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A Note on Andrews’ Partitions with Parts
Separated by Parity

Kathrin Bringmann and Chris Jennings-Shaffer

Dedicated to George Andrews in honor of his 80th birthday

Abstract. In this note we give three identities for partitions with parts
separated by parity, which were recently introduced by Andrews.

Mathematics Subject Classification (2010). Primary 11P81, 11P84.

Keywords. Number theory, partitions, parity, modular forms, mock theta
functions.

1. Introduction

Recently Andrews [1] studied integer partitions in which all parts of a given
parity are smaller than those of the opposite parity. Furthermore, he con-
sidered eight subcases based on the parity of the smaller parts and parts
of a given parity appearing at most once or an unlimited number of times.
Following Andrews, we use “ed” for evens distinct, “eu” for evens unlimited,
“od” for odds distinct, and “ou” for odds unlimited. With “zw” and “xy”
from the four choices above, we let F zw

xy (q) denote the generating function of
partitions where zw specifies the parity and condition of the larger parts and
xy specifies the parity and condition of the smaller parts.

The eight relevant generating functions are

F ou
eu (q) :=

∞
∑

n=0

q2n

(q2; q2)n (q
2n+1; q2)∞

,

F od
eu (q) :=

∞
∑

n=0

q2n
(

−q2n+1; q2
)

∞

(q2; q2)n
,
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F ou
ed (q) :=

∞
∑

n=0

(

−q2; q2
)

n
q2n+2

(q2n+3; q2)∞
,

F od
ed (q) :=

∞
∑

n=0

q2n+2
(

−q2, q2
)

n

(

−q2n+3; q2
)

∞
,

F eu
ou (q) :=

∞
∑

n=0

q2n+1

(q; q2)n+1 (q
2n+2; q2)∞

,

F ed
ou (q) :=

∞
∑

n=0

q2n+1
(

−q2n+2; q2
)

∞

(q; q2)n+1

,

F eu
od (q) :=

∞
∑

n=0

q2n+1
(

−q; q2
)

n

(q2n+2; q2)∞
,

F ed
od (q) :=

∞
∑

n=0

q2n+1
(

−q; q2
)

n

(

−q2n+2; q2
)

∞
.

Here we are using the standard product notation (a; q)n :=
∏n−1

j=0 (1 − aqj)

for n ∈ N0 ∪{∞}. We note that with the exception of F ou
eu (q) and F od

eu (q), we
do not allow the subpartition consisting of the smaller parts to be empty.

Andrews’ identities (after minor corrections) can be stated as

F ou
eu (q) =

1

(1− q) (q2; q2)∞
,

F od
eu (q) =

1

2

(

1

(q2; q2)∞
+
(

−q; q2
)2

∞

)

,

F ou
ed (−q) =

1

2 (−q; q2)∞

(

(−q; q)∞ − 1−

∞
∑

n=0

q
n(3n−1)

2 (1− qn)

)

,

F eu
ou (q) =

1

1− q

(

1

(q; q2)∞
−

1

(q2; q2)∞

)

,

F ed
ou (−q) = −

(

−q2; q2
)

∞

2

(

2−
1

(−q; q)∞
−

∞
∑

n=0

qn
2+n

(−q; q)
2
n (1 + qn+1)

)

,

F eu
od (−q) = −

1

(q2; q2)∞

∞
∑

j=1

∞
∑

n=j

(−1)
n+j

q
n(3n+1)

2 −j2
(

1− q2n+1
)

.

Surprisingly, these identities are derived with little more than the q-binomial
theorem, Heine’s transformation, and the Rogers-Fine identity. In the follow-
ing theorem, we give new identities for F od

ed (q), F
ed
od (q), and F ed

ou (−q).

Theorem 1.1. The following identities hold,

F od
ed (q) =

q
(

−q; q2
)

∞

1− q

(

1−
(−q2; q2)∞
(−q; q2)∞

)

, (1.1)

F ed
od (q) =

q(−q2; q2)∞
1− q

(

2−
(−q; q2)∞
(−q2; q2)∞

)

, (1.2)
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F ed
ou (−q) = −

(

−q2; q2
)

∞

2

(

2−
1

(−q; q)∞
−

2

(q; q)∞

∑

n∈Z

(−1)n q
3n(n+1)

2

1 + qn

)

.

(1.3)

Remark. The functions F od
ed (q) and F ed

od (q) are basically modular functions.
Also we find that F ed

ou (−q) is related to Ramanujan’s third order mock theta
function f(q), as

f(q) :=

∞
∑

n=0

qn
2

(−q; q)2n
=

2

(q; q)∞

∑

n∈Z

(−1)
n
q

n(3n+1)
2

1 + qn

= 2−
2

(q; q)∞

∑

n∈Z

(−1)
n
q

3n(n+1)
2

1 + qn
,

where the final equality uses Euler’s pentagonal numbers theorem.

2. Proof of Theorem 1.1

To prove equations (1.1) and (1.2), we require the following q-series identity,

∞
∑

n=0

(x; q)nq
n

(y; q)n
=

q(x; q)∞

y(y; q)∞

(

1− xq

y

) +

(

1− q

y

)

(

1− xq

y

) . (2.1)

We note that (2.1) is (4.1) from [3] and was proved with Heine’s transforma-
tion [4, page 241, (III.2)]. To prove equation (1.3) we require the concept of
a Bailey pair and Bailey’s Lemma, which are described in [2, Chapter 3]. A
pair of sequences (α, β) is called a Bailey pair relative to a = q if

βn =

n
∑

j=0

αj

(q; q)n−j(q2; q)n+j

.

A limiting form of Bailey’s Lemma states that if (αn, βn) is a Bailey pair
relative to q, then

∞
∑

n=0

qn
2+nβn =

1

(q2; q)∞

∞
∑

n=0

qn
2+nαn. (2.2)

The Bailey pair we use is given by

β′
n :=

1

(−q; q)2n(1 + qn+1)
, α′

n :=
2(−1)nq

n(n+1)
2 (1 − q2n+1)

(1− q)(1 + qn)(1 + qn+1)
, (2.3)

which follows from taking the Bailey pair from Theorem 8 of [5] with a → q,
b = −1, c = −q, and d = −1 and dividing both αn and βn by (1 + q).

Proof of Theorem 1.1. We find that

F od
ed (q) =

(

−q; q2
)

∞

∞
∑

n=1

(

−q2; q2
)

n−1
q2n

(−q; q2)n
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=

(

−q; q2
)

∞

2

(

−1 +
∞
∑

n=0

(

−1; q2
)

n
q2n

(−q; q2)n

)

.

With q 7→ q2, x = −1, and y = −q, equation (2.1) implies that
∞
∑

n=0

(−1; q2)q2n

(−q; q2)n
= −

q
(

−1; q2
)

∞

(−q; q2)∞ (1− q)
+

1 + q

1− q
.

Equation (1.1) then follows after elementary simplifications.
Similarly, we have that

F ed
od (q) =

(

−q2; q2
)

∞

∞
∑

n=0

(

−q; q2
)

n
q2n+1

(−q2; q2)n
.

By applying (2.1) with q 7→ q2, x = −q, and y = −q2, we find that
∞
∑

n=0

(

−q; q2
)

q2n

(−q2; q2)n
= −

(

−q; q2
)

∞

(−q2; q2)∞ (1− q)
+

2

1− q
,

and (1.2) follows.
For F ed

ou (q), we begin with Andrews’ identity [1]

F ed
ou (−q) = −

(

−q2; q2
)

∞

2

(

2−
1

(−q; q)∞
−

∞
∑

n=0

qn
2+n

(−q; q)2n (1 + qn+1)

)

.

By applying (2.2) to the Bailey pair (α′, β′) in (2.3), we have that

∞
∑

n=0

qn
2+n

(−q; q)2n (1 + qn+1)
=

2

(q; q)∞

∞
∑

n=0

(−1)nq
3n(n+1)

2

(

1− q2n+1
)

(1 + qn) (1 + qn+1)
.

We use the partial fraction decomposition

1− q2n+1

(1 + qn) (1 + qn+1)
=

1

1 + qn
−

qn+1

1 + qn+1
,

to deduce that
∞
∑

n=0

(−1)nq
3n(n+1)

2

(

1− q2n+1
)

(1 + qn) (1 + qn+1)
=

∞
∑

n=0

(−1)nq
3n(n+1)

2

(

1

1 + qn
−

qn+1

1 + qn+1

)

=
∑

n∈Z

(−1)nq
3n(n+1)

2

1 + qn
.

Altogether this implies equation (1.3). �

By applying Theorem 1.1 part 3 of [6] to the Bailey pair E(3) of [7], we
find that

F ed
od (−q) = −

q (q; q)∞
(

−q2; q2
)

∞

(q2; q2)
2
∞

×

∞
∑

n=0

∞
∑

m=0

(−1)
m
q

n(n+3)
2 +2nm+2m2+2m

(

1 + q2m+1
)

.
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As such, we have that





∑

n,m≥0

−
∑

n,m<0



 (−1)mq
n(n+3)

2 +2nm+2m(m+1)

=
2
(

q2; q2
)

∞

(1 + q) (q; q2)∞
−

(

q2; q2
)

∞

(1 + q) (−q2; q2)∞
.

We note that the corresponding quadratic form is degenerate, and so a priori
the modularity properties of this theta function are unclear. More generally,
one can prove directly that, for c ∈ N,

∑

n,m≥0

znwmqn
2+2cnm+c2m2

=
1

1− w
zc

c−1
∑

k=0

∞
∑

n=0

zcn+kq(cn+k)2
(

1−
wn+1

zcn+c

)

.

The above is a sum of partial theta functions, which sometimes combine to
give a modular form.

Acknowledgments

The authors thank George Andrews, Karl Mahlburg, and the anonymous
referee for their careful reading and comments on an earlier version of this
manuscript.

References

[1] G. E. Andrews, Partitions with parts separated by parity, Annals of Combina-
torics, accepted for publication.

[2] G. E. Andrews, q-series: their development and application in analysis, number

theory, combinatorics, physics, and computer algebra, volume 66 of CBMS Re-

gional Conference Series in Mathematics. Published for the Conference Board
of the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 1986.

[3] G. E. Andrews, M. V. Subbarao, and M. Vidyasagar. A family of combinatorial
identities. Canad. Math. Bull., 15, 11–18, 1972.

[4] G. Gasper and M. Rahman. Basic hypergeometric series, volume 45 of Encyclo-
pedia of Mathematics and its Applications, Cambridge University Press, Cam-
bridge, 1990.

[5] J. Lovejoy, Lacunary partition functions, Math. Res. Lett. 9 (2-3), 191–198,
2002.

[6] J. Lovejoy, Ramanujan-type partial theta identities and conjugate Bailey pairs,
Ramanujan J., 29 (1-3), 51–67, 2012.

[7] L. J. Slater, A new proof of Rogers’s transformations of infinite series, Proc.
London Math. Soc. 2, 53, 460–475, 1951.



6 Bringmann and Jennings-Shaffer

Kathrin Bringmann
Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Ger-
many
e-mail: kbringma@math.uni-koeln.de

Chris Jennings-Shaffer
Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Ger-
many
e-mail: cjenning@math.uni-koeln.de


	1. Introduction
	2. Proof of Theorem ??
	Acknowledgments
	References

