanding modularity properties of certain characters. Harmonic
weak Maass forms, as originally defined by Bruinier and Funke [10], are non-holomorphic mod-
ular forms which naturally generalize classical modular forms. They satisfy the same modular
transformations as their holomorphic companions, but instead of being meromorphic they are
annihilated by a hyperbolic Laplace operator. In most cases the arithmetically interesting part
is the holomorphic part, the so-called mock modular form. Every mock modular form has a
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certain hidden companion, its shadow, which is necessary to fully understand the mock modular
form. This shadow, which is a classical modular form of dual weight 2 − k, may be obtained
from the associated harmonic Maass form of weight k by applying the differential operator

ξk := 2iIm(τ)k ∂
∂τ . To give one example of a mock modular form, Zagier [16] showed that the

generating function of Hurwitz class numbers is a mock modular form of weight 3/2 with shadow

Θ(τ) :=
∑

n∈Z q
n2

, where throughout q := e2πiτ .
In this paper, we show that (non-holomorphic) Jacobi forms also beautifully enter the picture.

A (holomorphic) Jacobi form is a two variable generalization of modular forms satisfying a
modular and elliptic transformation law. Furthermore, one requires certain growth conditions
which can be stated in terms of its Fourier expansion. There is a well-developed theory of
Jacobi forms due to Eichler and Zagier [13]. See also Section 2 for some basic facts on Jacobi
forms required in this paper. In particular, there exists an important correspondence between
them and modular forms of half-integral weight given by the so-called theta decomposition.
The theory has since grown enormously, establishing deep connections to different types of
automorphic forms and many other areas of mathematics and physics. In particular, interest for
meromorphic Jacobi forms arose since coefficients of such Jacobi forms often encode interesting
combinatorial statistics including Dyson’s rank of partitions, and using properties of the Jacobi
forms gives interesting combinatorial results. Furthermore, Jacobi forms also play a key role in
understanding modularity of generating functions of quantum black holes [12].

Returning to Lie superalgebras, Kac and Wakimoto [18] have recently found a character
formula for the affine Lie superalgebra s`(m,n)∧ for trLm,n(Λ(`))q

L0 (m > n ≥ 1 integers), where

Lm,n(Λ(`)) is the irreducible s`(m,n)∧ module with highest weight Λ(`), and L0 is the “energy
operator”. In important special cases the first author, in joint work with Ono [6] and then with
Folsom [4], investigated a question raised by Kac concerning the “modularity” of the characters
trLm,n(Λ(`))q

L0 . To state these results, we recall the precise shape of the Kac-Wakimoto characters

(1.2) chF =
∑
`∈Z

chF`ζ
` = eΛ0

∏
k≥1

∏m
r=1

(
1 + ζβrq

k− 1
2

)(
1 + ζ−1β−1

r qk−
1
2

)
∏n
j=1

(
1− ζβm+jq

k− 1
2

)(
1− ζ−1β−1

m+jq
k− 1

2

) ,
where βs are indeterminates. We note that the coefficient functions chF` depend upon the
range in which ζ is taken. The change when moving to a different range is known as “wall
crossing”. We naturally decompose these coefficients as a “mock” piece and a piece exhibiting
the wall-crossing behavior.

In previous works [4, 5, 6, 14] only the situation that all βs = 1 has been treated. It has been
shown that in this case the characters may be viewed in the framework of almost harmonic weak
Maass forms, which are sums of harmonic weak Maass forms under iterates of the raising oper-
ator (themselves therefore non-harmonic weak Maass forms) multiplied by almost holomorphic
modular forms, which are modular polynomials in Im(τ)−1. In the simplest case when n = 1 one
obtains the product of a usual modular form and a harmonic weak Maass form (the associated
holomorphic part is called mixed mock modular form).

In this paper we show that considering the additional variables in (1.2) imposes extra structure
which gives a cleaner picture for the specialized character as these are, by the present work,
specializations of mixed H-harmonic Maass-Jacobi forms. These are, briefly speaking, non-
holomorphic Jacobi forms annihilated by certain differential operators, multiplied by (weak)
Jacobi forms. For the precise definitions see Section 2.

Theorem 1.1. The multivariable Kac-Wakimoto characters chF` are the holomorphic parts of
mixed H-harmonic Maass-Jacobi form.
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We next allow some of the Jacobi variables to be equal. This gives rise to a more complicated
structure, due to the fact that the corresponding meromorphic Jacobi form has higher order
poles. In order to describe this situation, we need to introduce almost Maass-Jacobi forms.
Briefly speaking these are sums of H-harmonic Maass-Jacobi forms under iterates of the raising
operator multiplied by almost holomorphic Jacobi forms under iterates of the lowering operator.
To better describe the functions of interest, note that (1.2) can be written in term of Jacobi
theta-functions. Therefore, after shifting variables and up to powers of the η-function, we can
restrict to the study of the following meromorphic Jacobi form

(1.3) Φ(z,u; τ) :=

∏s
r=1 ϑ

(
z + ur + 1

2 ; τ
)mr∏t

j=1 ϑ (z − wj ; τ)nj
,

where ϑ is the Jacobi theta function defined in (3.1). Moreover, s, t, mr, nj ∈ N, τ ∈ H is the
modular variable, z ∈ C, and u := (u1, · · · , us, w1, · · · , wt) ∈ Cs+t are the elliptic variables. We

furthermore assume that m :=
∑s

r=1mr > n :=
∑t

j=1 nj , where m ≡ n ≡ 0 (mod 2) (the other

residue classes can be treated similarly as demonstrated by the second author in [22], in the
1-variable case) and we fix M := m−n

2 . Furthermore, one can also study the case m = n as it
has been done in [5] for the one-variable case by the first author, Folsom, and Mahlburg. We
obtain the following modularity result.

Theorem 1.2. The Fourier coefficients in z of the meromorphic Jacobi form Φ are the holo-
morphic parts of almost Maass-Jacobi forms.

For a more precise version of the theorem, we refer the reader to Theorem 7.1.
The remainder of the paper is organized as follows. In Section 2, we recall the definition

of certain non-holomorphic Jacobi forms and harmonic Maass-Jacobi forms, new automorphic
objects that describe the structure of the Kac-Wakimoto characters. In Section 3, we extend
the canonical decomposition of a meromorphic Jacobi form to the multivariable case. The one
variable case was previously described by Dabholkar, Murty, and Zagier in [12] for poles of order
at most 2. Any meromorphic Jacobi form then splits into a so-called finite part and a polar
part. In Section 4, we describe the polar part in terms of well-known modular objects, namely
almost holomorphic Jacobi forms. Each piece of the decomposition can be completed by adding
a non-holomorphic term, in order to obtain a non-holomorphic Jacobi form. This is described
in Section 5. In Section 6, we recall the definition of certain differential operators, namely the
Maass raising and lowering operators, and we show how they naturally appear in the structure
of the Kac-Wakimoto characters. We also describe the action of other differential operators on
them. Theorem 1.1 is proved in Section 7.
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2. Holomorphic and non-holomorphic Jacobi forms

In this section we recall the definition of classical Jacobi forms [13, 26], as well as certain
non-holomorphic generalization [7, 8].
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2.1. Classical Jacobi forms. For k ∈ Z, L ∈ GLN (C) (N ∈ N), and [γ, (λ,µ)] ∈ SL2(Z)nZ2N ,
with γ =

(
a b
c d

)
, we define the slash operator acting on ϕ : CN ×H→ C by

ϕ
∣∣
k,L

[γ, (λ,µ)](u; τ) := (cτ + d)−ke
1
2

(
− c

cτ + d
L[u + λτ + µ] + L[λ]τ + 2uTLλ

)
× ϕ

(
u

cτ + d
;
aτ + b

cτ + d

)
.

Here and throughout L[x] := xTLx and e(x) := e2πix.

Remark 2.1. Note that in the 1-variable case the index is given by 1
2L.

Definition 2.2 (Weak Jacobi forms). A multivariable weak Jacobi form of index L ∈ GLN (Z)
and weight k ∈ Z for a congruence subgroup Γ ⊂ SL2(Z), is a holomorphic function ϕ : CN×H→
C satisfying the following conditions:

(1) For all [γ, (λ,µ)] ∈ Γ n Z2N , we have

ϕ
∣∣
k,L

[γ, (λ,µ)](u; τ) = ϕ(u; τ).

(2) For each fixed u = ατ + β ∈ CN , the function ϕ(ατ + β; τ) is bounded, as Im(τ)→∞.

The space of weak (resp. holomorphic) Jacobi forms of weight k and index L is denoted by J̃k,L
(resp. Jk,L).

Classically [13, 26] Jacobi forms with L > 0 have been considered. This assumption allows a
theta decomposition of the Jacobi form, meaning a decomposition into Jacobi theta functions
multiplied by holomorphic functions (that are “essentially” the Fourier coefficients of the Jacobi
form itself), which we call theta coefficients. To be more precise, define

ϑM,`(z; τ) :=
∑
λ∈Z

λ≡` (mod 2M)

q
λ2

4M e2πiλz.

Here

(2.1) L :=

(
2M bT

b L̃

)
,

where 2M ∈ N, b ∈ ZN−1, and L̃ ∈ GLN−1(Z). Thus, for a Jacobi form ϕ(z,u; τ) that satisfies
the hypotheses above, one may write

ϕ(z,u; τ) =
∑

` (mod 2M)

h`(u; τ)ϑM,`

(
z +

1

2M
u · b; τ

)
,

where the Fourier coefficients h`(u; τ), defined in (3.4), transform as multivariable Jacobi forms
of weight k − 1

2 and index L∗, where

(2.2) L∗ := L̃− 1

2M
bbT .

2.2. Almost holomorphic Jacobi forms. One can generalize the notion of holomorphic Ja-
cobi forms by allowing non-holomorphicity in both the elliptic and the modular variables. The
simplest class of functions is given by so-called almost holomorphic Jacobi forms first considered
by Libgober [20] in the 1-dimensional case for index 0.
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Definition 2.3 (Almost holomorphic Jacobi forms). A function ϕ : CN × H → C is called an
almost holomorphic Jacobi form of index L ∈ GLN (Z) and weight k ∈ Z if it is a polynomial in
uj−uj
τ−τ and 1

τ−τ , with (weakly) holomorphic coefficients in (u, τ) and satisfies the same transfor-
mation properties of a Jacobi form. The constant term of the polynomial is called a quasi Jacobi
form.

One such example is given by the weight 1 Jacobi Eisenstein series

E1(z; τ) :=
∑∗

(a,b)∈Z2

1

(z + aτ + b)
,

where
∑∗ is the so-called Eisenstein summation, i.e.,∑∗

(a,b)∈Z2

:= lim
A→∞

A∑
a=−A

(
lim
B→∞

B∑
b=−B

)
.

The associated almost holomorphic Jacobi form is given by

Ê1(z; τ) := E1(z; τ) +
z − z
τ − τ

.

Remark 2.4. Note that we correct a typo in the completion given in [20], dividing by 2πi the
non-holomorphic part.

As in the case of almost holomorphic modular forms, almost holomorphic Jacobi forms are
annihilated by powers of the lowering operator defined in (2.6).

2.3. H-harmonic Maass-Jacobi forms. Another non-holomorphic generalization of Jacobi
forms has been recently introduced in [7] and [8], extending previous definitions given by Berndt
and Schmidt [1] and Pitale [24]. In order to give the precise definition, we need to introduce
some differential operators. Note that they can be given in terms of the raising and the lowering
operators defined in Subsection 2.4. For w ∈ C and τ ∈ H, the Casimir operator of weight k ∈ Z
and index N ∈ N is defined (up to the constant 5

8 + 3k−k2
2 ) by

Ck,N := −2(τ − τ)2∂τ∂τ − (2k − 1)(τ − τ)∂τ +
(τ − τ)2

4πiN
∂τ∂

2
w +

k(τ − τ)

4πiN
∂w∂w

+
(w − w)(τ − τ)

4πiN
∂2
w∂w − 2(w − w)(τ − τ)∂τ∂w + (1− k)(w − w)∂w +

(τ − τ)2

4πiN
∂τ∂

2
w

+

(
(w − w)2

2
+
k(τ − τ)

4πiN

)
∂2
w +

(w − w)(τ − τ)

4πiN
∂w∂w∂w,

where, here and throughout, ∂w := ∂
∂w . Note that in [7] there is a typo in the definition of Ck,N .

Moreover, we define the Heisenberg Laplace operator [8] by

∆H
N :=

τ − τ
2i

∂w∂w + 2πN(w − w)∂w.

Definition 2.5 (H-harmonic Maass-Jacobi forms [8]). A real-analytic function ϕ : C×H→ C
is called a Maass-Jacobi form of weight k and index N for Γ n Z2 (Γ a congruence subgroup of
SL2(Z)) if the following conditions are satisfied:

(1) For all [γ, (λ, µ)] ∈ Γ n Z2

ϕ
∣∣
k,2N

[γ, (λ, µ)](u; τ) = ϕ(u; τ).

(2) There exists λ ∈ C such that Ck,N (ϕ) = λϕ.
(3) For each fixed u = ατ + β ∈ C, the function ϕ(ατ + β; τ) is bounded, as Im(τ)→∞.
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If λ in condition (2) equals 0, then we say that ϕ is harmonic. If in addition ∆H
N (ϕ) = 0,

then ϕ is called Heisenberg harmonic (H-harmonic). Finally, we call ϕ a mixed (H-)harmonic
Maass-Jacobi form if it can be written as a linear combination of (H-)harmonic Maass-Jacobi
forms multiplied by weak Jacobi forms.

Note that our growth condition slightly differs from the one given in [8].
The functions of interest for this paper naturally occur as holomorphic parts of (mixed) H-

harmonic Maass-Jacobi forms. We thus, in analogy to mock modular forms, call them mock
Jacobi forms. A special example of a mock Jacobi form, which plays an important role in this
paper, is the Appell-Lerch sum, defined for N ∈ N,

(2.3) fN (z, u; τ) :=
∑
α∈Z

qNα
2
e(2Nαz)

1− e(z − u)qα
.

In his Ph.D. thesis [28], Zwegers studied and used this function to relate meromorphic Jacobi
forms and Ramanujan’s mock theta functions. In particular, he found a non-holomorphic com-
pletion for fN , in order to make it transform as a 2-variable Jacobi form. To describe this, for
each ` ∈ Z, we need the real-analytic function RN,` defined by

(2.4) RN,`(u; τ) :=
∑
λ∈Z

λ≡` (mod 2N)

{
sgn

(
λ+

1

2

)
− E

((
λ+ 2N

Im(u)

Im(τ)

)√
Im(τ)

N

)}

× e−πi
λ2

2N
τ−2πiλu,

where u ∈ C, and E(z) := 2
∫ z

0 e
−πt2dt. The completion of fN is the function f̂N defined by

(2.5) f̂N (z, u; τ) := fN (z, u; τ)− 1

2

∑
` (mod 2N)

RN,`(u; τ)ϑN,`(z; τ).

Zwegers proved the following.

Proposition 2.6 (Zwegers [28]). For N ∈ N, the function f̂N transforms like a Jacobi form on
C2 ×H of weight 1 and index

(
2N 0
0 −2N

)
for SL2(Z) n Z2.

2.4. The lowering and the raising operator. Here we define certain differential operators,
first introduced by Maass [21] for 1-variable forms, and generalized by Berndt and Schmidt (see
Section 3.5 in [1]) to a multivariable setting, acting on the spaces of Maass-Jacobi forms and
almost holomorphic Jacobi forms in one elliptic variable, called the raising operators and the
lowering operators. For N ∈ N and k ∈ 1

2Z, we define the operators

Xk,N
+ := 2i

(
∂τ + w−w

τ−τ ∂w + 2πiN (w−w)2

(τ−τ)2
+ k

τ−τ

)
, Y k,N

+ := i∂w − 4πN w−w
τ−τ ,

Xk,N
− := − τ−τ

2i ((τ − τ) ∂τ + (w − w) ∂w), Y k,N
− := − τ−τ

2 ∂w,

We recall the weight-moving properties of these operators in the following proposition.

Proposition 2.7 (Remark 3.5.2 in [1]). For G ∈ SL2(Z) n Z2 and ϕ ∈ C∞(C×H) we have

Xk,N
±

(
ϕ
∣∣
k,2N

G
)

=
(
Xk,N
± ϕ

) ∣∣
k±2,2N

G, Y k,N
±

(
ϕ
∣∣
k,2N

G
)

=
(
Y k,N
± ϕ

) ∣∣
k±1,2N

G.
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We also need to define a multivariable version of Xk,L
− , where L is a positive definite matrix

in GLN (Z), that acts on functions on CN ×H, namely

(2.6) X− = Xk,L
− := −τ − τ

2i
((τ − τ) ∂τ + 〈u− u, ∂u〉) ,

where <,> denotes the standard scalar product in RN .
Finally, we require the level N ∈ N heat operator

(2.7) HN := 8πiN∂τ − ∂2
w.

This operator acts on the space of Jacobi forms and preserves the elliptic transformation prop-
erty, i.e., for (λ, µ) ∈ Z2 [13]

HN

(
ϕ
∣∣
k,2N

(λ, µ)
)

= HN (ϕ)
∣∣
k,2N

(λ, µ).

In the special case of Jacobi forms of weight k = 1
2 , the operatorHN also preserves the modularity

property, increasing the weight by 2 (G ∈ SL2(Z) n Z2)

HN

(
ϕ
∣∣
1
2
,2N

G
)

= HN (ϕ)
∣∣
5
2
,2N

G.

An easy calculation rewrites the Casimir operator in terms of simpler operators. In order to
state the result, we need to introduce the differential operator

(2.8) ξk,N :=

(
τ − τ

2i

)k− 3
2
(
−(τ − τ)∂τ − (z − z)∂z +

1

4πN

(
τ − τ

2i

)
∂zz

)
.

Lemma 2.8. With the notation as above, the Casimir operator can be written as

Ck,N =
X−HN

2πM
+

k

2πN
∆H
N −

1

2πN

(
X

1
2
,N

+ Y 2
− −

4i

τ − τ
Y 2
−

)
+ (2k − 1)

(
τ − τ

2i

) 3
2
−k
ξk,N .

We conclude this subsection by stating a commutator relation between Ck,N and Y k,N
+ , which

can be verified by a straightforward calculation.

Lemma 2.9. With the notation as above we have

Ck,NY k−1,N
+ = Y k−1,N

+ Ck−1,N − (k − 2)Y k−1,N
+ .

2.5. Almost harmonic Maass-Jacobi forms. In order to describe the structure of the Fourier
coefficients of multivariable meromorphic Jacobi forms, we introduce new automorphic objects
which we call almost harmonic Maass-Jacobi forms, extending the definition of almost harmonic
Maass forms introduced by the first author and Folsom in [4].

Definition 2.10. An almost (H-harmonic) Maass-Jacobi form of weight k ∈ 1
2Z and index

L ∈ GLR(Z) for Γ ⊂ SL2(Z) with Nebentypus character χ, is a smooth function ϕ : CR×H→ C
that can be decomposed as a linear combination of objects of the following shape:

(2.9)
∑
λ

(X−)λ (g(u; τ))
(
Xν,−N

+

)λ
(f(w; τ)) ,

where u = (uj)j, w is a linear combination of the ujs, g is an almost holomorphic Jacobi form

of weight k − ν and index L̃− 1
2NbbT (see (2.1)), and f is a (H-harmonic) Maass-Jacobi form

of weight ν ∈ 1
2Z and index −N .
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3. A canonical decomposition

In this section we describe the transformation properties and the canonical decomposition of

Φ(z,u; τ) =

∏s
r=1 ϑ

(
z + ur + 1

2 ; τ
)mr∏t

j=1 ϑ (z − wj ; τ)nj
,

where ϑ is the classical Jacobi theta function

(3.1) ϑ(z; τ) :=
∑

ν∈ 1
2

+Z

eπiν
2τ+2πiν(z+ 1

2) = −iζ−
1
2 q

1
8

∏
r≥1

(1− qr)
(
1− ζqr−1

) (
1− ζ−1qr

)
.

Here and throughout ζ := e2πiz. Since Jacobi’s theta function has simple zeros in Z+ τZ, Φ has
poles (modulo Zτ +Z) at wj of order nj , for j ∈ {1, · · · t}. In the following lemma we recall the
transformation properties of ϑ.

Lemma 3.1 ([25], (80.31) and (80.8)). For λ, µ ∈ Z, and γ =
(
a b
c d

)
∈ SL2(Z), we have that

ϑ(z + λτ + µ; τ) = (−1)λ+µq−
λ2

2 ζ−λϑ(z; τ),

ϑ

(
z

cτ + d
;
aτ + b

cτ + d

)
= ψ3(γ)(cτ + d)

1
2 e

πicz2

cτ+d ϑ(z; τ),

where ψ(γ) is the 24th root of unity occurring in the transformation law of η.

To describe the transformation law of the Jacobi form Φ, we define

(3.2) L :=



2M m1 · · · ms n1 · · · nt
m1 m1 0 · · · 0
... 0

. . .

ms ms
. . .

...

n1
...

. . . −n1
...

. . . 0
nt 0 · · · 0 −nt


and denote by b the vector

(3.3) b = (bs,bt) := (m1, · · · ,ms, n1, · · · , nt).
Lemma 3.1 immediately implies the following transformation properties for Φ.

Lemma 3.2. The function Φ defined in (1.3) satisfies the following transformation properties:

(1) For all (λ,λ) ∈ Zs+t+1 and (µ,µ) ∈ Zs+t+1, we have

Φ (z + λτ + µ,u + λτ + µ; τ) = (−1)b·µ+(0,bt)·λq−
1
2
L[(λ,λ)]e−2πi(z,u)TL(λ,λ)Φ (z,u; τ) .

(2) For all γ =
(
a b
c d

)
∈ Γ0(2), we have

Φ

(
z

cτ + d
,

u

cτ + d
; γτ

)
= χ∗(γ)(cτ + d)Me

1
2

(
c

cτ + d
L[(z,u)]

)
Φ(z,u; τ).

Here χ∗(γ) := ψ(γ)6M (−1)
mc
4 , m =

∑s
r=1mr, M = m−n

2 , and ψ(γ) as in Lemma 3.1.

In the remainder of this section, we provide a decomposition of the multivariable Jacobi form
Φ into a finite and a polar part. We follow the procedure used in [4] for the one-variable case.
This technique was originally introduced by Dabholkar, Murthy, and Zagier [12] in the context
of 1-variable Jacobi forms with poles of order at most 2, which arose when studying generating
functions for quantum black holes.
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For a fixed ω ∈ C, we define

(3.4) h
(ω)
` (u; τ) := q−

`2

4M e−2πi `
2M

b·u
∫ ω+1

ω
Φ(z,u; τ)e−2πi`zdz.

If Φ would be holomorphic, then the integral in the definition of h
(ω)
` would neither depend on

the path of integration, nor on the choice of ω, and the function h
(ω)
` would also just depend on

` (mod 2M). In our situation this is no longer true. Following the argument in [12], we define
the canonical Fourier coefficients of Φ as

(3.5) h`(u; τ) := h
(− `τ

2M )
` (u; τ),

where now the path of integration is the straight line, with an appropriate modification if a pole
lies on it. With this choice, using Lemma 3.2, it is easy to show that

h`(u; τ) = h`+2M (u; τ).

As in the 1-variable case, we construct the finite part of Φ out of h`,

ΦF (z,u; τ) :=
∑

` (mod 2M)

h`(u; τ)ϑM,`

(
z +

1

2M
b · u; τ

)
.

Moreover, we define the polar part of Φ as

(3.6) ΦP (z,u; τ) := −
t∑

j=1

nj∑
λ=1

D̃λ,j(u; τ)

(λ− 1)!
δλ−1
ε

[
fM

(
z +

1

2M
b · u, 1

2M
b · u + wj + ε; τ

)

−
∑

` (mod 2M)

EM,`

(
1

2M
b · u + wj + ε; τ

)
ϑM,`

(
z +

1

2M
b · u; τ

)
ε=0

,

where δε := 1
2πi

∂
∂ε , fM is the Appell-Lerch sum defined in (2.3), and the function EM,` is given

by

(3.7) EM,`(ε; τ) :=
∑
λ∈Z

λ≡` (mod 2M)

1

2

(
sgn

(
λ+

1

2

)
− sgn (λ+ 2M Im(ε))

)
q−

λ2

4M e−2πiλε.

Note that EM,` is a polynomial as a function of q. Furthermore, the D̃λ,js are the Laurent
coefficients of Φ at the pole wj , namely, as ε→ 0, we have

(3.8) Φ(ε+ wj ,u; τ) =

nj∑
λ=1

D̃λ,j(u; τ)

(2πiε)λ
+O(1).

Similarly to the proof in the 1-variable case (see for instance [4], [12], and [23]), we obtain the
decomposition for Φ.

Proposition 3.3. With the notation as above, we have

Φ(z,u; τ) = ΦF (z,u; τ) + ΦP (z,u; τ).
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4. Almost holomorphic Jacobi forms

A special role in this paper is played by a certain elementary real-analytic function G (see
(4.3)), that allows us to rewrite (3.6) in terms of functions described in Section 2. It turns out
that (3.6) can be written in terms of certain functions which only depend on τ and a single
elliptic variable

(4.1) w = w(j) :=
1

2M
b · u + wj ,

where b is defined in (3.3). We omit the index j from the notation when it is clear from the
context.

Let F be the function defined by

(4.2) F (ε, w; τ) := eM

(
(ε+ w − w)2

τ − τ

)
,

and G its normalization

(4.3) G(ε, w; τ) :=
F (ε, w; τ)

F (0, w; τ)
.

Remark 4.1. Note that the new elliptic variable w is just a linear combination of the elliptic
variables u. In particular, if we look at F as a function of u, applying the transformation
u 7→ u + λτ + µ is equivalent of applying w 7→ w + λτ + µ, with λ := 1

2Mb · λ + λs+j and

µ := 1
2Mb · µ + µs+j .

As we see in Theorem 4.2, the Laurent coefficients D̃r,j (see (3.8)) can be completed to an
almost holomorphic modular form Dr,j defined as

(4.4) Dr,j(u; τ) :=

nj−r∑
κ=0

D̃r+κ,j(u; τ)
1

κ!
δκε [G (ε, w; τ)]ε=0 .

Since the D̃r,js are the Laurent coefficients of Φ in wj , it follows immediately that the Dr,js are
the Laurent coefficients of GΦ, namely, as ε→ 0, we have

(4.5) G(ε, w; τ)Φ(ε+ wj ,u; τ) =

nj∑
r=1

Dr,j(u; τ)

(2πiε)r
+O(1).

Theorem 4.2. The functions Dr,j are almost holomorphic Jacobi forms.

In order to prove Theorem 4.2, we need to understand the transformation properties of G.

Lemma 4.3. The function G satisfies the following transformation properties.

(1) For all λ, µ ∈ Z, we have

G(ε, w + λτ + µ; τ) = eM (2λε)G(ε, w; τ).

(2) For all γ =
(
a b
c d

)
∈ SL2(Z), we have

G

(
ε

cτ + d
,

w

cτ + d
; γτ

)
= e−M

(
c

cτ + d

(
ε2 + 2εw

))
G (ε, w; τ) .

Proof: The proof is just a direct computation and follows immediately from the following
transformation properties of F , which are easily verified:
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(1) For all λ, µ ∈ Z, we have

F (ε, w + λτ + µ; τ) = eM
(
λ2(τ − τ) + 2λ(ε+ w − w)

)
F (ε, w; τ).

(2) For all γ =
(
a b
c d

)
∈ SL2(Z), we have

F

(
ε

cτ + d
,

w

cτ + d
; γτ

)
= eM

(
− c

cτ + d
(ε+ w)2 +

c

cτ + d
w2

)
F (ε, w; τ) .

�

We now have all the ingredients to prove Theorem 4.2.

Proof of Theorem 4.2: In what follows, the matrix L∗ is defined in (2.2), while b, L̃, and M
are the blocks of the matrix L as described in (2.1). Similarly to the 1-dimensional case (see
[4, 13]) one obtains the following transformation properties

(1) For all λ, µ ∈ Zs+t such that 1
2Mb · λ and 1

2Mb · λ ∈ Z, one has

Dr,j (u + λτ + µ; τ) = (−1)b·µ+(0,bt)·λe−M
(
λ2τ + 2λw

)
q−

1
2
L∗[λ]e

(
−uTL∗λ

)
Dr,j (u; τ) ,

where λ and µ are defined in Remark 4.1.

(2) For all γ =
(
a b
c d

)
∈ SL2(Z), we have

Dr,j

(
u

cτ + d
; γτ

)
= χ∗(γ)(cτ + d)M−re

1
2

(
c

cτ + d
L∗[u]

)
eM
(

c

cτ + d
w2

)
Dr,j (u; τ) ,

where χ∗ is as in Lemma 3.2.

The polynomial structure with holomorphic coefficients follows from (4.4), since the terms
δrε [G (ε, w; τ)]ε=0 are polynomials in w−w

τ−τ and 1
τ−τ by construction. �

We conclude the section by rewriting ΦP in terms of Dr,j . For this, we use a similar trick as
in the proof of the 1-variable case [4].

Proposition 4.4. With the notation as above, the polar part of Φ can be written as

(4.6) ΦP (z,u; τ) = −
t∑

j=1

nj∑
r=1

Dr,j(u; τ)

(r − 1)!
δr−1
ε

[
fM
(
z + 1

2Mb · u, w(j) + ε; τ
)

G
(
ε, w(j); τ

)
−

∑
` (mod 2M)

EM,`

(
w(j) + ε; τ

)
ϑM,`

(
z + 1

2Mb · u; τ
)

G
(
ε, w(j); τ

)

ε=0

.

5. The completions of ΦF and ΦP

In this section we complete the two functions that occur in the canonical decomposition of Φ,

namely ΦF and ΦP . To be more precise, we define the completion Φ̂P of ΦP by

(5.1) Φ̂P (z,u; τ) := ΦP (z,u; τ) +
∑

` (mod 2M)

t∑
j=1

nj∑
r=1

Dr,j(u; τ)

(r − 1)!

× δr−1
ε

[
RM,`

(
ε+ w(j); τ

)
G
(
ε, w(j); τ

) ]
ε=0

ϑM,`

(
z +

1

2M
b · u; τ

)
,
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where

(5.2) RM,` (u; τ) :=
1

2
RM,` (u; τ)− EM,` (u; τ) .

Here Dλ,j is the completion of the Laurent coefficients of Φ at wj given in (4.4), RM,` is the
real analytic function defined in (2.4), and EM,` is the function given in (3.7). Furthermore, we

define the completion Φ̂F of ΦF by

Φ̂F (z,u; τ) :=
∑

` (mod 2M)

ĥ`(u; τ)ϑM,`

(
z +

1

2M
b · u; τ

)
,

where

(5.3) ĥ`(u; τ) := h`(u; τ)−
t∑

j=1

nj∑
r=1

Dr,j(u; τ)

(r − 1)!
δr−1
ε

[
RM,`

(
ε+ w(j); τ

)
G
(
ε, w(j); τ

) ]
ε=0

.

In the following proposition we show that the completed function Φ̂P just depends on the poles

of Φ, as well as ΦP . Furthermore, we prove that both Φ̂P and Φ̂F transform as multivariable
Jacobi forms.

Proposition 5.1. With the notation as above, one has

Φ̂P (z,u; τ) = −
t∑

j=1

nj∑
r=1

Dr,j(u; τ)

(r − 1)!
δr−1
ε

[
f̂M
(
z + 1

2Mb · u, w(j) + ε; τ
)

G
(
ε, w(j); τ

) ]
ε=0

.

Furthermore, the functions Φ̂F and Φ̂P satisfy the same modular and elliptic transformation
properties as Φ (see Lemma 3.2).

Proof: The new expression for Φ̂P follows immediately by plugging (2.5) into (4.6) and (5.1).

In order to show that Φ̂P transforms in the same way as Φ, it is enough to note that Proposition

2.6, Theorem 4.2, and Lemma 4.3 imply that each summand in the definition of Φ̂P gives the
same automorphy factor as Φ.

To prove the transformation properties of Φ̂F , note that splitting ĥ` according to (5.3) we

may rewrite Φ̂F as

Φ̂F (z,u; τ) = ΦF (z,u; τ)−
∑

` (mod 2M)

t∑
j=1

nj∑
r=1

Dr,j(u; τ)

(r − 1)!

× δr−1
ε

[
RM,`

(
ε+ w(j); τ

)
G
(
ε, w(j); τ

) ]
ε=0

ϑM,`

(
z +

1

2M
b · u; τ

)
.

From (5.1) it is clear that Φ = ΦF + ΦP = Φ̂F + Φ̂P , and as a consequence we obtain the

transformation properties of Φ̂F . �

As a consequence of Proposition 5.1, we can describe the modular transformation law of the

canonical Fourier coefficients ĥ`. This will be used in Section 7 in order to prove Theorem 1.2.

Corollary 5.2. The canonical Fourier coefficients ĥ` transform as (vector-valued) Jacobi forms
of weight M − 1

2 and index L∗ for Γ0(2).

Proof: Writing Φ̂F as a theta decomposition, one uses the modularity (resp. elliptic) property

of both Φ̂F and ϑM,`. The conclusion follows from the linear independence of (ϑM,`)` (mod 2M).

Furthermore, the multiplier system of the vector-valued transformation is the standard one for
the theta coefficients of a Jacobi form. �
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6. Action of some operators

In this section, we describe the functions appearing in (5.3) in terms of the lowering and the
raising operators introduced in Section 2.4. We first state the relevant results and prove them
later in this section.

Proposition 6.1. For all λ ∈ {1, · · · , nj}, we have

X− (Dλ,j(u; τ)) =
M

4π
Dλ+2,j(u; τ).

In particular, for λ ∈ {1, 2} and n ∈ N0, we have

Xn
− (Dλ,j(u; τ)) =

(
M

4π

)n
Dλ+2n,j(u; τ).

Moreover, we show how to use the function F defined in (4.2) to pass from the differential

operator δε to the raising operator Xk,M
+ . This extends previous work of the authors [4, 23].

Proposition 6.2. For all λ ∈ N0, we have

F (w; τ)δ2λ
w

[
RM,` (w; τ)

F (w; τ)

]
=

(
M

π

)λ(
X

1
2
,−M

+

)λ
(RM,` (w; τ)) ,

F (w; τ)δ2λ+1
w

[
RM,` (w; τ)

F (w; τ)

]
= − 1

2π

(
M

π

)λ(
X

3
2
,−M

+

)λ(
Y

1
2
,−M

+ (RM,` (w; τ))

)
.

We conclude this section by stating a fundamental property satisfied by RM,`. It turns out
that it is annihilated by various operators introduced in Section 2.

Proposition 6.3. The function RM,` is annihilated by the heat operator H−M , the Heisenberg

operator ∆H
−M , and the Casimir operator C 1

2
,−M . Moreover, the function Y

1
2
,−M

+ RM,` is an

eigenfunction with respect to C 3
2
,−M of eigenvalue 1

2 .

6.1. Laurent coefficients and the lowering operator. In this subsection, we prove Propo-
sition 6.1. The main step is the proof of the following lemma.

Lemma 6.4. For each positive integer r > 1, one has

X− (δrε [G (ε, w; τ)]ε=0) =
r(r − 1)M

4π
δr−2
ε [G (ε, w; τ)]ε=0 .

Moreover, for r ∈ {0, 1},

(6.1) X− (δrε [G (ε, w; τ)]ε=0) = 0.

Proof: We proceed by induction on r. For r ∈ {0, 1}, the proof is straightforward. It is enough
to check that 1 and w−w

τ−τ are annihilated by X−.

We denote by G(r) := δrε [G (ε, w; τ)]ε=0. First, we note that for all r > 1 one has

(6.2) G(r) = G(r−1)G(1) + (r − 1)
M

πi(τ − τ)
G(r−2).

Letting r = 2, then applying the lowering operator and using (6.1) yields

X−

(
G(2)

)
= X−

(
G(1)

)
G(1) +

M

πi(τ − τ)
X−

(
G(0)

)
+
M

2π
G(0).

Using (6.1) we prove the claim.
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Assume that the statement is true for all 0 ≤ s < r. Applying the lowering operator and
using (6.1) yields

(6.3) X−

(
G(r)

)
= X−

(
G(r−1)

)
G(1) + (r − 1)

M

πi(τ − τ)
X−

(
G(r−2)

)
+ (r − 1)

M

2π
G(r−2).

By induction, we may rewrite the right-hand side of (6.3) as

M(r − 1)(r − 2)

4π
G(r−3)G(1) + (r − 1)

M

πi(τ − τ)

M(r − 2)(r − 3)

4π
G(r−4) + (r − 1)

M

2π
G(r−2)

=
M(r − 1)(r − 2)

4π

(
G(r−3)G(1) +

M(r − 3)

iπ(τ − τ)
G(r−4)

)
+
M(r − 1)

2π
G(r−2).

Again using (6.2), this equals

M(r − 1)(r − 2)

4π
G(r−2) +

M(r − 1)

2π
G(r−2) =

r(r − 1)M

4π
G(r−2).

This conclude the inductive step. �

Remark 6.5. In the previous lemma, we have applied the lowering operator with respect to the
elliptic variable w. In fact, w is a function of u. More precisely, it is a linear combination of the
components of u. Therefore, one can easily see that Lemma 6.4 remains true using the lowering
operator with respect to u.

The previous lemma immediately implies Proposition 6.1.

Proof of Proposition 6.1: We just prove the first claim. The second statement follows triv-

ially. Using (4.4) and the fact that D̃λ,j are holomorphic functions, we can write

X− (Dλ,j(u; τ)) =

nj−λ∑
r=0

D̃λ+r,j(u; τ)
1

r!
X− (δrε [G (ε, w; τ)]ε=0) .

By Lemma 6.4 and Remark 6.5, this equals

M

4π

nj−λ∑
r=2

D̃λ+r,j(u; τ)
1

(r − 2)!
δr−2
ε [G (ε, w; τ)]ε=0 .

Changing r into r + 2 and applying again (4.4), we conclude the proof. �

6.2. The non-holomorphic part RM,` and the raising operator. Our goal is to write for
all λ ≥ 1

(6.4) δλ−1
ε

[
RM,` (ε+ w; τ)

G(ε, w; τ)

]
ε=0

in terms of the raising operator.

Remark 6.6. Note that we can write (6.4) as

F (0, w; τ)δλ−1
z

[
RM,` (z; τ)

F (z − w,w; τ)

]
z=w

,

where F is the function defined in (4.2). Moreover, it is straightforward to see that this equals

(6.5) F (w; τ)δλ−1
w

[
RM,` (w; τ)

F (w; τ)

]
,

with F (w; τ) := F (0, w; τ). Depending on the situation, we use the forms (6.4) or (6.5).
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In the next proposition we show how the operator Xk+2,−M
+ commutes with ∂w.

Proposition 6.7. For any f(w; τ) ∈ C∞(C×H), one has

(6.6) F (w; τ)∂2
w

[
Xk,−M

+ (f (w; τ))

F (w; τ)

]
= Xk+2,−M

+

(
F (w; τ)∂2

w

[
f (w; τ)

F (w; τ)

])
.

Proof: We proceed by comparing the left and the right hand side of (6.6). In order to simplify
the notation, for λ ∈ N, we define

Fλ = Fλ(w; τ) := F (w; τ)∂λw

[
1

F (w; τ)

]
,

∂λw [f ] := ∂λw [f(w; τ)] .

The left hand side of (6.6) explicitly becomes

(6.7) F2X
k,−M
+ (f) + 2F1∂w

[
Xk,−M

+ (f)
]

+ ∂2
w

[
Xk,−M

+ (f)
]
.

Similarly, the right hand side may be written as

(6.8) Xk+2,−M
+

(
F2f + 2F1∂w [f ] + ∂2

w [f ]
)
.

Using the general fact that for two functions g and h,

Xk,−M
+ (gh) = gXk,−M

+ (h) +X0,0
+ (g)h,

and noting that

X0,0
+ (F1) = 0,

gives that (6.8) can be written as

(6.9) F2X
k+2,−M
+ (f) +X0,0

+ (F2) f + 2F1X
k+2,−M
+ (∂w [f ]) +Xk+2,−M

+

(
∂2
w [f ]

)
.

Subtracting (6.7) from (6.8) gives that the difference between the right and the left hand side
of (6.6) equals

(6.10) F2

(
Xk+2,−M

+ (f)−Xk,−M
+ (f)

)
+X0,0

+ (F2) f

+ 2F1

(
Xk+2,−M

+ (∂w [f ])− ∂w
[
Xk,−M

+ (f)
])

+Xk+2,−M
+

(
∂2
w [f ]

)
− ∂2

w

[
Xk,−M

+ (f)
]
.

A direct computation yields

Xk+2,−M
+ (f)−Xk,−M

+ (f) =
4i

τ − τ
f,

Xk+2,−M
+ (∂w [f ])− ∂w

[
Xk,−M

+ (f)
]

=
2i

τ − τ
∂w [f ]− 8πM

w − w
(τ − τ)2

f,

Xk+2,−M
+

(
∂2
w [f ]

)
− ∂2

w

[
Xk,−M

+ (f)
]

= −16πM
w − w

(τ − τ)2
∂w [f ]− 8πM

(τ − τ)2
f.

Thus, we can write (6.10) as

(6.11) F2
4i

τ − τ
f +X0,0

+ (F2) f

+ 2F1

(
2i

τ − τ
∂w [f ]− 8πM

w − w
(τ − τ)2

f

)
− 16πM

w − w
(τ − τ)2

∂w [f ]− 8πM

(τ − τ)2
f.
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To conclude the proof it is enough to show that (6.11) equals 0. This can be done with a direct
computation using

F1 = −4πiM
w − w
τ − τ

,(6.12)

F2 = (4πiM)2 (w − w)2

(τ − τ)2
− 4πiM

(τ − τ)
,(6.13)

X0,0
+ (F2) = − 8πM

(τ − τ)2
.

�

We now have all the ingredients to prove Proposition 6.2.

Proof of Proposition 6.2: The λ = 0 case is trivial for both of the statements. For λ ≥ 1
we proceed by induction. To simplify the notation, throughout the proof we omit the variables
when writing the functions.

We start by proving the first claim. For λ = 1, the left-hand side equals

(6.14) δ2
w [RM,`] + 2δw [RM,`]Fδw

[
1

F

]
+RM,`Fδ

2
w

[
1

F

]
.

Using (6.12), (6.13), and the identity

δ2
ε [RM,` (ε+ w; τ)]ε=0 = −4Mδτ [RM,` (w; τ)] ,

which follows by Proposition 6.3, equation (6.14) equals

−2M

πi

(
∂τ +

w − w
τ − τ

∂w − 2πiM
(w − w)2

(τ − τ)2 +
1

2(τ − τ)

)
RM,`.

This, by definition of X+, gives the claim for λ = 1.
Assume now that the statement is true for λ− 1, then

Fδ2λ
w

[
1

F
RM,`

]
=

(
M

π

)λ−1

Fδ2
w

[
1

F

(
X

1
2
,−M

+

)λ−1

(RM,`)

]
.

Applying Proposition 6.7 λ times, this expression equals(
M

π

)λ−1(
X

5
2
,−M

+

)λ−1(
Fδ2

w

[
1

F
RM,`

])
=

(
M

π

)λ(
X

1
2
,−M

+

)λ
(RM,`) ,

as claimed.
Next we prove the second statement. For λ = 1, we have

Fδ3
w

(
RM,`

F

)
= − 1

2π
F

(
δ2
w

[
1

F

]
Y+(R) + 2δw

[
1

F

]
δw [Y+(RM,`)] +

1

F
δ2
w [Y+(RM,`)]

)
,

where we have used the claim for λ = 0. Using (6.12) and (6.13), we write this as

(6.15) − 1

2π

(
iM

π(τ − τ)
+ (2M)2 (w − w)2

(τ − τ)2
− 4M

w − w
τ − τ

δw + δ2
w

)
(Y+(RM,`)) .

A direct computation gives

δ2
w [Y+(RM,`)] = −4Mδτ [Y+(RM,`)] +

2Mi

π(τ − τ)
Y+(RM,`).

Thus, we rewrite (6.15) as

M

π2i

(
3

2(τ − τ)
− 2πiM

(w − w)2

(τ − τ)2
+
w − w
τ − τ

∂w + ∂τ

)
(Y+(RM,`)) .
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This, by definition of X
3
2
,−M

+ , concludes the proof for λ = 1. Assume now that the statement is
true for λ− 1. Then

Fδ2λ+1
w

[
1

F
RM,`

]
= − 1

2π

(
M

π

)λ−1

Fδ2
w

[
1

F

(
X

3
2
,−M

+

)λ−1

(Y+ (RM,`))

]
.

Applying Proposition 6.7 λ times, we rewrite this as

(6.16) − 1

2π

(
M

π

)λ−1(
X

3
2

+2,−M
+

)λ−1(
Fδ2

w

[
1

F
Y+ (RM,`)

])
.

By induction, firstly using the claim for λ = 0 and then the claim for λ = 1, we have

Fδ2
w

(
1

F
Y+ (RM,`)

)
= −2πFδ3

w

[
1

F
RM,`

]
=
M

π
X

3
2
,−M

+ (Y+(RM,`)) .

Thus, as claimed, (6.16) equals

− 1

2π

(
M

π

)λ((
X

3
2
,−M

+

)λ
(Y+(RM,`))

)
.

�

Proof of Proposition 6.3: A special case of the fact that RM,` is annihilated by H−M is
proved in [9] by the first author and Zwegers. In [23], the second author showed the general
case.

Next, we prove that RM,` is annihilated by the Heisenberg operator. In order to do so, we
recall that by Lemma 1.8 of [28], we have

(6.17) ∂w [RM,`+M (w; τ)] = −2i
√
iMe−2πi`w− `2

4M
τϑ

(
2Mw − 1

2
+ `τ ;−2Mτ

)
F (w; τ)

(τ − τ)
1
2

.

Note that the result in Lemma 1.8 of [28] is stated in terms of a slightly different function R.
We point out that RM,` can be written in terms of R with a slight modification of the elliptic
variable. The operator ∂w acts trivially on anti-holomorphic functions, thus, using (6.17), we
have that ∆H

M (RM,`+M (w; τ)) equals

−
√
iMe−2πi`w− `2

4M
τϑ

(
2Mw − 1

2
+ `τ ;−2Mτ

)(
− τ − τ

8πiM
∂w +

1

2
(w − w)

)(
F (w; τ)

(τ − τ)
1
2

)
.

A direct computation gives that(
− τ − τ

8πiM
∂w +

1

2
(w − w)

)(
F (w; τ)

(τ − τ)
1
2

)
= 0,

therefore RM,` is annihilated by ∆H
−M .

We proceed by showing that C 1
2
,−M (RM,`) = 0. For this, we use Lemma 2.8. In particular,

since ξ 1
2
,−M (RM,`) = 0 (which can be seen easily by a direct computation), it remains to prove

that

X
1
2
,−M

+ (∂w∂w (RM,`+M (w; τ))) = 0.

To see this, using (6.17), we compute

(6.18) ∂w∂w (RM,`+M (w; τ)) = ∂w [H(w;−τ)]
F (w; τ)

(τ − τ)
1
2

+H(w;−τ)∂w

[
F (w; τ)

(τ − τ)
1
2

]
,
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where

H(w; τ) := −2i
√
iMe−2πi`w+ `2

4M
τϑ

(
2Mw − 1

2
+ `τ ; 2Mτ

)
.

Since H(w;−τ) and ∂w [H(w;−τ)] are anti-holomorphic, X
1
2
,−M

+ acts trivially on them. There-

fore, applying X
1
2
,−M

+ to equation (6.18), we obtain

∂w [H(w;−τ)]X
1
2
,−M

+

(
F (w; τ)

(τ − τ)
1
2

)
+H(w;−τ)X

1
2
,−M

+

(
∂w

[
F (w; τ)

(τ − τ)
1
2

])
.

To conclude, a direct computation shows that

X
1
2
,−M

+

(
F (w; τ)

(τ − τ)
1
2

)
= X

1
2
,−M

+

(
∂w

[
F (w; τ)

(τ − τ)
1
2

])
= 0.

The last statement follows from the previous ones, using Lemma 2.9. �

6.3. The action of ξk,M and ξHk,M . Consider the ξ-operator (see (2.8)) introduced in [7] and

the Heisenberg generalization (see equation (3.1) in [8])

ξHk,M := −
√
τ − τ
2iM

e−2πiM
(z−z)2
τ−τ ∂z.

In the following proposition we show the image of ĥ` under the action of these two operators.

Proposition 6.8. Let ĥ` be the completion of the canonical Fourier coefficients of Φ as in (5.3).
Then

ξ 1
2
,−M

(
ĥ`

)
= 0,

ξH1
2
,−M

(
ĥ`(u; τ)

)
= −1

2

t∑
j=1

nj∑
λ=1

D̃λ,j(u; τ)

(λ− 1)!
δλ−1
ε

[
ϑM,`

(
w(j) + ε; τ

)]
ε=0

,

where w(j) is given in (6.16).

Proof: Using the same trick used to rewrite (3.6) as (4.6), one can see that (5.3) equals

ĥ`(u; τ) = h`(u; τ)−
t∑

j=1

nj∑
λ=1

D̃λ,j(u; τ)

(λ− 1)!
δλ−1
ε

[
1

2
RM,`

(
w(j) + ε; τ

)
− EM,`

(
w(j) + ε; τ

)]
ε=0

.

Since ξ 1
2
,−M and ξH1

2
,−M annihilate holomorphic functions and commute with δε, it is enough to

compute the action of these operators on RM,`. A direct calculation shows that

ξ 1
2
,−M (RM,`(z; τ)) = 0,

ξH1
2
,−M (RM,`(z; τ)) = ϑM,`(z; τ),

proving the proposition. �



KAC-WAKIMOTO CHARACTERS AND NON-HOLOMORPHIC JACOBI FORMS 19

7. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.2: The transformation properties of the functions ĥ` are given in Corol-
lary 5.2. It remains to show that they can be written as in (2.9). Applying Propositions 6.1 and
6.2, we rewrite (5.3) as

ĥ`(u; τ) = h`(u; τ)−
t∑

j=1

[
nj−1

2

]∑
λ=0

4λ

(2λ)!
Xλ
− (D1,j(u; τ))

(
X

1
2
+

)λ
(RM,`(w; τ))

+
1

2π

t∑
j=1

[
nj−2

2

]∑
λ=0

4λ

(2λ+ 1)!
Xλ
− (D2,j(u; τ))

(
X

3
2
+

)λ(
Y

1
2
,M

+ [RM,`(w; τ)]

)
.

In order to show that ĥ` is an almost Maass-Jacobi form, it remains to prove that the function
RM,` is the non-holomorphic part of a certain vector-valued H-harmonic Maass-Jacobi form.

Since both C 1
2
,−M and ∆H

−M annihilate holomorphic functions, Proposition 6.3 implies that it

suffices to construct a real-analytic Jacobi form whose non-holomorphic part is RM,`. This has
been proved already in Proposition 5.1 of [8] using multivariable Appell sums introduced by
Zwegers in [27].

�

We conclude this section recalling and proving Theorem 1.1.

Theorem 7.1. The multivariable Kac-Wakimoto characters chF` are the holomorphic parts of

mixed harmonic Maass-Jacobi forms ĉhF ` of weight M− 1
2 and index L∗ for Γ0(2). Furthermore,

the functions ĉhF ` are annihilated by ξ 1
2
,−M , and their image under ξH1

2
,−M lies in J̃M−1,L∗⊗J 1

2
,M .

Proof: Using Jacobi’s triple product identity (3.1), we can rewrite the generating function chF
for the Kac-Wakimoto characters in term of Φ, given in (1.3) (choosing mr = nj = 1 for all r
and j), namely

chF = eΛ0(−1)mi−nζMq
M
3 η(τ)−2M

(
m∏
r=1

β
1
2
r

) n∏
j=1

β
− 1

2
m+j

Φ
(
z +

τ

2
,u; τ

)
,

where η is the Dedekind eta function η(τ) := q
1
24
∏
k≥1

(
1− qk

)
. Therefore, the Kac-Wakimoto

characters correspond to the canonical Fourier coefficients h` of Φ choosing nj = mr = 1 for all
j and r (up to multiplication by η-powers and shifting of variables). In this case, we have

ĥ`(u; τ) = h`(u; τ)−
n∑
j=1

D1,j(u; τ)RM,`(w; τ),

where the Laurent coefficients D1,j(u; τ) are weak Jacobi forms. To conclude the proof, we recall
that RM,` is the non-holomorphic part of a vector-valued H-harmonic Maass-Jacobi form. This
follows from Theorem 4.5 in [27] and Proposition 6.3.

The images under ξ 1
2
,−M and ξH1

2
,−M follow from Proposition 6.8. �
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