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the cases t ∈ {2, 3, 5} and giving partial results for t > 5.
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1. Introduction and statement of results

A partition Λ of n ∈ N is a non-increasing sequence Λ := (λ1, λ2, . . . , λs) of non-
negative integers λj such that 

∑
1≤j≤s λj = n. The Ferrers–Young diagram of Λ is the 

s-rowed diagram
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• • · · · • λ1 dots
• • · · · • λ2 dots
·
·
• · · · • λs dots.

We label the cells of the Ferrers–Young diagram as if it were a matrix, and let λ′
k denote 

the number of dots in column k. The hook length of the cell (j, k) in the Ferrers–Young 
diagram of Λ equals

h(j, k) := λj + λ′
k − k − j + 1.

If no hook length in any cell of a partition Λ is divisible by t, then Λ is a t-core partition. 
A partition Λ is said to be self-conjugate if it remains the same when rows and columns 
are switched.

Example. The partition Λ = (3, 2, 1) of 6 has the Ferrers–Young diagram

• • •
• •
•

and has hook lengths h(1, 1) = 5, h(1, 2) = 3, h(1, 3) = 1, h(2, 1) = 3, h(2, 2) = 1, and 
h(3, 1) = 1. Therefore, Λ is a t-core partition for all t /∈ {1, 3, 5}. Furthermore, switching 
rows and columns leaves Λ unaltered, and so Λ is self-conjugate.

The theory of t-core partitions is intricately linked to various areas of number theory 
and beyond. For example, Garvan, Kim, and Stanton [6] used t-core partitions to investi-
gate special cases of the famous Ramanujan congruences for the partition function p(n). 
Furthermore, t-core partitions encode the modular representation theory of symmetric 
groups Sn and An (see e.g. [5,8]).

For t, n ∈ N we let ct(n) denote the number of t-core partitions of n, along with sct(n)
the number of self-conjugate t-core partitions of n. In 1997, Ono and Sze [13] investigated 
the relation between 4-core partitions and class numbers. Denote by H(|D|) (D > 0 a 
discriminant) the D-th Hurwitz class number, which counts the number of SL2(Z)-
equivalence classes of integral binary quadratic forms of discriminant D, weighted by 1

2
times the order of their automorphism group.1 Then Ono and Sze proved the following 
theorem.

Theorem 1.1 (Theorem 2 of [13]). If 8n + 5 is square-free, then

c4(n) = 1
2H(32n + 20).

1 Some authors write H(D) instead of H(|D|); in particular this notation was used in [12].
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More recently Ono and Raji [12] showed similar relations between self-conjugate 7-core 
partitions and class numbers. To state their result, let

Dn :=
{

28n + 56 if n ≡ 1 (mod 4) ,
7n + 14 if n ≡ 3 (mod 4) .

Theorem 1.2 (Theorem 1 of [12]). Let n �≡ −2 (mod 7) be a positive odd integer. Then

sc7(n) =

⎧⎪⎪⎨
⎪⎪⎩

1
4H(Dn) if n ≡ 1 (mod 4) ,
1
2H(Dn) if n ≡ 3 (mod 8) ,
0 if n ≡ 7 (mod 8) .

In particular, by combining Theorems 1.1 and 1.2 and using elementary congruence 
conditions, one may easily show that for n �≡ 4 (mod 7) and 56n + 21 square-free,

2 sc7(8n + 1) = c4(7n + 2). (1.1)

This fact hints at a deeper relationship between sc2t−1 and ct, which we investigate. 
Our main results pertain to the case of t = 4. We begin by extending recent results of 
Ono and Raji [12]. Letting sc7(n) denote the number of self-conjugate 7-core partitions 
of n and ( ·· ) denote the extended Jacobi Symbol, we may state our first theorem. For 
this, for n ∈ Q we set H(n) := 0 if n /∈ Z or −n is not a discriminant.

Theorem 1.3. For every n ∈ N, we have

sc7(n) = 1
4

(
H(28n + 56) −H

(
4n + 8

7

)
− 2H(7n + 14) + 2H

(
n + 2

7

))
.

While Theorem 1.3 gives a uniform formula for sc7(n) as a linear combination of 
Hurwitz class numbers, it is also desirable to obtain a formula in terms of a single class 
number. For this, let � ∈ N0 be chosen maximally such that n ≡ −2 (mod 22�) and 
extend the definition of Dn to

Dn :=

⎧⎪⎪⎨
⎪⎪⎩

28n + 56 if n ≡ 0, 1 (mod 4) ,
7n + 14 if n ≡ 3 (mod 4) ,
Dn+2

22�
−2 if n ≡ 2 (mod 4) ,

(1.2)

and

νn :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4 if n ≡ 0, 1 (mod 4) ,
1
2 if n ≡ 3 (mod 8) ,
νn+2

22�
−2 if n ≡ 2 (mod 4) ,

0 otherwise.

(1.3)
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A binary quadratic form [a, b, c] is called primitive if gcd(a, b, c) = 1 and, for a prime 
p, p-primitive if p � gcd(a, b, c). We let Hp(D) count the number of p-primitive classes 
of integral binary quadratic forms of discriminant −D, with the same weighting as 
H(D).

Corollary 1.4. For every n ∈ N we have

sc7(n) = νnH7 (Dn) .

Remark. For n �≡ −2 (mod 7), one has H(Dn) = H7(Dn) and hence the cases n ≡
1, 3 (mod 4) of Corollary 1.4 with n �≡ −2 (mod 7) are covered by Theorem 1.2.

For n + 2 squarefree, we may use Dirichlet’s class number formula to obtain another 
representation for sc7(n); Ono and Raji [12, Corollary 2] covered the case that n �≡
−2 (mod 7) is odd.

Corollary 1.5. If n ∈ N is an integer for which n + 2 is squarefree, then

sc7(n) = − νn
Dn

⎧⎪⎨
⎪⎩
∑Dn−1

m=1
(−Dn

m

)
m if n �≡ −2 (mod 7) ,

72
(

7 +
(

Dn
72
7

))∑Dn
72 −1
m=1

(
−Dn

72
m

)
m if n ≡ −2 (mod 7) .

The following corollary relates sc7(m) with m + 2 not necessarily squarefree to sc7(n)
with n + 2 squarefree, for which Corollary 1.5 applies. The cases � = r = 0 with n �≡
−2 (mod 7) odd were proven in [12, Corollary 3]. For this μ denotes the Möbius function 
and σ(n) :=

∑
d|n d.

Corollary 1.6. If n ∈ N satisfies n +2 squarefree, �, r ∈ N0, and f ∈ N with gcd(f, 14) =
1, then

sc7
(
(n + 2)22�f272r − 2

)
= 7r sc7(n)

∑
d|f

μ(d)
(
−Dn

d

)
σ

(
f

d

)
.

We also provide a combinatorial explanation for Corollary 1.4. To do so, we first 
extend techniques of Ono and Sze [13] and explicitly describe the possible abaci (defined 
in Section 4) of self-conjugate 7-core partitions. Then, in (4.1) below we construct an 
explicit map φ sending self-conjugate 7-core partitions to binary quadratic forms, via 
abaci and extended t-residue diagrams (defined in Section 4).

In order to describe the image of this map, for a prime p and a discriminant D =
Δf2 with Δ fundamental, we call a binary quadratic form of discriminant D p-totally 
imprimitive if the power of p dividing gcd(a, b, c) equals the power of p dividing f (i.e., 
if the power of p dividing gcd(a, b, c) is maximal). Furthermore, recall that two binary 
quadratic forms of discriminant D are said to be in the same genus if they represent the 
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same values in (Z/DZ)∗. The principal binary quadratic form of discriminant D, which 
acts as the identity under Gauss’s composition laws, is defined by u2 + Dv2 if D ≡
0 (mod 4) and u2 + uv + D−1

4 v2 if D ≡ 1 (mod 4). We call the genus containing the 
principal binary quadratic form of discriminant D the principal genus. The image of φ
is then described in the following theorem.

Theorem 1.7. For every n ∈ N, the image of φ is a unique non-principal genus of 7-
primitive and 2-totally imprimitive binary quadratic forms with discriminant −28n −56. 
Moreover, suppose that � is chosen maximally such that n ≡ −2 (mod 22�) and 7n+14

22�

has r distinct prime divisors. Then every equivalence class in this genus is the image of 
νn2r many self-conjugate 7-cores of n.

Note that Theorem 1.7 along with [13, Theorem 6] provides a combinatorial explana-
tion for (1.1). The cases t ∈ {2, 3} are simple to describe, and immediately imply that 
relationships similar to (1.1) along arithmetic progressions do not exist for t ∈ {2, 3}, 
which we see in Section 5.1. We prove a similar result for t = 5 in Proposition 5.3. 
Based on these results we offer the following conjecture, along with partial results on 
possible values of t (mod 6) along with the possible shapes of arithmetic progressions in 
Section 5.3.

Conjecture 1.8. The only occurrence of arithmetic progressions for which ct and sc2t−1

agree up to integer multiples non-trivially (even asymptotically) is when t = 4.

The paper is organised as follows. In Section 2, we provide proofs for Theorem 1.3
and Corollary 1.5, Corollaries 1.4 and 1.6 are shown in Section 3. Section 4 is dedicated 
to providing a combinatorial explanation of Theorem 1.2 and its generalization in Corol-
lary 1.4. In Section 5 we prove Conjecture 1.8 in the cases t ∈ {2, 3, 5} and provides 
partial results for larger t.
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2. Proofs of Theorem 1.3 and Corollary 1.5

Our investigation for the case t = 4 begins by packaging the number of self-conjugate 
7-cores into a generating function and using the fact that it is a modular form to relate 
sc7(n) to class numbers. We thus define

S(τ) :=
∑
n≥0

sc7(n)qn+2.

As stated on [12, page 4], S is a modular form of weight 32 on Γ0(28) with character (28
· ).

2.1. Proof of Theorem 1.3

To prove Theorem 1.3, we let

H�1,�2(τ) := H
∣∣(U�1,�2 − �2U�1V�2)(τ).

Here for f(τ) :=
∑

n∈Z cf (n)qn

f
∣∣Ud(τ) :=

∑
n∈Z

cf (dn)qn, f
∣∣Vd(τ) :=

∑
n∈Z

cf (n)qdn,

and

H(τ) :=
∑
D≥0

D≡0,3 (mod 4)

H(D)qD.

Proof of Theorem 1.3. Shifting n �→ n − 2 in Theorem 1.3 and taking the generating 
function of both sides, the claim of the theorem is equivalent to

S = 1
4H1,2

∣∣ (U14 − U2
∣∣V7

)
. (2.1)

By [3, Lemma 2.3 and Lemma 2.6], both sides of (2.1) are modular forms of weight 
3
2 on Γ0(56) with character (28

· ). By the valence formula, it thus suffices to check (2.1)
for the first 12 coefficients; this has been done by computer, yielding (2.1) and hence 
Theorem 1.3. �
2.2. Rewriting sc7(n) in terms of representation numbers

The next lemma rewrites sc7(n) in terms of the representation numbers (m ∈ N0)

r3(m) := #
{
x ∈ Z3 : x2

1 + x2
2 + x2

3 = m
}
.

For m ∈ Q \N0, we furthermore set r3(m) := 0 for ease of notation.
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Lemma 2.1.

(1) For n ∈ N, we have

sc7(n) = 1
48

(
r3(7n + 14) − r3

(
n + 2

7

))
.

(2) If n ≡ −2 (mod 7), then we have

sc7(n) = 1
48

((
7 +

(
Dn

72

7

))
r3

(
n + 2

7

)
− 7r3

(
n + 2

73

))
.

Proof. (1) By the proof of [3, Lemma 4.1] we have

Θ3(τ) =
∑
n�0

r3(n)qn = 12H1,2
∣∣U2(τ),

where Θ(τ) :=
∑

n∈Z qn
2 is the usual theta function. Plugging this into (2.1), the claim 

follows after picking off the Fourier coefficients and shifting n �→ n + 2.
(2) Recall that for f(τ) =

∑
n∈Z cf (n)qn a modular form of weight λ + 1

2 ∈ Z + 1
2 , the 

p2-th Hecke operator is defined as

f |Tp2(τ) =
∑
n�0

(
cf

(
p2n

)
+

(
(−1)λn

p

)
pλ−1cf (n) + p2λ−1cf

(
n

p2

))
qn.

It is well-known that

Θ3|Tp2 = (p + 1)Θ3. (2.2)

Rearranging (2.2) and comparing coefficients we obtain, by (2.2), for m := n + 2 ≡
0 (mod 7),

r3(7m) = 8r3
(m

7

)
−
(−m

7
7

)
r3

(m
7

)
− 7r3

(m

73

)
.

The claim follows by (1). �
2.3. Formulas in terms of single class numbers

We next turn to formulas for sc7(n) in terms of a single class number.
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Corollary 2.2.

(1) For n �≡ −2 (mod 7) and n �≡ 2 (mod 4), we have

sc7(n) = νnH(Dn).

(2) For n ≡ −2 (mod 7), n �≡ −2 
(
mod 73), and n �≡ 2 (mod 4), we have

sc7(n) =
(

7 +
(

Dn

72

7

))
νnH

(
Dn

72

)
.

(3) If n ≡ 2 (mod 4), then

sc7(n) = sc7

(
n + 2

4 − 2
)
.

(4) If n ≡ −2 
(
mod 72), then

sc7(n) = 7 sc7

(
n + 2

72 − 2
)
.

Remark. For n �≡ 2 (mod 4), we have 7(n + 2) | Dn, so n ≡ −2 (mod 7) implies that 
72 | Dn, and hence Corollary 2.2 (2) is meaningful.

Proof of Corollary 2.2. (1) Since n �≡ −2 (mod 7), the final term in Lemma 2.1 (1) 
vanishes, giving

sc7(n) = 1
48r3(7n + 14).

The claim then follows immediately by plugging in the well-known formula of Gauss (see 
e.g. [11, Theorem 8.5])

r3(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

12H(4n) if n ≡ 1, 2 (mod 4) ,
24H(n) if n ≡ 3 (mod 8) ,
r3

(
n
4
)

if 4 | n,
0 otherwise.

(2.3)

(2) Since 73 � (n + 2), the final term in Lemma 2.1 (2) vanishes, giving

sc7(n) = 1
48

(
7 +

(
Dn

72

7

))
r3

(
n + 2

7

)
.
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The claim then immediately follows by plugging in (2.3).
(3) Since n ≡ 2 (mod 4), we have 4 | (n + 2), and hence (2.3) and Lemma 2.1 (1) imply 
the claim.
(4) Since n ≡ −2 

(
mod 72), 73 | Dn, so 7 | Dn

72 . Hence Lemma 2.1 (1), (2) imply the 
claim. �
2.4. Proof of Corollary 1.5

We next consider the special case that n + 2 is squarefree and use Dirichlet’s class 
number formula to obtain another formula for sc7(n).

Proof of Corollary 1.5. Note that since n + 2 is squarefree, either −Dn is fundamental 
(for n �≡ −2 (mod 7)) or −Dn

72 is fundamental (for n ≡ −2 (mod 7)). Dirichlet’s class 
number formula (see e.g. [14, Satz 3]) states that

H(|D|) = − 1
|D|

|D|−1∑
m=1

(
D

m

)
m. (2.4)

By Corollary 2.2 (1), (2) (the conditions given there are satisfied because n +2 is square-
free and thus neither n ≡ 2 (mod 4) nor n ≡ −2 (mod 73)), we have

sc7(n) = νn

⎧⎪⎨
⎪⎩
H(Dn) if n �≡ −2 (mod 7) ,(

7 +
(

Dn
72
7

))
H

(
Dn

72

)
if n ≡ −2 (mod 7) .

(2.5)

Since −Dn is fundamental in the first case and −Dn

72 is fundamental in the second case, 
we may plug in (2.4) with D = −Dn in the first case and D = −Dn

72 in the second case.
Thus for n �≡ −2 (mod 7) we plug

H (Dn) = − 1
Dn

Dn−1∑
m=1

(
−Dn

m

)
m

into (2.5), while for n ≡ −2 (mod 7) we plug in

H

(
Dn

72

)
= − 72

Dn

Dn
72 −1∑
m=1

(
−Dn

72

m

)
m.

This yields the claim. �
3. Proofs of Corollaries 1.4 and 1.6

This section relates sc7(m) and sc7(n) if m+2 is a square.
n+2
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3.1. A recursion for sc7(n)

In this subsection, we consider the case m+2
n+2 = 22j72�.

Lemma 3.1. Let � ∈ N0 and n ∈ N.

(1) We have

sc7
(
(n + 2)22� − 2

)
= sc7(n).

(2) We have

sc7
(
(n + 2)72� − 2

)
= 7� sc7(n).

Proof. (1) Corollary 2.2 (3) gives inductively that for 0 ≤ j ≤ � we have

sc7
(
(n + 2)22� − 2

)
= sc7

(
(n + 2)22(�−j) − 2

)
.

In particular, j = � yields the claim.
(2) The claim is trivial if � = 0. For � ≥ 1, Corollary 2.2 (4) inductively yields that for 
0 ≤ j ≤ �

sc7
(
(n + 2)72� − 2

)
= 7j sc7

(
(n + 2)72(�−j) − 2

)
.

The case j = � is precisely the claim. �
3.2. Proof of Corollary 1.6

We are now ready to prove Corollary 1.6.

Proof of Corollary 1.6. We first use Lemma 3.1 (1), (2) to obtain that

sc7
(
(n + 2)22�f272r − 2

)
= 7r sc7

(
(n + 2)f2 − 2

)
. (3.1)

We split into the case n �≡ −2 (mod 7) (in which case −Dn is fundamental) and 
n ≡ −2 (mod 7) (in which case −Dn

72 is fundamental).
First suppose that n �≡ −2 (mod 7). We use Corollary 2.2 (1) to obtain

sc7
(
(n + 2)f2 − 2

)
= νnH

(
Dnf

2)
We then plug in [4, p. 273] (−D a fundamental discriminant)

H
(
Df2) = H(D)

∑
μ(d)

(
−D

d

)
σ

(
f

d

)
. (3.2)
1≤d|f
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Hence by Corollary 2.2 (1)

sc7
(
(n + 2)f2 − 2

)
= sc7(n)

∑
1≤d|f

μ(d)
(
−Dn

d

)
σ

(
f

d

)
,

and plugging back into (3.1) yields the corollary in that case.
We next suppose that n ≡ −2 (mod 7). First note that since 7 � f and n + 2 is 

squarefree, (n + 2)f2 − 2 �≡ −2 
(
mod 73) and n �≡ 2 (mod 4). We plug in Corollary 2.2

(2), use (3.2) (recall that −Dn

72 is fundamental), and note that 
(

Dnf2
72
7

)
=

(
Dn
72
7

)
to 

obtain that

sc7
(
(n + 2)f2 − 2

)
=

(
7 +

(
Dn

72

7

))
νnH

(
Dn

72

) ∑
1≤d|f

μ(d)
(
−Dn

72

d

)
σ

(
f

d

)
.

We then use Corollary 2.2 (2) again and plug back into (3.1) to conclude that

sc7
(
(n + 2)22�f272r − 2

)
= 7r sc7(n)

∑
1≤d|f

μ(d)
(
−Dn

72

d

)
σ

(
f

d

)
.

Since 7 � f , we have 
(

−Dn
72
d

)
=

(−Dn

d

)
for d | f . Therefore the corollary follows. �

3.3. Proof of Corollary 1.4

We next rewrite Corollary 2.2 (2) in order to uniformly package Corollary 2.2 (1), 
(2), and (3). We first require a lemma relating the 7-primitive class numbers H7 and the 
Hurwitz class numbers.

Lemma 3.2. For a discriminant −D, we have

H7(D) = H(D) −H

(
D

72

)
.

Proof. A simple manipulation using the inclusion-exclusion principle immediately yields 
the claimed formula. �

To finish the proof of Corollary 1.4, for a fundamental discriminant −Δ, we also 
require the evaluation of

Cr,Δ :=
∑
d|7r

μ(d)
(
−Δ
d

)
σ

(
7r

d

)
−

∑
d|7r−1

μ(d)
(
−Δ
d

)
σ

(
7r−1

d

)
.

A straightforward calculation gives the following lemma.
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Lemma 3.3. For r ∈ N we have

Cr,Δ = 7r−1
(

7 +
(

Δ
7

))
.

We are now ready to prove Corollary 1.4.

Proof of Corollary 1.4. We first consider the case that n �≡ 2 (mod 4). If n �≡
−2 (mod 7), then Corollary 1.4 follows directly from Corollary 2.2 (1) and Lemma 3.2.

For n ≡ −2 (mod 7), we choose rn ∈ N0 maximally such that n ≡ −2 
(
mod 72rn+1)

and proceed by induction on rn. For rn = 0 we have Dn = Δnf
272 with −Δn a funda-

mental discriminant and 7 � f . Since 7 � f , we have

(
−Δnf

2

7

)
=

(
−Δn

7

)
,

and hence combining Corollary 2.2 (2), (3.2), and Lemma 3.3 gives

sc7(n) = νnH(Δn)

⎛
⎝∑

d|7
μ(d)

(
−Δn

d

)
σ

(
7
d

)
− 1

⎞
⎠∑

d|f
μ(d)

(
−Δn

d

)
σ

(
f

d

)
.

Noting that 7 � f and

∑
d|f

μ(d)
(
−Δn

d

)
σ

(
f

d

)
(3.3)

is multiplicative, we obtain

sc7(n) = νnH(Δn)

⎛
⎝∑

d|7f
μ(d)

(
−Δn

d

)
σ

(
7f
d

)
−

∑
d|f

μ(d)
(
−Δn

d

)
σ

(
f

d

)⎞⎠ .

We then apply (3.2) again and use Lemma 3.2 to obtain Corollary 1.4 in this case. This 
completes the base case rn = 0 of the induction.

Let r ≥ 1 be given and assume the inductive hypothesis that Corollary 1.4 holds for 
all n with rn < r. We then let n be arbitrary with rn = r and show that Corollary 1.4
holds for n. By Corollary 2.2 (4), we have

sc7(n) = 7 sc7

(
n + 2

72 − 2
)
. (3.4)

By the maximality of rn, 72r−1 | n+2
72 but 72r+1 � n+2

72 , so rn+2
72 −2 = r − 1 < r and hence 

by induction we may plug Corollary 1.4 into the right-hand side of (3.4) to obtain
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sc7(n) = 7νn+2
72 −2H7

(
Dn+2

72 −2

)
. (3.5)

A straightforward calculation shows that

νn+2
72 −2 = νn and Dn+2

72 −2 = Dn

72

and hence (3.5) implies that

sc7(n) = 7νnH7

(
Dn

72

)
.

Hence Corollary 1.4 in this case is equivalent to showing that

H7 (Dn) = 7H7

(
Dn

72

)
. (3.6)

Plugging Lemma 3.2 and then (3.2) into both sides of (3.6), cancelling H(Δn), and again 
using the multiplicativity of (3.3), one obtains that (3.6) is equivalent to Cr+1,Δn

=
7Cr,Δn

. Since r ≥ 1, we have r + 1 ≥ 2, and Lemma 3.3 implies that Cr+1,Δn
= 7Cr,Δn

, 
yielding Corollary 1.4 for all n �≡ 2 (mod 4).

We finally consider the case n ≡ 2 (mod 4). We choose � maximally such that n ≡
−2 

(
mod 22�). Lemma 3.1 (1) implies that

sc7(n) = sc7

((
n + 2
22� − 2 + 2

)
22� − 2

)
= sc7

(
n + 2
22� − 2

)
.

The choice of � implies that n+2
22� −2 �≡ 2 (mod 4). We may therefore plug in Corollary 1.4

and the definitions (1.2) and (1.3) to conclude that

sc7

(
n + 2
22� − 2

)
= νn+2

22�
−2H7

(
Dn+2

22�
−2

)
= νnH7 (Dn) . �

4. A combinatorial explanation of Corollary 1.4

Here we provide a combinatorial explanation for Corollary 1.4. We use the theory of 
abaci, following the construction in [13].

4.1. Abaci, extended t-residue diagrams, and self-conjugate t-cores

Given a partition Λ = (λ1, λ2, . . . , λs) with λ1 ≥ λ2 ≥ · · · ≥ λs > 0 of a positive 
integer n and a positive integer t, we next describe the t-abacus associated to Λ. This 
consists of s beads on t rods constructed in the following way [13]. For every 1 ≤ j ≤ s

define structure numbers by
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Bj := λj − j + s.

For each Bj there are unique integers (rj , cj) such that

Bj = t(rj − 1) + cj ,

and 0 ≤ cj < t − 1. The abacus for the partition Λ is then formed by placing one bead 
for each Bj in row rj and column cj . The extended t-residue diagram associated to a 
t-core partition Λ is constructed as follows (see [6, page 3]). Label a cell in the j-th row 
and k-th column of the Ferrers–Young diagram of Λ by k− j (mod t). We also label the 
cells in column 0 in the same way. A cell is called exposed if it is at the end of a row. 
The region r of the extended t-residue diagram of Λ is the set of cells (j, k) satisfying 
t(r− 1) ≤ k− j < tr. Then we define nj to be the maximum region of Λ which contains 
an exposed cell labelled j. As noted in [6], this is well-defined since column 0 contains 
infinitely many exposed cells.

Example. Let t = 4 and construct the abacus and 4-residue diagram for the partition 
Λ = (3, 2, 1). We begin with the abacus, computing the structure numbers B1 = 5, 
B2 = 3, and B3 = 1. Then diagrammatically the abacus is

0 1 2 3
1 B3 B2

2 B1

The extended 4-residue diagram of the partition is

0 1 2 3
1 3 •0 •1 •2

2 2 •3 •0

3 1 •2

Then the exposed cells in this diagram are (1, 3), (2, 2), and (3, 1). One may then deter-
mine the region of these cells in the prescribed fashion. For example, the exposed cell 
(1, 3) labelled by 2 belongs to the region 1, and hence n2 = 1.

Using this construction, [13, Theorem 4] reads as follows. Note that this is implicitly 
proven in [10, Theorem 2.7.16].

Theorem 4.1. Let A be an abacus for a partition Λ, and let mj denote the number of 
beads in column j. Then Λ is a t-core partition if and only if the mj beads in column j
are the beads in positions (1, j), (2, j), . . . , (mj , j).
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Furthermore, using extended t-residue diagrams, the authors of [6] showed the follow-
ing result.

Lemma 4.2 (Bijection 2 of [6]). Let Pt(n) be the set of t-core partitions of n. There is a 
bijection Pt(n) → {N := [n0, . . . , nt−1] : nj ∈ Z, n0 + · · · + nt−1 = 0} such that

|Λ| = t|N |2
2 + B ·N, B := [0, 1, . . . , t− 1].

When computing the norm and dot-product, we consider N, B as elements in Zt.

We call N the list associated to the t-residue diagram. We now show a relationship 
between abaci and lists of a partition.

Proposition 4.3. Let N = [n0, . . . , nt−1] be the list associated to the extended t-residue 
diagram of a t-core partition Λ. Let � + s = α�t + β� with 0 ≤ β� ≤ t − 1. Then N also 
uniquely represents the abacus (. . . , nt−1 + αt−1, n0 + α0, n1 + α1, . . . ), where n� + α�

occurs in position β� of the abacus.

Proof. The largest part λ1 corresponds to the maximum region of the t-residue diagram, 
and also the lowest right-hand bead on the abacus. Let m1 := max{n0, . . . , nt−1} be 
achieved at n�1 . Then λ1 = t(m1 − 1) + �1 + 1. For the abacus, we correspondingly find 
B1 = λ1 − 1 + s = t(m1 − 1) + �1 + s = t(m1 + α1 − 1) + β1, where �1 + s = α1t + β1
with 0 ≤ β1 ≤ t −1. Hence we place a bead in the abacus at the slot (m1 +α1, β1). Since 
this is a t-core partition, we also know that there are beads in all places above this slot. 
These beads correspond to other parts in the partition whose labels of exposed cells in 
the t-residue diagram are �1 but where the exposed cells themselves lie in a lower region. 
Thus the β1-th entry in the abacus takes value m1 + α1.

Then removing the element n�1 from the list we are left with [n0, . . . , n�1−1, n�1+1, . . . ,
nt−1]. We use the same technique as before, identifying m2 := max{n0, . . . , n�1−1, n�1+1,

. . . , nt−1}, achieved at n�2 . We have k−j ≡ �2 (mod t) such that t(m2−1) ≤ k−j < tm2, 
meaning that λj = k = t(m2−1) +�2+j. Plugging this in to the formula for the structure 
numbers we find that Bj = t(m2 −1) + �2 + s = t(m2 +α2 − s) +β2, where �2 = α2t +β2
with 0 ≤ β < t. Hence we place a bead in the abacus in the slot (m2 + α2, β2) and all 
other slots vertically above this, and so the β2-nd entry in the abacus list is given by 
m2 + α2. This process continues for each entry of the list.

If this process gives a non-positive value for the slots of the abacus in which beads are 
to be placed, we define the value in that column of the abacus list to be 0 (it is seen that 
these values arise from the exposed cells in column 0 of the extended t-residue diagram 
and hence are not a part of the partition). It is clear that the β� run through exactly a 
complete set of residues modulo t, and hence each column in the abacus is represented 
exactly once. It is easily seen that this process defines a unique abacus for each list N
(up to equivalency by Lemma 4.5). The converse is also seen to hold. �
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Remark. If the resulting abacus A that appears under an application of Proposition 4.3
has a non-zero first column, we may use Lemma 4.5 to rewrite A as an equivalent abacus 
with a 0 in the first place.

We use Proposition 4.3 to restrict the possible shapes of abaci associated to self-
conjugate t-core partitions.

Lemma 4.4. Let t ≥ 2. With the notation defined as in Proposition 4.3, an abacus is self-
conjugate if and only if it is of the form (. . . , −n1 +α1, −n0 +α0, n0 +α0, n1 +α1, . . . ).

Proof. The proof of [6, Bijection 2] implies that the elements in the list [n0, . . . , nt−1]
associated to a self-conjugate partition satisfy the relations n� = −nt−�−1 for every 
0 ≤ � ≤ t − 1. Combining this with Proposition 4.3 immediately yields the claim. �
4.2. Self-conjugate 7-cores

We now restrict our attention to abaci of self-conjugate 7-cores. We require [13, Lemma 
1], which allows us to form a system of canonical representatives for abaci associated to 
7-core partitions. Note that a similar result and following discussion holds for general t.

Lemma 4.5. The two abaci A1 = (m0, m1, . . . , m6) and A2 = (m6 + 1, m0, . . . , m5) rep-
resent the same 7-core partition.

Thus every 7-core partition may be represented by an abacus of the form (0, a, b, c, d,
e, f). Then in a similar fashion to Ono and Sze, we find that there is a one-to-one 
correspondence

(0, a, b, c, d, e, f) ↔ {all 7-core partitions},

where a, b, c, d, e, and f are non-negative integers. We thus assume that the first column 
in each abacus has no beads. We next use Lemma 4.4 to considerably reduce the number 
of abaci we need to consider.

Lemma 4.6. Assume that A = (0, a, b, c, d, e, f) is an abacus for a self-conjugate 7-core 
partition and recall that s = a + b + c + d + e + f . Let s �≡ 4 (mod 7) and r ∈ N0.

(1) Assume that s = 7r. Then f = 2r, a + e = 2r, b + d = 2r, c = r.
(2) Assume that s = 7r + 1. Then a = 2r + 1, b + f = 2r, c + e = 2r, d = r.
(3) Assume that s = 7r + 2. Then b + a = 2r + 1, c = 2r + 1, d + f = 2r, e = r.
(4) Assume that s = 7r + 3. Then b + c = 2r + 1, a + d = 2r + 1, e = 2r + 1, f = r.
(5) Assume that s = 7r + 5. Then d + e = 2r + 1, c + f = 2r + 1, b = 2r + 2, a = r + 1.
(6) Assume that s = 7r + 6. Then e + f = 2r + 1, d = 2r + 2, a + c = 2r + 2, b = r + 1.
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Table 1
The different types of abaci for self-conjugate 7-core partitions.

Type of partition Shape of abaci

I (0, a, b, r, 2r − b, 2r − a, 2r)
II (0, 2r + 1, a, b, r, 2r − b, 2r − a)
III (0, a, 2r + 1 − a, 2r + 1, b, r, 2r − b)
IV (0, a, b, 2r + 1 − b, 2r + 1 − a, 2r + 1, r)
V (0, r + 1, 2r + 2, a, b, 2r + 1 − b, 2r + 1 − a)
VI (0, a, r + 1, 2r + 2 − a, 2r + 2, b, 2r + 1 − b)

Proof. We prove (1). By Proposition 4.3 we see that A corresponds to the list [−r, a −
r, b −r, c −r, d −r, e −r, f−r]. Using Lemma 4.4 and the fact that s = 7r, the conditions 
are easy to determine. The other cases follow in the same way. �
Remarks.

(1) It is clear how a similar result to Lemma 4.6 may be obtained for all self-conjugate 
t-cores.

(2) The lack of the case s ≡ 4 (mod 7) in Lemma 4.6 follows from the fact that there 
are no self-conjugate (2t − 1)-core partitions with s ≡ t (mod (2t− 1)), which may 
be seen by inspecting the upper-left cell in the Ferrers–Young diagram of such a 
partition.

Lemma 4.6 shows that the abaci of self-conjugate 7-core partitions naturally fall into 
one of the distinct families given in Table 1, enumerated with parameters a, b, r ∈ N0.

We relate the families of partitions to quadratic forms, with the relationship shown in 
the following proposition. For brevity, we write only triples without ± signs - it is clear 
that changing the sign on any entry preserves the result.

Proposition 4.7. Let n ∈ N and a, b, r ∈ N0 be given.

(1) The Type I partition with parameters a, b, and r is a partition of n if and only if

7n + 14 = (7r + 3)2 + (7r + 2 − 7a)2 + (7r + 1 − 7b)2.

(2) The Type II partition with parameters a, b, and r is a partition of n if and only if

7n + 14 = (7r + 4)2 + (7r + 2 − 7a)2 + (7r + 1 − 7b)2.

(3) The Type III partition with parameters a, b, and r is a partition of n if and only if

7n + 14 = (7r + 5)2 + (7r + 4 − 7a)2 + (7r + 1 − 7b)2.
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Table 2
The different types of associated lists for self-conjugate 7-core partitions.

Type of partition Shape of associated list

I [−r, a − r, b − r, 0, r − b, r − a, r]
II [r + 1, a − r, b − r, 0, r − b, r − a,−r − 1]
III [a − r, r + 1, b − r, 0, r − b,−r − 1, r − a]
IV [a − r, b − r, r + 1, 0,−r − 1, r − b, r − a]
V [a − r, b − r,−r − 1, 0, r + 1, r − b, r − a]
VI [b − r,−r − 1, a − r − 1, 0, r + 1 − a, r + 1, r − b]

(4) The Type IV partition with parameters a, b, and r is a partition of n if and only if

7n + 14 = (7r + 6)2 + (7r + 5 − 7a)2 + (7r + 4 − 7b)2.

(5) The Type V partition with parameters a, b, and r is a partition of n if and only if

7n + 14 = (7r + 8)2 + (7r + 5 − 7a)2 + (7r + 4 − 7b)2.

(6) The Type VI partition with parameters a, b, and r is a partition of n if and only if

7n + 14 = (7r + 9)2 + (7r + 8 − 7a)2 + (7r + 4 − 7b)2.

Proof. We only prove (1). Combining the definition with Proposition 4.3, the Type I 
partition Λ with parameters a, b, and r has the associated list [−r, a −r, b −r, 0, r−b, r−
a, r]. By Lemma 4.2, we thus have

n = |Λ| = 7
(
r2 + (a− r)2 + (b− r)2

)
+ (a− r) + 2(b− r) + 4(r − b) + 5(r − a).

Hence we see that

7n + 14 = 49
(
r2 + (a− r)2 + (b− r)2

)
+ 7 (a− r + 2(b− r) + 4(r − b) + 5(r − a) + 6r) + 14

= 147r2 + 49a2 + 49b2 + 84r − 98ar − 98br − 28a− 14b + 14.

This is exactly the expansion of

(7r + 3)2 + (7r + 2 − 7a)2 + (7r + 1 − 7b)2.

The other cases follow in the same way, using the associated lists in Table 2. �
Proposition 4.7 shows that for each self-conjugate 7-core of n there is a representation 

of 7n + 14 = x2 + y2 + z2 as the sum of three squares with none of x, y, z divisible by 7. 
Define
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J(7n + 14) := {(x, y, z) ∈ Z3 : x2 + y2 + z2 = 7n + 14, and x, y, z �≡ 0 (mod 7)}.

Let K(7n + 14) := J(7n + 14)/ ∼ where (x, y, z) ∼ (x′, y′, z′) if (x′, y′, z′) is any permu-
tation of the triple (x, y, z), including minus signs i.e., (−x, y, z) ∼ (x, y, z). Then it is 
easy to see that we obtain the following corollary.

Corollary 4.8. There is an isomorphism between self-conjugate 7-core partitions and 
K(7n + 14).

Remark. Corollary 4.8 gives a combinatorial explanation for Lemma 2.1 (1). We then 
obtain an explanation of Corollary 1.4 via the following exposition, using Gauss’ bijective 
map from solutions of the equation x2 + y2 + z2 = 7n +14 to primitive binary quadratic 
forms in certain class groups.

We elucidate the case n ≡ 0, 1 (mod 4) (a similar story holds for n ≡ 3 (mod 8)). By 
Gauss’s [7, article 278], for each representation of 7n + 14 as the sum of three squares 
there corresponds a primitive binary quadratic form of discriminant −28n −56. This cor-
respondence is invariant under a pair of simultaneous sign changes on the triple (x, y, z). 
Explicitly, the correspondence is given by the following. For (x, y, z) ∈ J(7n + 14) let 
(m0, m1, m2, n0, n1, n2) be an integral solution to

x = m1n2 −m2n1, y = m2n0 −m0n2 z = m0n1 −m1n0,

where a solution is guaranteed by Gauss’s [7, article 279]. Then

(m0u + n0v)2 + (m1u + n1v)2 + (m2u + n2v)2

is a form in CL(−28n −56). Further, this map is independent of (m0, m1, m2, n0, n1, n2). 
Hence, similarly to [13], we find a map φ taking self-conjugate 7-cores to binary quadratic 
forms of discriminant −28n − 56 given by

φ : Λ → A → N → (x, y, z) → (m0,m1,m2, n0, n1, n2) → binary quadratic form. (4.1)

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. We first assume that n ≡ 0, 1 (mod 4). It is well-known (see e.g. 
[7, article 291]) that we have | CL(−28n −56)| = 2r−1k, where k is the number of classes 
per genus, and 2r−1 is the number of genera in CL(−28n − 56). Fix f1, . . . , fk to be 
representatives of the k classes of the unique genus of CL(−28n − 56) that φ maps onto. 
As in [13] we say that (x, y, z) and fj are represented by (m0, m1, m2, n0, n1, n2) if

x = m1n2 −m2n1, y = m2n0 −m0n2, z = m0n1 −m1n0,
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and

(m0u + n0v)2 + (m1u + n1v)2 + (m2u + n2v)2 = fj ,

respectively. Let M denote the set of all tuples (m0, m1, m2, n0, n1, n2) that represent 
some pair (x, y, z) and fj . By Gauss’s [7, article 291], we have |M| = 3 · 2r+3k, and 
each fj is representable by 3 · 2r+3 elements in M. It is clear that all representatives 
fj have (x, y, z) ∈ J(7n + 14). Note that the elements (m0, m1, m2, n0, n1, n2) and 
(−m0, −m1, −m2, −n0, −n1, −n2) both map to the same form in K(7n + 14), and there 
are no other such relations. Since each class in K(7n + 14) corresponds to 8 · 6 different 
triples, we see that each element in K(7n + 14) has 3·2r+3

8·6·2 = 2r−2 different preimages. 
Hence the set of self-conjugate 7-cores is a 2r−2-fold cover of this genus. To see that 
the genus is non-principal, we note as in [13, Remark 3 ii)] that to be in the principal 
genus, one of x, y, z would need to vanish. However, this is guaranteed to not happen by 
the congruence conditions on elements in K(7n + 14). The case where n ≡ 3 (mod 8) is 
similar.

Finally, for n ≡ 2 (mod 4), one uses the simple fact that if the sum of three squares is 
congruent to 0 modulo 4, then all squares must be even. Iterating this eventually reduces 
it to one of the cases covered above or the n ≡ 7 (mod 8) case. �
5. Other t and Conjecture 1.8

In this section we consider other values of t, proving Conjecture 1.8 in the cases 
t ∈ {2, 3, 5} and offering partial results if t > 5.

5.1. The cases t ∈ {2, 3}

With η(τ) := q
1
24

∏
n≥1(1 − qn) the usual Dedekind eta-function, [13, (3)] and [1, 

Theorem 13] give the generating functions of c2(n) and sc3(n) as

∑
n≥1

c2(n)qn = q−
1
8
η(2τ)2

η(τ) ,
∑
n≥1

sc3(n)qn = q−
1
3
η(2τ)2η(3τ)η(12τ)
η(τ)η(4τ)η(6τ) .

These are modular forms of weight 1
2 and levels 2 and 12, respectively. It is a classi-

cal fact that each is a lacunary series, i.e., that the asymptotic density of its non-zero 
coefficients is zero (for example, see the discussion after [8, (2)]). We immediately see 
that

c2(n) =
{

1 if n = j(j+1)
2 for some j ∈ N,

0 otherwise.

Furthermore, [6, (7.4)] stated that
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sc3(n) =
{

1 if n = j(3j ± 2) for some j ∈ N,

0 otherwise.

From these, we immediately obtain the following corollary.

Corollary 5.1. For any n ∈ N that is both a triangular number and satisfies n = j(3j±2)
for some j ∈ Z we have that sc3(n) = c2(n) = 1.

Clearly, there are progressions on which both sc3(n) and c2(n) trivially vanish. For 
example, we have sc3(4n +3) = c2(3n +2) = 0. For t = 3 we simply observe the following 
corollary.

Corollary 5.2. There are no arithmetic progressions on which c3 and sc5 are integer 
multiples of one-another, even asymptotically.

Proof. Comparing the explicit descriptions for c3(n) and sc5(n) given in [9, Theorem 6]
and [6, Theorem 7] respectively immediately yields the claim. �
5.2. The case t = 5

In [6, Theorem 4], Garvan, Kim, and Stanton proved that

c5(n) = σ5(n + 1),

where σ5(n) :=
∑

d|n(d5 )nd denotes the usual twisted divisor sum. Furthermore, Alpoge 
provided an exact formula for sc9(n) in [1, Theorem 10]:

27 sc9(n) =⎧⎪⎪⎨
⎪⎪⎩
σ(3n + 10) + a3n+10(36a) − a3n+10(54a) − a3n+10(108a) if n ≡ 1, 3 (mod 4) ,
σ(3n + 10) + a3n+10(36a) − 3a3n+10(54a) − a3n+10(108a) if n ≡ 0 (mod 4) ,
σ(k) + a3n+10(36a) − 3a3n+10(54a) − a3n+10(108a) if n ≡ 2 (mod 4) ,

where k is odd and is defined by 3n + 10 = 2ek where e ∈ N0 is maximal such that 
2e | (3n + 10). Here, the an(E) are the coefficients appearing in the Dirichlet series for 
the L-function of the elliptic curve E. The curve 36a is y2 = x3 + 1, the curve 54a is 
y2 + xy = x3 − x2 + 12x + 8, and the curve 108a is y2 = x3 + 4.

Proposition 5.3. There are no arithmetic progressions on which 27 sc9(n) and c5(n) are 
asymptotically equal up to an integral multiplicative factor.

Proof. Applying the Hasse–Weil bound for counting points on elliptic curves as in [1, 
(13)] and letting n → ∞ we have, for n �≡ 2 (mod 4), that
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27 sc9(n)
c5(3n + 9) ∼ σ(3n + 10)

σ5(3n + 10) ,

and for n ≡ 2 (mod 4)

27 sc9(n)
c5(n) ∼ σ(k)

σ5(n + 1) .

It is then enough to show that σ5 is never constant along arithmetic progressions, i.e., 
the limit is not constant. To see this, consider an arithmetic progression n ≡ m (modM). 
Let � be any prime which does not divide (3m + 10)M and for which 

(
�
5
)

= −1. For 
each prime p �= � that lies in the congruence class of the inverse of � (mod 3M) and is 
relatively prime to 5(3m + 10) we may construct n(p) = n�(p) such that

3n(p) + 10 = (3m + 10)p�.

Note that 3n(p) + 10 lies in the arithmetic progression. A straightforward calculation 
shows that if the limit exists, then

lim
p→∞

σ(3n(p) + 10)
σ5(3n(p) + 10) = ±1 + �

1 − �

∑
d|(3m+10) d∑

d|(3m+10)
(
d
5
)
d
.

Since � is arbitrary and there are infinitely many choices of � by Dirichlet’s primes in 
arithmetic progressions theorem, this is a contradiction. �
5.3. The case t ≥ 6

Anderson showed in [2, Theorem 2] that, for t ≥ 6 and n → ∞,

ct(n) = (2π) t−1
2 At(n)

t
t
2 Γ

(
t−1
2
) (

n + t2 − 1
24

) t−3
2

+ O
(
n

t−1
2

)
, (5.1)

where

At(n) :=
∑
k≥1

gcd(t,k)=1

k
1−t
2

∑
0≤h<k

gcd(h,k)=1

e

(
−hn

k

)
ψh,k

for a certain 24k-th root of unity ψh,k independent of n. As Anderson remarked, it is 
possible to show that 0.05 < At(n) < 2.62, although At varies depending on both t
and n.

In a similar vein, Alpoge showed in [1, Theorem 3] that, for r ≥ 10 odd and n → ∞, 
we have



K. Bringmann et al. / Journal of Combinatorial Theory, Series A 183 (2021) 105479 23
scr(n) = (2π) r−1
4 Ar(n)

(2r) r−1
4 Γ

(
r−1
4

) (n + r2 − 1
24

) r−1
4 −1

+ Or

(
n

r−1
8

)
, (5.2)

where

Ar(n) :=
∑

gcd(k,r)=1
k 
≡2 (mod 4)

(2, k)
r−1
2 k

1−r
4

∑
0≤h<k

gcd(h,k)=1

e

(
−hn

k

)
χh,k

with χh,k a particular 24-th root of unity independent of n. Moreover, [1, (86) and (87)]
imply that 0.14 < Ar(n) < 1.86.

Remark. Inspecting the asymptotic behaviours given in (5.1) and (5.2), it is clear that 
the only possibility of arithmetic progressions where the two asymptotics of ct(n) and 
scr(n) are integer multiples of one another is r = 2t − 1.

The following lemma provides partial results on Conjecture 1.8.

Lemma 5.4. For t ≥ 6 and t �≡ 1 (mod 6) there are no arithmetic progressions on which 
ct(n) and sc2t−1(n) are integer multiples of one another.

Proof. Using equations (5.1) and (5.2) we find that, for M1, M2, m1, m2 ∈ N,

ct(M1n + m1)
sc2t−1(M2n + m2)

∼ (4t− 2) t−1
2 At(M1n + m1)

4 t−3
2 t

t
2A2t−1(M2n + m2)

(
24(M1n + m1) + t2 − 1

) t−3
2

(6(M2n + m2) + t2 − t)
t−3
2

,

as n → ∞. Furthermore, for the two growing powers of n to be equal and cancel on arith-
metic progressions, it is not difficult to see that we must also have that t ≡ 1 (mod 6). �

To prove Conjecture 1.8 it remains to consider the cases where t ≡ 1 (mod 6). We 
easily find that for the powers of n to be equal we must have

M2 = 4M1, m2 = 4m1 + t2 − 1
6 .

It would therefore suffice to show that

(4t− 2) t−1
2 At(M1n + m1)

4 t−3
2 t

t
2A2t−1

(
4M1n + 4m1 + t2−1

6
)

is never constant as n runs. However, this appears to be a difficult problem, and we leave 
Conjecture 1.8 open.
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