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ODD MOMENTS FOR THE TRACE OF FROBENIUS AND THE SATO–TATE

CONJECTURE IN ARITHMETIC PROGRESSIONS

KATHRIN BRINGMANN, BEN KANE, AND SUDHIR PUJAHARI

Abstract. In this paper, we consider the moments of the trace of Frobenius of elliptic curves if
the trace is restricted to a fixed arithmetic progression. We determine the asymptotic behavior
for the ratio of the (2k + 1)-th moment to the zeroeth moment as the size of the finite field Fpr

goes to infinity. These results follow from similar asymptotic formulas relating sums and moments
of Hurwitz class numbers where the sums are restricted to certain arithmetic progressions. As an
application, we prove that the distribution of the trace of Frobenius in arithmetic progressions is
equidistributed with respect to the Sato–Tate measure.

1. Introduction and statement of the results

For an elliptic curve E over the finite field Fpr with p
r elements, there is a natural endomorphism

called the Frobenius map. Letting tr(E) := pr + 1−#E(Fpr) be the trace of Frobenius, Hasse [10]

proved that | tr(E)| ≤ 2p
r
2 . The normalized trace of Frobenius

xE :=
tr(E)

2p
r
2

is hence an element of [−1, 1]. It is then natural to investigate the distribution of xE ∈ [−1, 1]
as pr → ∞. Birch [2] related this distribution to the Sato–Tate measure µST(X) :=

∫
X fST(x)dx,

where X ⊆ R is a Lebesgue integrable set and

fST(x) :=

{
2
π

√
1− x2 if x ∈ [−1, 1],

0 otherwise.

Specifically, letting Eα,β denote the elliptic curve in Weierstrass form y2 = x3−αx−β for α, β ∈ Fp,
Birch [2] proved that for −1 ≤ a ≤ b ≤ 1 we have

lim
p→∞

Pr
(
a ≤ xEα,β ≤ b : α, β ∈ Fp

)
= µST([a, b]).

Here, as usual, for a finite set E and a statement S(x) (which is true or false for each x ∈ E), we
define the probability of the event S in the sample space E to be

Pr (S(x) : x ∈ E) := # {x ∈ E : S(x) holds}
#E .
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We say that the set of xE for E ∈ {Eα,β : α, β ∈ Fp} become equidistributed with respect to the
Sato–Tate measure as p → ∞. Birch’s result has been extended to the case where Fp is replaced
with an arbitrary finite field Fpr (see the work of Brock and Granville [4] as well as [15]). Instead
of considering the sample space defined by the coefficients of the cubic polynomial, we investigate
subsets of the set E(pr) of equivalence classes of elliptic curves over Fpr . Specifically, for m ∈ Z
and M ∈ N, we generalize Birch’s result by considering the sample space

Em,M (pr) := {E ∈ E(pr) : tr(E) ≡ m (mod M)}.

Theorem 1.1. Let m ∈ Z and M, r ∈ N. Restricting to E ∈ Em,M over Fpr, the normalized traces
of Frobenius xE are equidistributed with respect to the Sato–Tate measure in the interval [−1, 1] as
p→ ∞. Specifically, we have

lim
p→∞

Pr (a ≤ xE ≤ b : E ∈ Em,M (pr)) = µST([a, b]).

It is also natural to consider the analogous question for the probabilities

Pr (a ≤ xE ≤ b and E ∈ Em,M (pr) : E ∈ E(pr)) (1.1)

on the larger sample space E(pr). Since the distribution of xE in [−1, 1] is the same on the sample
spaces E(pr) and Em,M (pr) as p → ∞, Theorem 1.1 shows that as p → ∞ the set of xE becomes
equidistributed independent of the distribution of tr(E) modulo M . The distribution of tr(E)
modulo M was studied by Castryck and Hubrechts [5]. In particular, for fixed m and M , they
determined [5, Theorem 1] the asymptotic behavior of

Pr (E ∈ Em,M (pr) : E ∈ E(pr)) , (1.2)

up to an error of size OM (p−
r
2 ). Given the independence of the distribution of xE and the distri-

bution of tr(E) modulo M as p → ∞, (1.1) converges to (1.2) times the Sato–Tate distribution.
While the limit as p→ ∞ of (1.2) (and hence (1.1)) does not exist in general, the limit exists under
certain restrictions. We list one such case in the following theorem.

Theorem 1.2. Let m ∈ Z and M, r ∈ N. Then for each j ∈ Z with gcd(j, 2M) = 1 there exists a
constant cj,m,M such that the normalized traces xE (E ∈ Em,M ) are each equidistributed in [−1, 1]
within the larger space with respect to the measure cj,m,MµST as p → ∞ with p ≡ j (mod 4M2).
Specifically, for −1 ≤ a ≤ b ≤ 1 we have

lim
p→∞

p≡j (mod 4M2)

Pr (a ≤ xE ≤ b and E ∈ Em,M (p) : E ∈ E(p)) = cj,m,MµST([a, b]).

Remark. With a little more work, one should be able to determine the limiting distribution coming
from taking p→ ∞ in (1.1) by using the evaluation of (1.2) in [5, Theorem 1].

In order to investigate the distributions in Thorems 1.1 and 1.2 , we use the method of moments
(see Section 2.5), which relies on the fact that a reasonable probability measure is determined by
its nonnegative integer moments. We investigate closely-related weighted moments that converges
to the unweighted moments as p → ∞ (see Section 2.6). To describe the weighting, denote by
AutFpr (E) the automorphism group of E/Fpr and set ωE := #AutFpr (E). In particular, we show
that for ν ∈ N0 the weighted moments of xE

∑

E/Fpr
tr(E)≡m (mod M)

xνE
ωE

=
1

2νp
rν
2

Sν,m,M (pr) (1.3)
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converge to the moments of µST, where

Sν,m,M (pr) :=
∑

E/Fpr
tr(E)≡m (mod M)

tr(E)ν

ωE
. (1.4)

The weighted even moments ν ∈ 2N0 have been studied by a number of authors such as [2, 3, 12,
13, 14, 17, 20]. For example, in [3, Theorem 1.1] it was shown that as p → ∞ (if ν = 0, we omit
the subscript throughout)

S2k,m,M(p)

22kpkSm,M (p)
=
Ck
22k

+O
(
p−

1
2
+ε
)
,

S2k,m,M (pr)

22kprkSm,M (pr)
=
Ck
22k

+O
(
p−1+ε

)
(r ≥ 2), (1.5)

where Ck := (2k)!
k!(k+1)! is the k-th Catalan number. Since the main term in (1.5) matches the 2k-th

moment of µST (see Lemma 2.4), it remains to study the odd moments. In the case M = 1, all of
the odd moments vanish due to a symmetry which implies that (see [14, Theorem 3])

∑

E/Fpr
tr(E)=−t

ω−1
E =

∑

E/Fpr
tr(E)=t

ω−1
E .

For M > 1, this symmetry is broken, but we prove in this paper that there is still a large amount
of cancellation. We both vary the prime p and the power r, getting equivalent cancellation in both
cases.

Theorem 1.3. Let k ∈ N, m ∈ Z, and M ∈ N be given.

(1) For a fixed prime p > 3, as r → ∞ we have

S2k+1,m,M (pr) = Ok,M,ε

(
p(k+1+ε)r

)
.

(2) For r ∈ N fixed, as p→ ∞ we have

S2k+1,m,M (pr) = Ok,M,ε

(
p(k+1+ε)r

)
.

Remarks.

(1) Using (1.3), Theorem 1.3 implies that

1

Sm,M (pr)

∑

E/Fpr
tr(E)≡m (mod M)

x2k+1
E

ωE
= Ok,M,ε

(
p(−

1
2
+ε)r

)
. (1.6)

Here we use the fact that

Sm,M (pr) ≫M,ε p
(1−ε)r, (1.7)

which follows by plugging [3, Lemma 3.7] and [3, Lemma 4.2] into [3, Lemma 2.2].
(2) By Birch’s result [2] and its generalizations [4, 15], for any constant 0 < c < 2 the set

#
{
E/Fpr : | tr(E)| > cp

r
2

}

has positive density in E/Fpr as pr → ∞. Hence if one takes the moments in (1.4) with tr(E)
replaced with | tr(E)|, then

∑

E/Fpr
tr(E)≡m (mod M)

| tr(E)|ν
ωE

≥
∑

E/Fpr
tr(E)≡m (mod M)

tr(E)>cp
r
2

tr(E)ν

ωE
≫c,ν p

rν
2 Sm,M (pr) ≫M,ε p

( ν2+1−ε)r.
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In the last inequality, we use the bound (1.7) again. Taking ν = 2k+1, we conclude that if no
cancellation would occur in S2k+1,m,M(pr), then we would have

S2k+1,m,M (pr) ≫ pr(k+
3
2
−ε).

We hence see that the cancellation yields a power savings of (at least) p(
1
2
−ε)r.

Our investigation of the moments related to the trace of Frobenius goes through moments asso-
ciated to class numbers of imaginary quadratic fields, or, equivalently, the Hurwitz class numbers
H(n) for classes of binary quadratic forms, which we next define. For n ∈ N, we let H(n) denote
the number of SL2(Z)-inequivalent classes of integral binary quadratic forms [a, b, c] of discriminant
−n, counted with multiplicity 1

2 if [a, b, c] is SL2(Z)-equivalent to [a, 0, a] and multiplicity 1
3 if [a, b, c]

is SL2(Z)-equivalent to [a, a, a]. We furthermore set H(0) := − 1
12 and H(n) := 0 for n < 0. For

ν ∈ N0, M ∈ N, m ∈ Z, and n ∈ N0, we define

Hν,m,M(n) :=
∑

t≡m (mod M)

H
(
4n− t2

)
tν . (1.8)

Analogously to the remark after Theorem 1.3, if one replaces t with |t| in (1.8), then the main
contribution is expected to come from t of size roughly |t| ≈ √

n. Hence it is natural to divide (1.8)
by the expected average absolute value (abbreviating Hm,M (n) := H0,m,M (n))

n
ν
2

∑

t≡m (mod M)

H
(
4n− t2

)
= n

ν
2Hm,M (n).

Indeed, in [3, Theorem 1.3], it was shown that for k ∈ N0

H2k,m,M(n)

nkHm,M(n)
= Ck +Ok,M,ε

(
n−

1
2
+ε
)
.

Combining this with [3, Lemma 3.7], one also obtains

H2k,m,M(n) = Ckn
kHm,M(n) +Ok,M,ε

(
nk+

1
2
+ε
)
. (1.9)

Since tν alternates in sign for odd ν, one again expects cancellation. We show that this happens in
the following theorem.

Theorem 1.4. Let k ∈ N0 be given. Then

H2k+1,m,M(n)

nk+
1
2Hm,M (n)

= Ok,M,ε

(
n−

1
2
+ε
)
, H2k+1,m,M(n) = Ok,M,ε

(
nk+1+ε

)
.

Remark. Combining Theorem 1.4 with (1.9), for ν ∈ N0 we have

Hν,m,M(n) = δ2|νC ν
2
n
ν
2Hm,M (n) +Oν,M,ε

(
n
ν+1
2

+ε
)
,

where δS := 1 if a statement S holds and δS := 0 otherwise.

The paper is organized as follows. In Section 2, we give background information. In Section
3, we evaluate the coefficients of the Rankin–Cohen brackets between the Hurwitz class number
generating function and a weight 3

2 unary theta function. The Rankin–Cohen brackets are then
related to the odd moments in Section 4, where Theorem 1.4 is proven. We show Theorem 1.3 in
Section 5. Finally, we consider the applications to distributions of the trace of Frobenius in Section
6, proving Theorem 1.1 and Theorem 1.2.
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2. Preliminaries

2.1. Holomorphic and non-holomorphic modular forms. We give a brief overview of the
theory of modular forms here; for details, see e.g. [16, 21]. We assume throughout that Γ ⊆ Γ0(4)
is a congruence subgroup containing T := ( 1 1

0 1 ) and κ ∈ 1
2Z. For d odd, we set

εd :=

{
1 if d ≡ 1 (mod 4) ,

i if d ≡ 3 (mod 4) ,

and we denote the extended Legendre symbol by ( ··). For γ =
(
a b
c d

)
∈ Γ we define the weight κ

slash operator by

F
∣∣
κ
γ(τ) :=

( c
d

)2κ
ε2κd (cτ + d)−κF (γτ).

A function F : H → C satisfies modularity of weight κ on Γ with character χ if for every γ =(
a b
c d

)
∈ Γ we have

F |κγ = χ(d)F.

We call F a (holomorphic) modular form if F is holomorphic on H and F (τ) grows at most polyno-
mially in v as τ = u+ iv → Q ∪ {i∞}. We say that F : H → C is an almost holomorphic modular
form if F satisfies weight κ modularity on Γ and there exist holomorphic functions Fj (0 ≤ j ≤ ℓ)

such that F (τ) =
∑ℓ

j=0 Fj(τ)v
−j . We call F0 a quasimodular form.

2.2. Rankin–Cohen brackets. For F1, F2 transforming like modular forms of weight κ1, κ2 ∈ 1
2Z,

respectively, define for k ∈ N0 the k-th Rankin-Cohen bracket

[F1, F2]k :=
1

(2πi)k

k∑

j=0

(−1)j
(
κ1 + k − 1

k − j

)(
κ2 + k − 1

j

)
F

(j)
1 F

(k−j)
2

with
(α
j

)
:= Γ(α+1)

j!Γ(α−j+1) . Here the gamma function is defined by Γ(s) :=
∫∞
0 ts−1e−tdt for Re(s) > 0

(and via meromorphic continuation for s ∈ C). Cohen showed in [6, Theorem 7.1 (a)] that [F1, F2]k
transforms like a modular form of weight κ1 + κ2 + 2k.

2.3. Holomorphic projection. Suppose that we have a (not necessarily holomorphic) translation-
invariant function F (τ) =

∑
n∈Z cF,v(n)q

n. In [25], Sturm observed that if F satisfies modularity of
weight κ ≥ 2 on some congruence subgroup Γ ⊆ SL2(Z) and 〈F, g〉 exists for every cusp form g of
weight κ on Γ, then there exists a unique cusp form f (in the same space) such that 〈F, g〉 = 〈f, g〉
for every g. Sturm called this cusp form f the holomorphic projection of F and evaluated its Fourier
coefficients as a certain integral. Gross and Zagier (see [9, Proposition 5.1, p. 288]) instead used
Sturm’s evaluation via an integral as the definition of the holomorphic projection operator, which
extends to a more general setting. Following the construction of [9], we now relax the condition on
F , dropping the assumption that it is modular and only assuming that it is translation-invariant.
If cF,v(n) ≪F,n v

2−κ as v → 0+ for all n ∈ N, then for n ∈ N we define

cF (n) :=
(4πn)κ−1

Γ(κ− 1)

∫ ∞

0
cF,v(n)v

κ−2e−4πnvdv.

If there exists a constant cF (0) ∈ C for which F (τ) − cF (0) decays as τ → i∞, and if a similar
condition holds as τ → Q, we define (see [19] for the statement written in this generality) the
holomorphic projection of F as

πhol(F )(τ) := cF (κ, 0) +
∞∑

n=1

cF (n)q
n.

5



Although we may apply holomorphic projection with any κ satisfying the growth conditions, one
usually applies the holomorphic projection operator to a function F satisfying modularity of weight

κ, but then writes F =
∑ℓ

j=1 Fj , so the weight κ is clear from the context. Using this more general
definition above to apply the operator to the individual summands Fj even though they may not
be modular.

Mertens [18] studied the holomorphic projection of the Rankin–Cohen brackets between holo-
morphic modular forms and non-holomorphic modular forms with Fourier expansions of the type

F (τ) = F+(τ) + F−(τ) (2.1)

with (for q := e2πiτ )

F+(τ) =
∑

n≫−∞
c+F (n)q

n, F−(τ) = c−F (0)v
1−κ +

∑

n≤−1

c−F (n)Γ (1− κ, 4π|n|v) qn.

Here for x > 0 and α ∈ C, denote by Γ(α, x) =:
∫∞
x tα−1e−tdt the incomplete gamma function. We

set

F−
0 (τ) := F−(τ)− c−F (0)v

1−κ.

We require the contribution to this holomorphic projection coming from the non-holomorphic part,
which was given in [18, Lemma 4.4 and Theorem 4.6]. To state it, for a ∈ N and b ∈ R we define
the two-variable polynomials

Pa,b(X,Y ) :=

a−2∑

j=0

(
j + b− 2

j

)
Xj(X + Y )a−j−2.

Moreover, for κ1, κ2 ∈ R \ Z and k ∈ N0 with 2k − 2 ≥ κ1 + κ2 ∈ Z, we define

ακ1,κ2,k :=
1

(κ1 + κ2 + 2k − 2)!(κ1 − 1)

k∑

µ=0

Γ(2− κ1)Γ(κ2 + 2k − µ)

Γ(2− κ1 − µ)

(
κ1 + k − 1

k − µ

)(
κ2 + k − 1

µ

)
.

Lemma 2.1. Let κ1, κ2 ∈ Z + 1
2 and k ∈ N0 with 2k − 2 ≥ κ1 + κ2 ∈ Z be given. Suppose that

F satisfies modularity of weight κ1 and has a Fourier expansion of the type (2.1) that grows at
most polynomially towards the cusps and g is a holomorphic modular form of weight κ2. Applying
holomorphic projection in weight κ1 + κ2 + 2k to [F, g]k and splitting F as in (2.1), we have the
following.

(1) We have

(4π)1−κ1

κ1 − 1
πhol

([
v1−κ1 , g

]
k

)
= ακ1,κ2,k

∞∑

n=0

nκ1+k−1cg(n)q
n.

(2) We have

πhol
([
F−
0 , g

]
k

)
(τ) =

∞∑

n=1

b(n)qn,

where

b(n) = −Γ(1− κ1)
∑

j,ℓ∈N
j−ℓ=n

k∑

µ=0

(
k1 + k − 1

k − µ

)(
k2 + k − 1

µ

)
jk−µcg(j)

c−F (−ℓ)
ℓκ1−1

×
(
jµ−2k−κ2+1Pκ1+κ2+2k,2−κ1−µ(n, ℓ)− ℓκ1+µ−1

)
.
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2.4. Examples of modular objects. We require a few specific modular objects. We first define

θν,m,M(τ) :=
∑

n≡m (mod M)

nνqn
2
,

Setting ΓN,M := Γ0(N)∩Γ1(M) for M | N , this is a quasimodular form of weight ν+ 1
2 on Γ4M2,M

(see [23, Proposition 2.1]). It is moreover a holomorphic modular form for ν = 0 and a cusp form
for ν = 1. Let

H(τ) :=
∑

n∈Z
H(n)qn

be the generating function for the Hurwitz class numbers. Its modular properties follow by [11,
Theorem 2].

Theorem 2.2. The function

Ĥ(τ) := H(τ) +
1

8π
√
v
+

1

4
√
π

∞∑

n=1

nΓ

(
−1

2
, 4πn2v

)
q−n

2

is a non-holomorphic modular form of weight 3
2 on Γ0(4) which grows at most polynomially towards

all cusps and has an expansion of the type (2.1).

2.5. Equidistribution and the method of moments.

Definition 2.3. Let f be a real-valued continuous function with compact support. We define a
measure µf on integrable sets X by

µf (X) :=

∫

X
f(x)dx.

In the special case f = fST, we write µST = µfST for ease of notation. We say that a sequence of
subsets Sj ⊆ R is equidistributed with respect to µf if for every a ≤ b we have

lim
j→∞

Pr (a ≤ x ≤ b : x ∈ Sj) =

∫ b

a
f(x)dx = µf ([a, b]).

We investigate µf through the ν-th moment of f at 0, which is defined by

µf,ν :=

∫ ∞

−∞
xνf(x)dx.

In the special case f = fST, we write µST,ν . Suppose now that f is a probability density function
and let X be a random variable corresponding to f ; i.e., X randomly assigns a value in R such
that for a < b

Pr (a ≤ X ≤ b) =

∫ b

a
f(x)dx.

Recall that for a function g : R → R, the expected value of g(X) is

E[g(X)] :=

∫ ∞

−∞
g(x)f(x)dx.

In this case, we see that the ν-th moment is

E [Xν ] = µf,ν .

Under certain mild conditions, the moments of a distribution uniquely determine the distribution
(see [1, Theorem 30.1 and Theorem 30.2]). In order to prove Theorem 1.1, we require the moments
of the Sato–Tate measure, which are well-known (for example, see the introduction of [2]).

7



Lemma 2.4. For k ∈ N0, the 2k-th moment of the Sato–Tate distribution is

µST,2k =
Ck
22k

,

while µST,2k+1 = 0.

2.6. Weighted distributions and equidistribution. By determining when two of the elliptic
curves Eα,β are equivalent (see [2, discussion after (1)]), Birch’s result and its generalizations may
be naturally described using a weighted probability on E(pr). For a statement S(E) which is true
or false for each E in a subset E of elliptic curves over Fpr , we set ES := {E ∈ E : S(E) holds} and
set

PrAut (S(E) : E ∈ E) :=

∑

E∈ES
ω−1
E

∑

E∈E
ω−1
E

.

Using Birch’s counting argument in [2, discussion after (1)] for the number of Eα,β in each equiva-
lence class, Birch’s result may be written as

lim
p→∞

PrAut (a ≤ xE ≤ b : E ∈ E(p)) = µST([a, b]).

It is well-known that the discrepancy between the weighted and unweighted probabilities goes to
zero as p→ ∞. The corresponding relationship for the weighted and unweighted moments of traces
in arithmetic progressions is given in the following lemma.

Lemma 2.5. Let m ∈ Z and M, r ∈ N. Then as p→ ∞ we have

Sν,m,M(pr) = 2ν−1p
rν
2

∑

E∈Em,M (pr)

xνE +Oν

(
p
rν
2

)
. (2.2)

Proof. First note that for ν ∈ N0 we have

Sν,m,M(pr) = 2ν−1p
rν
2

∑

E∈Em,M (pr)

xνE + 2νp
rν
2

∑

E∈Em,M (pr)
ωE 6=2

(
1

ωE
− 1

2

)
xνE. (2.3)

It is well-known that the set of E/Fpr with ωE 6= 2 is bounded by an absolute constant (see [24,
Chapter III and Chapter X] for further details). Hence, as p→ ∞, by (2.3)

∣∣∣∣∣∣∣∣

∑

E∈Em,M (pr)
ωE 6=2

(
1

ωE
− 1

2

)
xνE

∣∣∣∣∣∣∣∣
≤ 1

2
#{E/Fpr : ωE 6= 2} ≪ 1,

yielding the lemma. �

3. Evaluation of the Rankin–Cohen brackets

As in [3, Lemma 2.6 (3)] (see also [18, (4.6)], where the Fourier expansion differs slightly), we
have

[H, θ1,m,M ]k = πhol

([
Ĥ, θ1,m,M

]
k

)
− πhol

([
H−, θ1,m,M

]
k

)
. (3.1)

Writing

[H, θ1,m,M ]k (τ) =

∞∑

n=0

ck,m,M (n)qn, (3.2)

8



the idea is to obtain asymptotic behavior ck,m,M(n) by bounding the coefficients of the individual
terms on the right-hand side of (3.1). We begin by considering the first term on the right-hand
side of (3.1). We recall its modular properties, which leads to a bound by Deligne’s work [7].

Lemma 3.1. For k ∈ N0 we have

πhol

([
Ĥ, θ1,m,M

]
k

)
∈ S2k+3

(
Γ4M2,M

)
.

Hence the n-th coefficient of πhol([Ĥ, θ1,m,M ]k) is O(nk+1+ε).

Proof. From [18, Theorem 4.2], πhol([Ĥ, θ1,m,M ]k) is a modular form of weight 2k + 3 on Γ4M2,M .
To see that this is a cusp form, we follow the same argument as given in [18] between [18, (7.2)
and (7.3)]. Namely, since θ1,m,M is a cusp form and holomorphic projection and the Rankin–Cohen
bracket both commute with slashing, for γ ∈ SL2(Z) we have

πhol

([
Ĥ, θ1,m,M

]
k

) ∣∣
2k+3

γ = πhol

([
Ĥ
∣∣
3
2
γ, θ1,m,M

∣∣
3
2
γ
]
k

)
,

and the vanishing of the constant term of θ1,m,M | 3
2
γ implies that the holomorphic projection van-

ishes towards every cusp, and is hence a cusp form.
For the second claim, we use Deligne’s bound [7] for cusp forms. �

Using Lemma 3.1, we next relate ck,m,M(n) to

Fk,t(s) := 2−2k 2k + 1

2k + 2

(
2k

k

)
(t− s)2k+2.

To state the result, we use
∑∗

s,t to denote the sum over s and t where the term with s = 0 is

weighted by 1
2 .

Lemma 3.2. We have

ck,m,M(n) = −1

2

∑∗

t2−s2=n
t≡±m (mod M)

Fk,t(s) +Ok,M

(
nk+1+ε

)
.

Proof. Plugging Lemma 3.1 into (3.1), it remains to show that the n-th Fourier coefficient of
πhol

(
[H−, θ1,m,M ]k

)
is

−1

2

∑∗

t2−s2=n
t≡±m (mod M)

Fk,t(s) +Ok,M

(
nk+1+ε

)
.

To do so, we separately consider the contribution from the (non-holomorphic) constant term of H−

and the remaining terms, starting with the constant term. Noting that the n-th Fourier coefficient
of θ1,m,M is 




n if n = t2 and t ≡ m (mod M) with − t 6≡ m (mod M) ,

2n if n = t2 and ± t ≡ m (mod M) ,

0 otherwise,

we plug in Lemma 2.1 (1) with κ1 = κ2 = 3
2 and g = θ1,m,M to evaluate

πhol

([
1√
v
, θ1,m,M

]

k

)
= α 3

2
, 3
2
,k

∑

n≡m (mod M)

t2k+2qt
2
.

Hence the t2-th coefficient is O(nk+1).
9



It remains to evaluate the contribution from H−
0 (τ) = H−(τ) − 1

8π
√
v
. We use Lemma 2.1 (2)

with κ1 = κ2 = 3
2 , F = Ĥ, and g = θ1,m,M . Writing j = t2 and ℓ = s2 in the sum defining

b(n) in Lemma 2.1 (2), the sum runs over t2 − s2 = n with t ∈ N satisfying t ≡ ±m (mod M)
and s ∈ N (i.e., n = (t + s)(t − s) and evaluating Γ(−1

2) = −2
√
π, the n-th Fourier coefficient of

πhol([Ĥ−
0 , θ1,m,M ]k) equals

2
√
π
∑

±

∑

t2−s2=n
t≡±m (mod M)

k∑

µ=0

(
k + 1

2

k − µ

)(
k + 1

2

µ

)
t2k−2µ+1 1

4
√
π

(
t2µ−4k−1P3+2k, 1

2
−µ
(
n, s2

)
− s2µ+1

)

=
1

2

∑

t2−s2=n
t≡±m (mod M)

k∑

µ=0

(
k + 1

2

k − µ

)(
k + 1

2

µ

)
t2k−2µ+1

(
t2µ−4k−1P2k+3, 1

2
−µ
(
n, s2

)
− s2µ+1

)
. (3.3)

By [22, Proposition 4.2], we have

k∑

µ=0

(
k + 1

2

k − µ

)(
k + 1

2

µ

)
t2k−2µ+1

(
t2µ−4k−1P2k+3, 1

2
−µ
(
n, s2

)
− s2µ+1

)
= Fk,t(s),

and thus (3.3) simplifies to give the claim. �

We next use Lemma 3.2 to rewrite the asymptotics at cℓ,m,M(n) in terms of sums of divisors.

Proposition 3.3. Let m ∈ Z, M ∈ N, and k ∈ N0 be given. Then, as n → ∞, for any ε > 0 we
have

ck,m,M (n) = −2−2k−1 2k + 1

2k + 2

(
2k

k

) ∑∗

d|n, d2≤n
d+n

d
≡±2m (mod 2M)

d2k+2 +Ok,M,ε

(
nk+1+ε

)
,

where here
∑∗ means the term with d =

√
n (if it occurs) is counted with multiplicity 1

2 .

Proof. By Lemma 3.2, we have

ck,m,M (n) = −2−2k−1 2k + 1

2k + 2

(
2k

k

) ∑∗

t2−s2=n
t≡±m (mod M)

(t− s)2k+2 +Ok,M

(
nk+1+ε

)
.

We now write t−s = d and t+s = n
d ≥ d (using s ≥ 0). Note that there is a bijection between pairs

(t, s) and d | n with d2 ≤ n satisfying the congruence d+ n
d ≡ ±2m (mod 2M) because 2t = d+ n

d
and 2s = n

d − d are uniquely determined from d. Using d+ n
d = 2t, this gives the claim. �

4. Proof of Theorem 1.4

Recalling (3.2), we write

[H, θ1,m,M ]k
∣∣U4(τ) =

1

(2πi)k

k∑

j=0

dk,j

(
H(j)θ

(k−j)
1,m,M

) ∣∣U4(τ) =
∞∑

n=0

ck,m,M (4n)qn,

where

dk,j := (−1)j
(
k + 1

2

j

)(
k + 1

2

k − j

)
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are the coefficients from the Rankin–Cohen brackets. We next solve for H2ℓ+1,m,M (n) in terms of
ck,m,M(4n) and H2k−2ℓ+1,m,M(n) with ℓ > 0. For this, define

Ck :=
k∑

j=0

(−1)jdk,j.

A straightforward calculation shows the following.

Lemma 4.1. We have

H2k+1,m,M(n) =
1

Ck
ck,m,M(4n)− 1

Ck

k∑

j=1

dk,j

j∑

ℓ=1

(−1)j+ℓ
(
j

ℓ

)
(4n)ℓH2k−2ℓ+1,m,M(n).

We next bound ck,m,M (4n).

Lemma 4.2. Let k ∈ N0, m ∈ Z, and M ∈ N. Then we have, as n→ ∞,

ck,m,M (4n) ≪k,M nk+1+ε.

Proof. By Proposition 3.3, we have

ck,m,M (4n) = −2−2k−1 2k + 1

2k + 2

(
2k

k

) ∑∗

d|4n, d2≤4n

d+ 4n
d
≡±2m (mod 2M)

d2k+2 +Ok,M,ε

(
nk+1+ε

)
.

Since d2 ≤ 4n, we have

d2k+2 ≤ 4k+1nk+1,

so (noting that d | 4n and σ0(n) ≪ε n
ε as n→ ∞, where σr(n) :=

∑
d|n d

r)

ck,m,M (4n) ≪k,M nk+1σ0(4n) + nk+1+ε ≪k,M nk+1+ε. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. By [3, Lemma 3.7], we have

Hm,M(n) ≫ε n
1−ε.

Thus if

H2k+1,m,M(n) = Ok,M,ε

(
nk+1+ε

)
, (4.1)

then
H2k+1,m,M(n)

nk+
1
2Hm,M(n)

= Ok,M,ε

(
n−

1
2
+ε
)
.

It hence suffices to show (4.1). We prove (4.1) by induction. For k = 0, Lemma 4.1 followed by
Lemma 4.2 implies that

H1,m,M(n) =
1

C1
c1,m,M (4n) ≪k,M n2+ε.

This gives the claim for k = 0. We next assume the claim for 1 ≤ j < k and use Lemma 4.1.
Together with Lemma 4.2 and the inductive hypothesis, this gives the claim. �
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5. Proof of Theorem 1.3

We first recall that by [3, Lemma 2.2], we have

2Sν,m,M (pr) = Hν,m,M(pr) +Eν,m,M (pr), (5.1)

where

Eν,m,M (pr) := δM |mδν=0δ2∤rH(4p) + δM |mδν=0δ2|r
1

2

(
1−

(−1

p

))

+
1

3

(
1−

(−3

p

))
p
νr
2 ̺ν,m,M (pr) +

1

3
(p − 1)2ν−2p

νr
2 σν,m,M (pr)

with

̺ν,m,M (pr) :=
∑

t≡m (mod M)
t2=pr

sgn(t)ν , σν,m,M(pr) :=
∑

t≡m (mod M)
t2=4pr

sgn(t)ν .

Analogous to [3, Lemma 4.2], we require a bound for E2k+1,m,M (pr) with k ∈ N0.

Lemma 5.1. For k ∈ N0 and r ∈ N, we have

E2k+1,m,M (pr) =
22k−1

3
p(k+

1
2)r+1σ2k+1,m,M (pr) +Ok

(
p(k+

1
2)r
)
.

Moreover,

E2k+1,m,M(pr) = Ok

(
p

(

k+
1+δ2|r

2

)

r
)
.

Proof. The first two terms in the definition of E2k+1,m,M(pr) vanish because 2k+1 > 0 by assump-
tion. We then note that

|̺ν,m,M (pr)| ≤
∑

t≡m (mod M)
t2=pr

|sgn(t)ν | ≤
∑

t≡m (mod M)
t2=pr

1 ≤ 2, (5.2)

|σν,m,M (pr)| ≤
∑

t≡m (mod M)
t2=4pr

|sgn(t)ν | =
∑

t≡m (mod M)
t2=4pr

1 ≤ 2. (5.3)

From (5.2), the third term in the definition of E2k+1,m,M (pr) is O(p(k+
1
2
)r). For the final term, we

split the factor p − 1 into two terms, with p giving the main term and −1 giving Ok(p
(k+ 1

2
)r) by

(5.3). This yields the first claim.
If r is odd, then t2 = 4pr is not solvable, thus σ2k+1,m,M (pr) = 0, giving the second claim. For r

even, we have r ≥ 2, so by (5.3)

22k−1

3
p(k+

1
2)r+1σ2k+1,m,M (pr) ≪k p

(k+ 1
2)r+

r
2 = Ok

(
p(k+1)r

)
,

as claimed. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Plugging Lemma 5.1 into (5.1), we have

S2k+1,m,M(pr) =
1

2
H2k+1,m,M(pr) +Ok

(
p(k+1)r

)
.

We then plug in Theorem 1.4 to obtain

S2k+1,m,M (pr) = Ok,M,ε

(
p(k+1+ε)r

)
. �
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6. Proof of Theorems 1.1 and 1.2

In this section, we consider the implications of Theorem 1.3 to the study of distributions of the
trace of Frobenius.

To prove that the weighted averages of xE for E/Fp are equidistributed with respect to the
Sato–Tate measure as p→ ∞, Birch [2] computed the moments as

∑

E/Fp

tr(E)2k

ωE
∼ Ckp

k.

Up to a normalization factor, these match the moments in Lemma 2.4. Following Birch’s argument,
we are now ready to prove the following weighted version of Theorem 1.1.

Theorem 6.1. Let m ∈ Z and M, r ∈ N be given. The set {xE : E ∈ Em,M (pr)} becomes
equidistributed with respect to the Sato–Tate measure as p→ ∞. Specifically, we have

lim
p→∞

PrAut (a ≤ xE ≤ b : E ∈ Em,M (pr)) = µST([a, b]).

Proof. By (1.3), for ν ∈ N0, the ν-th weighted moment with respect to xE for E ∈ Em,M (pr) is

µν(p
r) :=

1

Sm,M (pr)

∑

E∈Em,M (pr)

xνE
ωE

=
Sν,m,M(pr)

2νp
rν
2 Sm,M (pr)

. (6.1)

If ν is odd, then Theorem 1.3 implies that (see (1.6) in particular)

lim
p→∞

µν(p
r) = 0. (6.2)

If ν = 2k is even, then we plug in (1.5) to obtain

lim
p→∞

µν(p
r) =

Ck
22k

. (6.3)

Comparing (6.2) and (6.3) with Lemma 2.4, we conclude that

lim
p→∞

µν(p
r) = δ2|ν

C ν
2

2ν
= µST,ν . (6.4)

Since the moments µν(p
r) converge to µST,ν and the distribution is uniquely determined by its mo-

ments [1, Theorem 30.1 and Theorem 30.2] (as pointed out by Birch [2], the Sato–Tate distribution
satisfies the necessary conditions), we conclude that

lim
p→∞

PrAut (a ≤ xE ≤ b : E ∈ Em,M (pr)) = µST([a, b]). �

We now compare the weighted and unweighted distributions in order to obtain Theorem 1.1.

Proof of Theorem 1.1. Since we take p → ∞, we may assume that p ≥ 5. In order to obtain the
claim, we need to show that

lim
p→∞

1

#Em,M (pr)

∑

E∈Em,M (pr)

xνE = µST,ν . (6.5)

By (6.4) (plugging in (6.1) to the left-hand side), we have

lim
p→∞

Sν,m,M (pr)

2νp
rν
2 Sm,M (pr)

= µST,ν . (6.6)

Using Lemma 2.5 and then (1.7), we have

Sν,m,M (pr)

2νp
rν
2 Sm,M (pr)

=

1
2

∑
E∈Em,M (pr) x

ν
E

Sm,M (pr)
+Oν,M,ε

(
p(ε−1)r

)
.
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In the main term, we use Lemma 2.5 and note that
∑

E∈Em,M (pr) 1 = #Em,M (pr) to rewrite

Sm,M (pr) =
1

2
#Em,M (pr) +O(1). (6.7)

Using (1.7), we see that have #Em,M(pr) ≫M,ε p
(1−ε)r and hence

Sν,m,M(pr)

2νp
rν
2 Sm,M(pr)

=

1
2

∑
E∈Em,M (pr) x

ν
E

1
2#Em,M (pr) +O(1)

+Oν,M,ε

(
p(ε−1)r

)

=

1
2

∑
E∈Em,M (pr) x

ν
E

1
2#Em,M (pr)

(
1 +OM,ε

(
p(ε−1)r

)) +Oν,M,ε

(
p(ε−1)r

)
. (6.8)

Expanding the geometric series, we have

1
2

∑
E∈Em,M (pr) x

ν
E

1
2#Em,M (pr)

(
1 +OM,ε

(
p(ε−1)r

)) =

1
2

∑
E∈Em,M (pr) x

ν
E

1
2#Em,M(pr)

(
1 +OM,ε

(
p(ε−1)r

))

=

∑
E∈Em,M (pr) x

ν
E

#Em,M (pr)
+OM,ε

(
p(ε−1)r

)
,

where in the last step we use the fact that |∑E∈Em,M (pr) x
ν
E | ≤ #Em,M (pr). Plugging back into

(6.8) and rearranging, we obtain that
∑

E∈Em,M (pr) x
ν
E

#Em,M(pr)
=

Sν,m,M(pr)

2νp
rν
2 Sm,M (pr)

+Oν,M,ε

(
p(ε−1)r

)
. (6.9)

Thus by (6.6) we have

lim
p→∞

∑
E∈Em,M (pr) x

ν
E

#Em,M (pr)
= µST,ν . �

By restricting the sample space to Em,M , Theorem 6.1 investigates the (weighted) conditional
probability that the normalized traces lie in a given interval under the assumption that E ∈
Em,M (pr). It is also interesting to consider the distribution of normalized traces xE from E ∈ Em,M
within the larger sample space E(pr). Equivalently, weighting the probabilities via the reciprocal
of the size of the automorphism group as before, we consider the moments

∑
E/Fp

tr(E)≡m (mod M)

xνE
ωE

S1,1(p)
=

1
2ν
∑

E/Fp
tr(E)≡m (mod M)

tr(E)ν

ωE

p
ν
2S1,1(p)

=

1
2ν
∑

E/Fp
tr(E)≡m (mod M)

tr(E)ν

ωE

p
ν
2Sm,M (p)

Sm,M (p)

S1,1(p)
(6.10)

as p→ ∞. Since the limit of the first factor in (6.10) exists by (6.4), the limit as p→ ∞ of the the
above distribution exists if and only if

lim
p→∞

Sm,M (p)

S1,1(p)

exists. The closely-related limits (1.2) were computed in [5, Theorem 1], where the authors gave
a full description of the distribution, so one may obtain the asymptotic behavior by combining
Theorem 6.1 with [5]. We restrict ourselves to certain cases where the above limit exists in order
to get fixed multiples of the Sato–Tate distribution in the limit. In order to further relate the
results in [5, Theorem 1] with the approach used here, we next describe how to determine the
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limits considered in [5] via our method. For this, fix p to lie in a given congruence class modulo
M . For j ∈ N with gcd(j, 2M) = 1, we therefore set

cj,m,M := lim
p→∞

p≡j (mod 4M2)

Sm,M (p)

S1,1(p)
.

We reprove the conclusion of [5, Theorem 1] that these limits all exist.

Proposition 6.2. For m ∈ Z, M ∈ N, and j ∈ N with gcd(j, 2M) = 1, the limit cj,m,M exists.

Remark. The limits are not in general independent of j, so the overall limit over all p does not
(in general) exist.

Before proving Proposition 6.2, we conclude a weighted version of Theorem 1.2.

Theorem 6.3. Let m ∈ Z and M ∈ N. Then for each j ∈ Z with gcd(j, 2M) = 1 there exists a
constant cj,m,M such that for −1 ≤ a ≤ b ≤ 1 we have

lim
p→∞

p≡j (mod 4M2)

PrAut (a ≤ xE ≤ b and E ∈ Em,M (p) : E ∈ E(p)) = cj,m,MµST([a, b]).

Proof. Plugging Proposition 6.2 and (6.4) into (6.10), we obtain

lim
p→∞

p≡j (mod 4M2)

∑
E/Fp

tr(E)≡m (mod M)

xνE
ωE

S1,1(p)
=

{
cj,m,M

Ck
22k

if ν = 2k is even,

0 if ν is odd.

By Lemma 2.4, this matches the ν-th moment of cj,m,M times the Sato–Tate measure. Since the
distribution is uniquely determined by its moments, as in [1, Theorem 30.1 and Theorem 30.2],

lim
p→∞

p≡j (mod 4M2)

PrAut (a ≤ xE ≤ b and E ∈ Em,M (p) : E ∈ E(p)) = cj,m,MµST([a, b]).

Hence for E ∈ Em,M (p) within the larger space E(p), we see that xE is equidistributed in [−1, 1]
with respect to cj,m,M times the Sato–Tate measure as p→ ∞ with p ≡ j (mod 4M2). This gives
the claim. �

We next show how to conclude Theorem 6.3 from Theorem 1.2.

Proof of Theorem 1.2. Since the ν-th moment of cµST is cµST,ν for c ∈ R, the claim is equivalent
to showing that

lim
p→∞

p≡j (mod 4M2)

1

#E(p)
∑

E∈Em,M (p)

xνE = cj,m,MµST,ν . (6.11)

By (6.5), we have

lim
p→∞

1

#Em,M (p)

∑

E∈Em,M (p)

xνE = µST,ν .

Thus (6.11) is equivalent to

lim
p→∞

p≡j (mod 4M2)

#Em,M(p)

#E(p) = cj,m,M . (6.12)

To show (6.12), we use (6.7) to rewrite

#Em,M (p)

#E(p) =
Sm,M (p) +O(1)

S1,1(p) +O(1)
.
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We then plug in (1.7) to obtain

Sm,M (p) +O(1)

S1,1(p) +O(1)
=
Sm,M (p)

S1,1(p)

1 +OM,ε

(
pε−1

)

1 +Oε (pε−1)
=
Sm,M (p)

S1,1(p)

(
1 +OM,ε

(
pε−1

))
.

By Proposition 6.2, if p ≡ j (mod 4M2), then the right-hand side becomes

cj,m,M (1 + oM (1)) ,

yielding (6.12), and hence the claim. �

We finally prove Proposition 6.2.

Proof of Proposition 6.2. We claim that there exist constants aj,m,M > 0 and bj,m,M ∈ C only
depending on j,m,M such that for p ≡ j (mod 4M2) we have

Sm,M(p) = aj,m,Mp+ bj,m,M +Om,M

(
p

1
2
+ε
)
= aj,m,Mp+Oj,m,M

(
p

1
2
+ε
)
. (6.13)

Assuming (6.13), for p ≡ j (mod 4M2) we have

Sm,M(p)

S1,1(p)
=
aj,m,Mp+Oj,m,M

(
p

1
2
+ε
)

aj,1,1p+Oj,m,M

(
p

1
2
+ε
) =

aj,m,M
aj,1,1

+Oj,m,M

(
p−

1
2
+ε
)
,

thus

lim
p→∞

p≡j (mod M)

Sm,M (p)

S1,1(p)
=
aj,m,M
aj,1,1

=: sj,m,M .

It therefore remains to prove (6.13). Plugging [3, Lemma 4.2] (note that ̺m,M (p) = 0 because p is
not a square) into (5.1) yields

Sm,M (p) =
1

2
Hm,M (p) +O

(
p

1
2
+ε
)
.

This reduces (6.13) to showing the same claim forHm,M(p). By [3, Lemma 3.2], we have Hm,M (p) =
Gm,M (p) and Gm,M (p) is the p-th coefficient of 2 [H, θm,M ]0 by [3, Lemma 3.1]. By [3, Lemma 3.3],
we have that

f := (2 [H, θm,M ] + Λ1,m,M )
∣∣U4

is a weight two quasimodular form on Γ4M2,M . The n-th coefficient of Λ1,m,M |U4 is Om,M (n
1
2
+ε)

because t2 − s2 = 4n implies that t− s ≤ 2
√
n.

Thus it remains to show that the p-th coefficient of f has the desired shape. We write

f = E + g

where g is a cusp form and E is in the space spanned by Eisenstein series (which are spanned by
E2 and holomorphic modular forms that are orthogonal to cusp forms) Using the bound of Deligne

[7], the p-th coefficient of g is bounded by O(p
1
2
+ε). To compute the p-th coefficient of E, we use

a basis given by E2 and a basis for the space of holomorphic Eisenstein series of weight two. We
first note that, by [21, (1.7)],

M2

(
Γ4M2,M

)
⊆M2

(
Γ1

(
4M2

)) ∼=
⊕

χ

M2

(
Γ0

(
4M2

)
, χ
)
,

where χ runs over characters modulo 4M2. A basis for the space of Eisenstein series in
M2(Γ0(4M

2), χ) may be found in [8, Theorem 4.6.2]. These are enumerated by pairs of characters
ψ and ϕ modulo 4M2 for which ψϕ = χ and t ∈ N such that c(ψ)c(ϕ)t | 4M2, where c(ψ) is the
conductor. Writing E2,ψ,ϕ,t for the corresponding Eisenstein series, there exists constants λψ,ϕ,t such
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that (note that in [8, Theorem 4.6.2], the case (ψ,ϕ, 1) is omitted, but this precisely corresponds
to a multiple of E2, so this is included for our quasimodular Eisenstein series)

E =
∑

ψ,ϕ (mod 4M2)

∑

t| 4M2

c(ψ)c(ϕ)

λψ,ϕ,tE2,ψ,ϕ,t. (6.14)

If either ψ or ϕ is non-trivial, then the n-th Fourier coefficient of E2,ψ,ϕ,1 is given by σ1,ψ,ϕ(n),
where

σk,ψ,ϕ(n) :=
∑

d|n
ϕ(d)ψ

(n
d

)
dk

and E2,ψ,ϕ,t := E2,ψ,ϕ,1

∣∣Vt. Since p is coprime to 4M2, for ψϕ non-trivial only those with t = 1
may contribute to the sum. Since p is prime, the sum has at most two summands. Moreover, since
p ≡ j (mod 4M2) and ϕ and χ are characters modulo 4M2, we have

σ1,ψ,ϕ(p) = ϕ(p)p+ ψ(p) = ϕ(j)p + ψ(j).

For ψ and ϕ both trivial and t 6= 1, we have that

E2,1,1,t := E2 − tE2

∣∣Vt.
while E2,1,1,1 := E2. Again using the fact that p and 4M2 are coprime, the p-th coefficient of E2,1,1,t

is −24(p + 1). Plugging into (6.14), for p ≡ j (mod 4M2), the p-th Fourier coefficient of E is
∑

ψ,ϕ (mod 4M2)
(ψ,ϕ)6=(1,1)

∑

t| 4M2

c(ψ)c(ϕ)

λψ,ϕ,t (ϕ(j)p + ψ(j)) − 24
∑

t|4M2

λ1,1,t(p+ 1)

=




∑

ψ,ϕ (mod 4M2)
(ψ,ϕ)6=(1,1)

∑

t| 4M2

c(ψ)c(ϕ)

λψ,ϕ,tϕ(j) − 24
∑

t|4M2

λ1,1,t


 p

+
∑

ψ,ϕ (mod 4M2)
(ψ,ϕ)6=(1,1)

∑

t| 4M2

c(ψ)c(ϕ)

λψ,ϕ,tψ(j) − 24
∑

t|4M2

λ1,1,t.

The two sums only depend on m, M , and j, yielding the claim. �
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