DIFFERENTIAL OPERATORS ON POLAR HARMONIC MAASS FORMS
AND ELLIPTIC DUALITY
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ABSTRACT. In this paper, we study polar harmonic Maass forms of negative integral weight. Using
work of Fay, we construct Poincaré series which span the space of such forms and show that their
elliptic coefficients exhibit duality properties which are similar to the properties known for Fourier
coefficients of harmonic Maass forms and weakly holomorphic modular forms.

1. INTRODUCTION AND STATEMENT OF RESULTS

Harmonic Maass forms are smooth functions on the upper half-plane H which satisfy modularity
properties under SLg(Z), are annihilated by the associated hyperbolic weight k Laplacian, and
have at most linear exponential growth at the cusps. These naturally generalize weakly holomor-
phic modular forms, which are meromorphic modular forms whose only poles appear at cusps; in
particular, holomorphicity in H is replaced with annihilation by the hyperbolic Laplacian defined
n (2.1). Harmonic Maass forms play a major role in work on mock theta functions, singular moduli
and their real quadratic analogues, and many other applications.

Functions with properties similar to harmonic Maass forms, but with poles in the upper half-
plane, appear in a number of recent results, including work on the resolvent kernel [16], outputs of
theta lifts [4], cycle integrals [12], and Fourier coefficients of meromorphic modular forms [8, 25]. In
considering functions with poles in the upper half-plane rather than solely at the cusps, we might
expect that the behavior of such functions is similar to the behavior of harmonic Maass forms. In
this paper we study spaces of such polar harmonic Maass forms, which generalize harmonic Maass
forms in the same way that meromorphic modular forms generalize weakly holomorphic modular
forms.

From another perspective, the subspace of polar harmonic Maass forms consisting of meromor-
phic modular forms is analogous to the subspace of harmonic Maass forms consisting of weakly
holomorphic modular forms. Meromorphic modular forms have not only a Fourier expansion at
the cusp 700, but also an elliptic expansion

FR) === Y cnom)Xy() (1.1)
n>=>—oo

around each point p € H in terms of powers of X,(z) := i%g,

Maass forms have a more general elliptic expansion where the coefficients cy ,(n) may additionally
depend on 7,(2) := | X,(2)|; we give this expansion in Proposition 2.2 below.

where cy,(n) € C. Polar harmonic
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Polar harmonic Maass forms are not the only class of generalizations of harmonic Maass forms.
Locally harmonic Maass forms are obtained by relaxing the harmonicity condition to allow jump dis-
continuities on the upper half-plane. For instance, these discontinuities may appear along geodesics
associated with quadratic forms of positive discriminant, just as polar harmonic Maass forms may
have poles at CM points coming from quadratic forms of negative discriminant. Locally harmonic
Maass forms have been independently studied by Hével [21] as outputs of theta lifts in weight
zero, by Pioline [27] in the setting of string theory, and by Kohnen and two of the authors [10]
as “generating functions” of indefinite integral binary quadratic forms. Additional applications of
polar harmonic Maass forms include the following.

e In level one, divisors (sets of zeros and poles, with their orders) of modular forms can be studied
using only ordinary modular forms [13]. The obstacle in higher level is that the required mero-
morphic modular forms no longer exist; however, polar harmonic analogues can take their place
[7, 11]. These functions have weight zero and are analogous to the functions investigated in this
paper.

e Higher Green’s functions are modular functions on H x H which are smooth away from the
diagonal, where they have logarithmic singularities, and they are annihilated by the Laplace
operator in both variables. These higher Green’s functions appear as special cases of the resolvent
kernel studied by Fay [16] (see also [20] for a detailed study of these functions). Gross and
Zagier [17] conjectured that their evaluations at CM points are essentially logarithms of algebraic
numbers; there has been progress on this conjecture, see e.g. [22, 28]. In [12] two of the authors
showed jointly with von Pippich that the value of the Green’s function evaluated at CM points
is basically given by a (regularized) inner product of the functions

fa(r) =D 3" Q(r,1)7F, (1.2)

QeA

where A is an SLg(Z)-equivalence class of integral binary quadratic forms of negative discriminant
-D.

e Functions related to (1.2) (namely summing up all classes A of discriminant D) naturally occur
as outputs of theta lifts and also closely resemble the locally harmonic Maass forms appearing in
[10], except that the integral binary quadratic forms upon which one takes “generating functions”
instead have negative discriminants.

e Hardy and Ramanujan [19] considered modular forms with simple poles in SLy(Z) \ H and in
particular found a formula for the reciprocal of the Eisenstein series Fg. General formulas for
functions with simple poles were investigated by Bialek [3]. Berndt, Bialek, and Yee [2] then
investigated functions with poles of order two. All of these proofs use the Hardy—Ramanujan circle
method, but the calculation rapidly becomes more complicated with rising pole order. Using polar
harmonic Maass forms gives a powerful tool to systematically study such coefficients by writing
down explicit bases of the space and then specializing the resulting formulas to meromorphic
modular forms in special cases, as done by two of the authors [9, 12].

In addition to having similar elliptic expansions, polar harmonic Maass forms and meromorphic
modular forms of weights 2k and 2 — 2k are interconnected by certain differential operators which
naturally occur in the theory of harmonic Maass forms. Here and throughout, x is assumed to be
an arbitrary integer, and we use k instead if there is some restriction on the weight (for instance,
if we require k € N). For k € Z and k € N, set

0 1 9\t
= 2iy* D¥ = — = 1.3

Son = 207 27 0z ’ (1.3)
where z = z + iy € H. If f satisfies weight 2k modularity, then £, (f) is modular of weight 2 — 2k,

while if f satisfies weight 2 — 2k modularity, then D?*~1( f) satisfies weight 2k modularity.
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Given a polar harmonic Maass form of weight 2k, one may eliminate the singularity at ico and,
if kK > 0, also the constant term in the Fourier expansion, by subtracting an appropriate harmonic
Maass form (cf. [5, Theorem 6.10] for the existence of forms with arbitrary principal parts). This
yields a weight 2k polar harmonic cusp form, a weight 2« polar harmonic Maass form which vanishes
at 100 if kK € Ny and is bounded at ico if kK € —N. We denote the subspace of such forms by %,. A
canonical basis for this space may be defined by specifying the growth behavior near singularities
in SLo(Z)\H, which is given via principal parts at 3; see (2.11) for further details on the principal
parts which may occur. This basis is defined in (4.5) below, and we show in Theorem 1.1 that for
k € Nsi they indeed span % . Specifically, for each n € —N and 3 € H, in (4.5) we construct
the unique weight 2 — 2k polar harmonic cusp form P‘;,ka with principal part

2w;Cok—1,—n(z — 3)* 2 X} (2). (1.4)

Here wj is the size of the stabilizer of 3 in PSLy(Z) and Coi—1,—y, is the constant defined in (2.7)
below and explicitly computed as a quotient of factorials in (4.11). For n € Ny, the functions
IP’%_%,” have non-meromorphic principal parts. We describe these explicitly in Theorem 4.3 below.

To understand the behavior of the basis elements P%_Qk,n € J5_op under the differential operators
defined in (1.3), we define the subspace So, C 5, consisting of meromorphic modular forms
without poles at ¢0co, which we call meromorphic cusp forms. For each point 3 in the fundamental
domain SLo(Z)\H, we let 5 (resp. S},_) be the subspace of forms in %, (resp. Si.) with
singularities allowed only at 3. For k € N., Petersson (cf. [25, equation (5¢.3)] or [26, equation
(21)]) defined a family of meromorphic Poincaré series \If‘;kn which form a natural canonical basis
for the space Sz’Qk. Specifically, for n € —N and a point 3 € H, the function \Ifz’an is the unique
meromorphic cusp form which is orthogonal to cusp forms (see [26, Satz 8]) under a regularized
inner product defined in [26, equation (3)] and whose principal part is

2w; (2 —3) 2 XI'(2). (1.5)

As shown in the next theorem, the action of the differential operators £5_o1 and D?*~! give an
additional natural splitting of the space S‘;k into three subspaces, which we denote by D%k, E%k’ and
the space of cusp forms So;. Again using the regularization [26, equation (3)], or its extension [12,
equation (3.3)] to arbitrary meromorphic cusp forms, the subspace D}, (resp. E, ) consists of those
forms in S‘;k which are orthogonal to cusp forms and whose principal parts are linear combinations
of (1.5) with n < —2k (resp. —2k < n < 0). The families \IJ?’ka of meromorphic Poincaré series

with m < —2k or with —2k < m < 0 form bases for ID)z’Qk and Egk respectively.

Theorem 1.1. Suppose that k € Nsq.

(1) Bvery F € 91 is a linear combination of the functions from {IP’%_%W :3 € Hyn € Z}.
Moreover, if the only poles of F' in H occur at points equivalent to 3 under the action of SLa(Z),
then F is a linear combination of functions from {P}_,, —:n € Z}.

(2) If F € A3 5, then &_op(F) € Db, (resp. &o—op(F) € Sax) if and only if D*=Y(F) € Sy
(resp. D*71(F) € D3,).

(3) If F € 53 ., then &_oi(F) € B3, if and only if D**"1(F) € EJ,.

(4) Forn € Z and 3 = x + iy € H, we have

52—2]9 (]P)2272k,n> = (4y)2k_1q]%k,fnfl’

2%—1 y\2k-1
D (P%—Qk,n) = (2k —2)! <—;> W12k

Remark. As alluded to before the theorem, Theorem 1.1 (2) and Theorem 1.1 (3) naturally split
Soi into three subspaces ]D)‘;k, Egk, and So;, which are paired up as images under &;_op, and D1
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of the same subspace. There are analogous subspaces of weakly holomorphic modular forms which
are connected via these differential operators in the same manner. Specifically, the space CFEsyy
spanned by the Eisenstein series is paired with itself in the same way as the space E%k, while the
space Sor, of cusp forms is associated with its orthogonal complement inside the subspace of weakly
holomorphic modular forms which have vanishing constant terms in their Fourier expansion. This
latter space mirrors D3, .

For 31,32 € H, our next result gives a duality-type relationship between the coefficients of \IJ‘;I,C m
and those of IP";Q_ZM. To state it, for m € —N, let c"’zlk 52 (m,n) denote the nth coefficient in the
elliptic expansion (1.1) around ¢ = 32 of ¥}, . Similarly, cﬁzﬁgk7él(m,n) is the nth coefficient in

. .. . -1 .
the meromorphic part of the elliptic expansion (see (2.11)) around ¢ = 31 of C2k_1’_mIP";2_2k7m; in
other words, by (1.4) these are the coefficients of the unique weight 2 — 2k polar harmonic Maass

forms with principal parts
2w;(2 = 32X (2),
which closely resemble the principal parts (1.5) in positive weight.

Theorem 1.2. For m,n € Ny, we have

,+
02322_2k731(,m —1,n)=— 21,%2(771 —1,m).

Remark. Similar duality results for Fourier coefficients of harmonic Maass forms and weakly holo-
morphic modular forms are well-known in both integral and half-integral weight. Petersson used
such identities in his construction of a basis of meromorphic modular forms (see [25, (3a.9)], while a
systematic study of them originated from Zagier’s work on singular moduli [29]. Since then, results
have been obtained by a number of authors, including the second author and Duke in [15], and
Guerzhoy [18], among others. To give one such result, for m,n € N, take 33 = 32 = ico and let
cor(—m,n) denote the nth coefficient of the weight 2k weakly holomorphic modular form which
grows towards oo like e 2™™* and let c;rf?k(—m, n) be the nth coefficient of the holomorphic part
of the weight 2 — 2k harmonic Maass form which grows towards ioco like e=27#  Then the duality

c;_%(—n,m) = —cop(—m,n)

holds. A natural question for future investigation is whether similar duality results hold for elliptic
coefficients of harmonic Maass forms, and what they are dual to. The techniques of this paper may
be a useful starting point.

Remark. Another interesting question for future study is whether results similar to those in this
paper can also be obtained in half-integral weight. The Poincaré series may be constructed in the
same way, but to fully prove Theorem 1.1, we must differentiate 2k — 1 times. If k ¢ Z, this leaves
the challenging question of finding a half-derivative. For harmonic Maass forms, such derivatives
were constructed in [6].

The paper is organized as follows. In Section 2, we introduce polar harmonic Maass forms and
recall results from Fay, who studied related functions in [16]. In Section 3, we relate Fay’s functions
to polar harmonic Maass forms and compute the elliptic expansions of polar harmonic Maass forms,
and in Section 4 we investigate Poincaré series and prove Theorem 1.1. We conclude the paper by
proving Theorem 1.2 in Section 5.
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2. PRELIMINARIES

2.1. Basic definitions. For M = (‘Cl g) € SLy(Z), k € Z, and f : H — C, we define the usual
slash operator
Fl2eM(2) = flaw,M(2) := (cz + d) "> f(Mz).

Definition. For k € Z, a polar harmonic Maass form of weight 2k is a function F': H — C which
is real analytic outside a discrete set of points and satisfies the following conditions:

(1) For every M € SL(Z), we have F|o M = F.
(2) We have Ay (F) = 0, with Aoy the weight 2k hyperbolic Laplace operator

0? 0? d 0
Ao =~y (55 + =5 | +2iky [ +is ). 2.1
2% Yy (8m2+8y2>+ zmy<8x+zay> (2.1)
(3) For every 3 € H, there exists n € Ny such that (z — 3)"F(z) is bounded in some neighborhood
of 3.
(4) The function F has at most linear exponential growth at ico; that is, F(z) = O(eY) for some
constant C' € RT (uniform in x for y sufficiently large) as y — oo.

If (2) is replaced by Ag,(F) = AF, then F is called a polar Maass form with eigenvalue .

Denote by Hs,. the space of polar harmonic Maass forms of weight 2x. The subspace of Hak
consisting of forms that map under &, to cusp forms is denoted by Hs,."; more generally, we
add the superscript “cusp” to any subspace of Ho, to indicate the space formed by taking the
intersection of the subspace with Hg,. 7. We also use the superscript 3 to indicate the subspace of
forms whose only singularity in SLo(Z)\H appears at 3.

Although in this paper we are primarily interested in expansions of polar harmonic Maass forms
around points in the upper half-plane, for completeness and for later comparison we next recall
some properties about the Fourier expansions of polar harmonic Maass forms around ioco. These
expansions yield natural decompositions of polar harmonic Maass forms into holomorphic and non-
holomorphic parts (cf. [20, Proposition 4.3]). Namely, for a polar harmonic Maass form F' of weight
2—-2k <0andy>r 1, we have

F(z) = F"(2)+ F (2)
where, for some cf(n) € C, we define the holomorphic part F* (resp. non-holomorphic part F™)
of F' at ic0 as

Fr(z):= Z c}(n)e%mz,

n>>>—oo
F(2): = cp(0)y? 1 + Z cr(n)L(2k — 1, —4mny)e*™ " (2.2)
n<& oo
n#0

with the incomplete gamma function I'(cr, w) := [° e~*t*1dt. The sum of all of the terms which
grow towards 700 is called the principal part of F.

We next consider elliptic expansions of polar harmonic Maass forms. Rather than expansions in
e?™* the natural expansions of polar harmonic Maass forms around g are given in terms of X o(2).
We further write

d(z, 0)
2

ro(2) = tanh( ) = | X,(2)], (2.3)
with d(z, ) the hyperbolic distance between z and p. The second identity in the definition of 7,(z)
follows by the well-known formula (see [1, p. 131])
|2 — of

cosh(d(z,0)) =1+
(d(2. ) ot

5
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where throughout the paper 1 := Im(p). From (2.4), for M € SLs(Z) one also immediately obtains

the invariance
d(Mz,Mp) = d(z, o).
For 0 < Z <1 and a € N and b € Z, we also require the function
/80 (Zvaab) = B(Zaa7b) _Ca,b
where

Z
B(Z;a,b) ::/0 (1 — )P tdt

is the incomplete beta function and

Note that by [23, 8.17.7], we have

a

Z
ﬁ(Zaaab) = 72F1(a,1—b;a+1;Z),

where 9 F] is the Gauss hypergeometric function defined by

2F1(a, b; C; Z) = Z (azz)(b)n %T
n=0 n )

with (a), :=a(a+1)---(a+n —1). We often use the fact that
oF1(a,0;¢;7) = 9F1(0,b;¢; Z) = 1.

We also require the Euler transformation (see 15.8.1 of [23])

2Fi(a,b;¢,2) = (1= Z2)° " "9 Fi(c— a,c — b;c; 2).

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

The modified incomplete S-function 5y may also be written in special cases as a hypergeometric

function, as can be seen by a direct calculation.

Lemma 2.1. Assume that 0 < Z <1,a €N, and b € Z.
(1) We have

Bo(Z;a,b) = Y (“ B 1) (07 (1—Z)itb 4+ 51a§b§0<a__b1> (=) log(1 — 2).

0<j<a—1 N J J+b

J#—b

Here and throughout we use the notation §s = 1 if some property S is true and 0 otherwise.

(2) If b> 0, then

1
Bo(Z;a,b) = —5(1 — 2)’9Fi(b,1—a;1+b;1 - Z) =

—B(1—Z;b,a).

We have the following elliptic expansion of weight 2 — 2k harmonic functions, whose proof is

deferred to Section 3.

Proposition 2.2. Suppose that k € N and o € H.
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(1) If F satisfies Ag_ox(F) = 0 and for some ng € N the function 1,°(2)F(z) is bounded in
some neighborhood N around o, then there exist c;?,g(n) € C, such that for z € N and ny, :=
min(2k — 2,ng), we have

F(z) = (z—g)2“< > cf,n +ZCFQ (1—72(2);2k — 1,—n) X2(2)

n>-—ngo

+ D cpy(m)Bo (1 —r3(2);:2k = 1,—n) Xg<z)>. (2.11)
n<n
ng0mi]
(2) If F € Ha_oy, then the sum in (2.11) only runs over those n which satisfyn =k—1 (mod wy).

If F € Hy"Y,, then the second sum is empty and the third sum only runs over n < 0.

Remark. Instead of the expansion given in (2.11), one could rewrite the second sum in the shape of
the third to get a seemingly more uniform expansion. However, it is natural to split off these terms
because they have logarithmic singularities. They are also special, as we shall see in Proposition
2.3, in that they are annihilated neither by &_g; nor D?*71. Thus, they may be viewed in a
sense both as both meromorphic and non-meromorphic parts. This emulates the constant term of
the non-holomorphic part (2.2) of the expansion at ico, which is a constant multiple of y?*~1, is
annihilated by neither operator, and also exhibits a logarithmic singularity.

For F annihilated by Ag_oi (with k& € N), we define the meromorphic part of the elliptic expansion
(2.11) around ¢ by

Fi(2) = (=02 3 o, ()X0(2)

n>-—ng

and its non-meromorphic part by

Fy(2) = (2= cp, (B (1—rl(2);2k —1,—n) X}(z)
n=0

+(z=0"7 ) cp,(m)Bo (1—75(2);2k — 1, —n) Xp(2).

ng[0,ny]

The next proposition, proven in Section 3, explicitly gives the elliptic expansion under the action
of the operators &y_op and D1

Proposition 2.3. For k € N and F : H — C satisfying Ao_or(F) = 0, we have

Eaa (F(2)) = (4n)*"~( TN e, ()X, 2),
n<ng

2k—1 A —2k n+1—2k

DFFE) = (1) =2 Y brem) Xt ()
i n>—ng

and
—%cgg(n) if n <0,
bre(n) := ¢ —(2k = 2)lep (n)  if 0 < m < my,

(n+1"7'2k)'%t9( n) ifn>2k—1.

7



In addition to the operators &, and D?*~! given in (1.3), we require the classical Maass raising
and lowering operators:

2
Ry =22 + 2 and L= 222
0z y

Z
The raising operator (resp. lowering operator) increases (resp. decreases) the weight by 2. Moreover
—Ay=LoR,+k=Rg 90L. (2.12)

We also require iterated raising
R} =R, o(n-1)° -0 Rei20Ry.

For k € N, the raising operator and D?~1 are related by Bol’s identity
D7t = (—4m)t "R RIEL (2.13)
2.2. Work of Fay. In this section we recall work of Fay [16] and rewrite some of his statements in
the notation used in this paper. Fay considered functions g : H — C transforming for M = (‘C‘ g) €

SLy(Z) as
s01) = (Z29) (o).

Then f(z) := y "g(2) transforms as
f(Mz) = (cz + d)** f(2).

0? 0? 0
e g2 _ 9
De=y (8m2 + 6y2> 2my8x'

By [16, page 144], for M = (‘CL Z) € SLy(R), we have

Do ((£29) s0r2) = (Z29) e gD

Let F s denote the space of g : H — C satisfying the following conditions:

K
(1) g(Mz) = (229" g(2);
(2) Dulg) = s(s — 1)g; _ _
(3) g has at most finitely many singularities of finite order in SLy(Z)\H, where H := HUQU {ioco}.

Functions in Fj s are closely related to polar Maass forms. In order to study the relationship
between D,; acting on Fay’s functions and As,; acting on polar Maass forms, we require the following
variants of the Maass raising and lowering operators (see [16, (3)]),

Define the operator

0 0
v = Kz 1= 20y~ ’ kv = Ly = —20y— — K.
K =K, Wa +K Ly =Ly, Was — K
Note that /C,; sends Fi; s to Frq1,s and L, sends Fy, s to Fr—1,s. Moreover (see [16, (7)])
Dip=Luy1o0Ke+r(1+K)=Ke10Ls+ r(k—1). (2.14)

We also require iterated raising and lowering

K:Z = Krgn-10--0Kxy1 0K, EZ = Lytn-10---0Lgp10Lg.

We next translate these operators into the notation used in this paper and compare eigenfunctions
under these operators.

Proposition 2.4.



(1) For n € Ny, we have

K (9(2)) = y™ "Ry, (f(2)), (2.15)
L3 (9(2) =y" " L" (f(2)), (2.16)
Dy (9(2)) = —y" (Aax + k(1 = K)) f(2). (2.17)

If g € Fi s, then
Nou(f)=(s—r)(1—s—k)f. (2.18)
In particular, f is harmonic if and only if g € Frx o7 g € Fr1—r-
(2) The function g € Fi s if and only if the function f is a polar Maass form of weight 2k with
eigenvalue (s — k)(1 — s — k). In particular if g € Fi x or g € Fri1—w and grows at most like y*
for y — oo, then f € .

Proof. (1) Firstly it is not hard to see that

K (9(2)) = y™ Rau(f(2)). (2.19)
Iterating (2.19) yields (2.15). Similarly, to prove (2.16), one first shows that
L (9(2) = y" ' L(f(2)). (2.20)

One then obtains (2.16) inductively. The eigenfunction property (2.17) then follows using (2.14),
(2.20), (2.19), and (2.12). To prove (2.18), suppose that g € F, ;. Then, by (2.17), we have

0="Dy(g(2)) — s(s = 1)g(2) = =y Dax (f(2)) — k(1 = K)Y" f(z) — s(s = 1)y" f(2).
(2) Part (1) implies that the eigenfunction properties of f and g are equivalent. Comparing the
singularities of both functions then yields the claim. O

Fay then considered a natural family of functions which behave well under his differential oper-
ators when multiplied by ¢™% (%) with 6,(z) € R satisfying X;(2) = r;(2)e?%(*). For s € C, k € R,
and z,3 € H, these are given by (see [16, p. 147], slightly modified)

Pro(z3) = Pl(ry(2))  and Q7 (z,3) = QN .(r;(2)),

with
73;17,{(7’) L (1 — r2)s o (s —sgn*(n)k, s + sgn*(n)k + |nl; 1 + ]n\;rQ) , (2.21)
" D(s — sgn* (Wm)T(s + s’ (s + 1) _py 1 v
n R n(] —
QS,N(T) 47TF(28) r ( r )
x oFy (s + sgn*(n)k, s — sgn*(n)k — |n|; 2s;1 — T2) , (2.22)

where for n € Z we set sgn*(n) := sgn(n + 1/2).
These functions are meromorphic in s with at most simple poles at s € +x — Ny and satisfy
certain useful relations. Directly from the definitions (2.21) and (2.22), one obtains

Pin(2,3) =P 2u(28),  Qnl(23) = Q. "0(2:3).
Moreover, for t € R we have
Pi(z,3), Qnlz3) € R
The special values of P and Q in the cases s = kK and s = 1 — k play an important role in our
investigation. To describe these, we set

(—4)"1 [n! ifn >0,
== K = —2k—n . 2'23
n = Grn T 7F§}(1325) ) ifn <. ( )

In the next section, we prove the following lemma.
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Lemma 2.5. (1) For k € —Ny, we have

k(23 - n inb;(z) _ (_4y)1€ n 1 /Lfn >0,
P ) W= = X
4 <3 — z) Tor(2:3)e (z —3)% 3 (2) nBo (1 — 7“32(2); 1— 2k, —n) if n <0,
(2.24)
. _3 o n ind;(z anyﬁ 2 . n
Yy (5 — Z) 1—}1,/@(273)6 i) = Wﬁ (1 -7 (Z)a 1 — 2k, _n) Xﬁ (Z) (225)
(2) For k € N and n € —N, we have
w7273 - n inf;(z) _ _(_n — 1)‘ (_4y)n bed 2.96
r(222) et L ), (2.26)
(3) For k € N and n € Ny, we have
: y " Z=3 - n inb;(z) _ (2’% tn— 1)' (_4}5/)N n
1 W= — X . 2.27
P I'(s — k) <3 — z> Qunl2:3)e An(26 — 1)1 (z —3)% 3 () (2:27)

We next define certain Poincaré series considered by Fay. For this, we set (see [16, (44)], slightly
modified)

Gl (z:8) =y Y gl (58 gy M (2.28)
MeSLy(2)
with
o (\n 1 ) ) if mn >0,
A {?Ezi:gﬁ*zziziﬁeﬂzg—;ﬁaf:ﬁzi £ <0, 220
where ¢ := min (|m/, |n|) and
_\ K+n
)= (A2) Qe e, (2.30)

Remarks.

(1) Note that if c52;"? = 0, then we multiply both sides of (2.28) by an appropriate factor to cancel
the simple poles occurring in the I'-factors and then take the limit, as in Lemma 2.5 (3).
(2) The functions G, " satisfy the symmetry relations

mi,n1
Cs .
mi,m1 __ sR1 ma,mn9 _ —
o™ = FmsGsrm if K1 +n1 = Ko +no and My + n1 = Mo + no, (2.31)
8,K2
27/17”1
mi,ni1 S,K1 gm27n2

skt = iz s ey if kK1 +n1 = —ko —ng and my +n1 = —mg — no. (2.32)

S,K2
Fay related these functions to the resolvent kernel G , := QSO”S.

Theorem 2.6. (Fay [16, Theorem 2.1]) For Re(s) > 1,5 +— Gov'(2,3) € Fortms and z +
Gor'(2,3) € Frins- We have, for m,n € Ny,

G (2,8) = KT o Ky (Gsn(2,3)) -
If m or n <0, then we replace ICzw by LZZ}.

Fay also considered elliptic expansions of functions in F .
10



Proposition 2.7. (Fay [16, Theorem 1.1]) If Dy (g) = s(s—1)g in some annulus A : r1 < d(z,0) <
ro around o € H, then g has an elliptic expansion of the shape

g(z) = <Z — Q>_ Z (Cg(n)P;fn(z, 0) + do(n) Q% (2, Q)) oinbo(2)

-z
9 nez

The proof of Proposition 2.2, which we give in the next section, mostly relies on rewriting Fay’s
3 n n
functions P¢, and QF .
3. SPECIAL FUNCTIONS AND ELLIPTIC EXPANSIONS

To prove Proposition 2.2 we write the elliptic expansion in terms of Fay’s, which is done in
Lemma 2.5 (1).

Proof of Lemma 2.5. (1) Throughout, we use the fact that, with r := r;(2), we have

-\ —K
_ zZ—3 —\—
(G220 = canrem g (3.1)
For n > 0, equation (2.24) follows from the definition, using (2.10), (2.9), and (3.1). If n <0 then,
using (2.10), (3.1), and abbreviating X := X,(z) = re? with 6 := 6,(2), the left-hand side of (2.24)
equals
(—4y)" X"(z —3) "2 r " F (—n,2k;1 — nyr?)

Since 2k < 0 and —n > 0, the claim follows from Lemma 2.1 (2).

We next prove (2.25). The claim for n > 0 follows from the definition using (2.10), (2.8), and
(3.1). For n < 0, the claim follows by (2.8) and (3.1).
(2) From the definition of QF . (2,3), the left-hand side of (2.26) equals

F(2H)P(_n) —K Z_g " n 2\ K 2 ind
- 1-— (0,2 12k 1 — me.
4T (2r) Y o T ( r) 2 1(, K+ n; 2K; r)e

Once again using re?’ = X and (2.9), we obtain
(—n—l)! _ Z—g R 2\ K
AT R e (2T xn (1 2)R
47 4 3—Z ( " )
By (3.1), we then obtain the claim.
(3) The left-hand side of (2.27) equals

Mim I(s—r)(s+K+n) _,.[(z2—3
s—r  I'(s — k)4n[(2s) 3—Z

—K
> r " (1 — 7"2)3 oI (s +K,8§—K—n;281— 7’2) e,
Canceling I'(s — k), using X = re', taking the limit, employing (3.1), and plugging in the definition

of the oF, we obtain

I'(2k +n)(—4y)" L Xn
o ( 47TF<)2</-{) ) (z—-3) 2“@25 (2%, —n;2k;1 — 1"2), (3.2)

We obtain the desired identity by using 15.4.6 of [23] to evaluate

o F1 (2%, —n;2K;1 — r2) = 2",

O

We next combine Lemma 2.5 (1) with Fay’s elliptic expansion in Proposition 2.7 to obtain
Proposition 2.2.
11



Proof of Proposition 2.2. With G(z) := y"F(z), we have, by (2.17),
D (G(2)) = =y A9y (F(2)) — k(1 — K)G(z) = k(k — 1)G(2)
since Ay, (F) = 0 by assumption. Thus, by Proposition 2.7 with s = 1 — &,

Gz) = (z = Q) Y ()P (2, 0) + dol(m) Q2. 0)) L.

—Z
0 ne

By Lemma 2.5 (1) and (2.6), this gives
F(z)= (=027 ) ap(m)Xy(2) + TN ve(m)Bo (1= r5(2); 1 — 28, —n) X3(2).
nez nes

for some constants a,(n),v,(n) € C. Rewriting yields the expansion (2.11) up to the restrictions
on n in each of the sums. It thus remains to show that c},ﬁg(n) =0 for n < —ngp and c;g(n) =0
for n > ng. To do so, we investigate the asymptotic growth of each term in the sum as z — . We

repeatedly use the fact that, as z — 0, X,(2) ~, 2z — o, where by G1(z,0) ~, G2(z,0) we mean

that there is a constant C, # 0 depending only on 7 such that lim,., % = 1. This gives

that n > —ng for the first summand in (2.11).
Moreover, by Lemma 2.1,

_ _1)J+1 . —
Bo (1 — 721 — 2k, —n) = Z < 2,{> (.LT%]#L) + 250<n<_2,§< ?f) (—1)""log (r).

osjs—2x N /T
i#n
Thus, again using X} (2) ~, (z — 0)", we have, as z — o,
Bo (1= r2(2); 1 — 25, 1) X2(2) ~y 732 (2) X2(2) + o2 108 (15(2)) X2(2)
n (2= 0)7" + do<n<—2x(z — 0)" Log(z — o). (3.3)

Furthermore, for 0 < n < n,, since X;(2) — 0 as z — o, the asymptotic in (3.3) implies that we
also have

B(1- rg(z); 1 -2k, —n) X;(2) = Bo(1 — ré(z); 1 =2k, —n) X7 (2) + C1-2s,n X (2) ~p (2 —0) "

This gives the claimed bounds for n # 0. Finally the n = 0 term behaves like Log(z — p) by (3.3).
This growth is cancelled upon multiplying by 7,° (2).
(2) By (2.3) and (2.5), for M in the stabilizer I', C SLa(Z) of M

ro(Mz) = rpo(Mz) =1,(2). (3.4)

One concludes the claim by [25, (2a.16)].
O

We next compute the action of differential operators on elliptic expansions in Proposition 2.2.
Proof of Proposition 2.3. We first note that, by Proposition 2.4 (1),
D H(F(2)) = (—4m)' 2y PPN (G() - (3.5)
We rewrite the right-hand side of (3.5) in terms of the iterated operators (for £ € Ny and « € Z)
KL =Kapernire0--0Kun, L, = Lep1tnie10 0Ly,
where (see [16, after formula (18)])



Namely, using (see [16, (14)]) that for f: R — C

. ((g “2) 1) emw)

N\ —k—1 .
= -0 —i0o(2) 1 _ 2 g _ _ 2ir ﬁ inf
(Q—z> ‘ {<2(1 Var T 1o20) T,

6=0,(2)

and iteratively carrying out the differentiation on 6 yields

K (( ‘Q>_Rf<rg<z>>e""%<z>) (D) e 'L )] @9

0—% 0% r=ro(2)

By (3.5) and (2.24), we thus have, for n > 0,

N\ k-1
— —\2k— n — — - - Z = n nby(z
DE (2 =27 X3(2)) = (—dm) =2y~ (—am)* KL <(Q _5) Pr1r(z, o)™ >>
—\ —k
—(_p\12k, —k [Z 0 i(n+1-2k)0,(2) (4. \k—1 [526—1 (DHn
(—am)' =2y <Q__Z> e O () R (Prase)] (3.7)
By [16, (18)], we know that
R (PLa(r)) = esnm)Pti (7). (38)
Rion (Q(r)) = doe(m) Q41 (r), (3.9)
where
n ifn>1, —(s+kK)(s—Kk—1) ifn>1,
5,k = s+kK)(s—Kk— . ds = .
Con(n) {<><+|> ifn <0, ") {_1 it n <0,
Plugging (3.8) into the right-hand side of (3.7) simplifies to
2k—1 ) o _~\ Kk—1
Hj:l 5k,]:k(n +1 - ]) N —g ei(n+1—2k)09(z)7)’7€12172k(Z’ Q)~ (310)
(—dm)2k=t(—dn)t =+ 0-% :

We split into the cases n > 2k — 1 and n < 2k — 1.
For n > 2k — 1 we have, using (2.9),

Pitt M (z,0) = 1 (@) (1= 12(2)) 2P (0,1 4+ mim 4+ 2= 2k (2)) = 1t () (1 - 12(2) "
Thus (3.10) becomes, using that 7,(2)e?e(*) = X,(z) and (3.1),
2%k—1
7T1—2k,’721c—1 H ek,j—k’(n +1— ])(Z _ @)_ZkX;H—l_Qk(Z).
j=1

Explicitly computing the constant then finishes the claim for n > 2k — 1. For 0 < n < 2k — 2, we
have ey y—1(n + 2k — 2) = 0, giving the claim in this range.
We next act by D?*~! on the non-meromorphic part of F. First assume that n ¢ [0,2k — 2]. By
Lemma 2.1 (1), we then have, using that r2(z) = X,(2)X,(2),
2k — 2) (—1)7+!
J

(=)™ 2Bo(1—r3(2):2k — L—n) Xp(z) = > ( (:=)* X)X} " (2).
0<j<2k—2
13
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This is a polynomial in z of degree at most 2k — 2 (with antiholomorphic coefficients depending on
z). Differentiating 2k — 1 times hence annihilates these terms.

It remains to determine the image of D%~ on the terms in the non-meromorphic part with
0 <n <2k —2. Using (2.25), (3.5), (3.6), (3.9), and (2.26), we obtain that

ka_l <(z — @)2k—26(1 - 7’3(2); 2k — 1, —n) Xg(z))

C@k=2—n) [ k(1= )
- an(_47r)2k771—2k(_4)—k

(= — ) X2 (s).

Computing
2k—1
. n!(2k — 2)!
du i 1 )= e A
j[[l U T,y
and plugging in (2.23), noting that n > 0, yields the claimed formula. O

4. POINCARE SERIES AND THE PROOF OF THEOREM 1.1
For 3 e H, n € Z, and k£ > 1, we define the meromorphic Poincaré series, due to Petersson,

Vo (2) = Von(2,3) = D V()] M, (4.1)
MeSLs(Z)
where
~—2k
S (2) = Varn(2,3) = (2 = 3) X (2).

We use the convention that 3 appears as a superscript in the notation if we consider 3 € H as a
fixed point and we write it as a two-variable function if we consider the properties in the 3-variable.
The main properties of \113% ,, needed for this paper are given in the proposition below.

Proposition 4.1. (Petersson [26, Sétze 7 and 8] and [24, Satz 7]) The functions {¥3, 3 €
H,n € Z} (resp. {¥%, . :n € Z}) span So, (resp. Si;.). Forn >0 they are cusp forms. Forn <0
they are orthogonal to cusp forms and have the principal part 2w,y n(2,3) around z = 3.
Remarks.

(1) By Proposition 4.1, the elliptic expansion of \Ifﬁzkn around p € H may be written

W, (2) = (2= 2) 7" | 2001 0nc0 X} (2) + >y, ,(n. OX5(2) | | (4.2)
>0

where [3] denotes the SLy(Z)-equivalence class of 3.
(2) As pointed out in [25, page 72], 3 — y2k+”ﬁ/%k7n(z) is modular of weight —2k — 2n. Moreover,
it is an eigenfunction under A_sy_o, ; with eigenvalue (2k +n)(n + 1).

We next write W as a special case of Fay’s function G. We set

G {n!(Qk —2)1 ifn >0,
! (2k—2—n)! ifn<O0.
Lemma 4.2.
(1) We have
i 0774 9 = T g o)
Im G, e ; 12k

14



(2) If n € Ny, then
(—4yy)"*

4 nl‘l’%k,—n—l(z)'

g;;’li—l(zuz) =
If n € =N, then

. n,1 _ (—4yy)* 2k —2 —n)! 3
ig\f}g gs’kfl(zvﬁ) - A (2/€ - 2)! 2k,fn71(z)'

Proof. (1) By inspecting the definitions (2.28) and (4.1) the claim follows once we show that

I n2k—1 k —n2k—1 _ (—yy)* S D 4
im (e 7% v 9,15 (2,3) = ar (2 —3) kon . (4.3)

s—k

By definition (2.30), we have

—\ k
—n,2k— - . — i(n—
957?_2]6 1(2’3) =y k < > Q27k2k+1(2,3)62(n 2k+1)9‘

Z—=3
If n < 2k — 1, then we may plug in s = k directly and then use Lemma 2.5 (2) to obtain
2k 2k —2—mn)! _
1; n,2k—1 _ _ ( 4 ki, —Qan—Qk-i-l.
limg, 7y (28) = = (~4y)"( —3)
For n < 0, we have cl;?fllj_l = (—1) implying (4.3) in this case.
For 0 < n < 2k — 1, we obtain (4.3) for n < 2k — 1, computing
—n,2k—1 n!(2k - 2)!
c =
k.1=k (2k —n —2)!

If n > 2k — 1, then ¢ = 2k — 1 in (2.29) and we use Lemma 2.5 (3) (replacing n by n — 2k + 1)
to obtain the desired formula.
(2) By (2.31), we have

n,1

1 Csk—1 122k 2k—1
Ge1(2:3) = - mr o191k (2,3)- (4.4)
s,1—k
For n > 0, we may then directly plug in s = k and use (1) to obtain the claim by simplifying, with

n—k—2-—n,
n,1
Cr k-1
n+2—2k,2k—1
k,1—k

For n < 0, we use (1) to obtain, by (4.4),

limg_,p (F(s — k:)cZ’,i_l)
, lim G221

. n+2—2k,2k—1 Lo si1—k
limg_p, (F(s - k)cs,pk ) s—

Crok—2-n =nl.

. 1
lim G0 (2,3) =

. ’1
o limeyg (F(s - k)cz,k—1) (—4yy)*
—— (F(s B k)cz’-{z;%,%—l) 4

We then plug in (2.29) and take the limit to obtain the claim. O

Crak—2-n Y 1 (2)-

Next define for n € Z the following polar harmonic Maass Poincaré series

P opn(2) = Paopn(z,3) := Z @ okn(?) ookl M, (4.5)
MESLa(Z) ’
15




with, using (2.25),

O _oen(2) = 02 2km(2,3) 1= (2 =328 (1 = r}(2);2k — 1, —n) X]'(2) (4.6)
k—1, k-1 7\ k-1
Yy Y Z—3 n inb;(z)
= < Or1_1.(z,3)em"s\#),
a1—rom (5 — Z) k1 k(2,3)

The following more precise version of Theorem 1.1 shows how the functions P} _,,  are related
to the functions U3,  via differential operators.

Theorem 4.3. Assume k € Nxi. The functions {P_,, 3 €H, ne€Z} (resp. {P_,,, :n€Z})
span the space 5o (resp. %ﬁ—%)' Moreover

D1 (]P"; ok n) = —(2k - 2)! (%)%7 Ty, H1—2k (4.7)

§a—2k (Pg an> = (4Y)2k 1\11(;]{ —n—1* (4'8)

The functions ]13"”2_2,C ,, vanish unless n =k —1 (mod w;), in which case their principal parts equal

Bo(1—r(2);2k—1,—n) ifn>2k—2,
2w;(z — 3 PXP(2) S B(1—72(2);2k — 1,—n)  if0<n < 2k—2,
Cok—1,—n if n <.

Remarks.

(1) Tt is also natural to ask about the properties of 3 — P} ,, (z) for fixed z. To investigate this,
note that by a comparison of definitions (4.5) and (2.28), we find that
)k: 1

Yy
By () = &

m,0 4.9
41— gk1 k(z 3)s (4.9)

with aq_g . given in (2.23), and we evaluate c,jf’ok = 1 via (2.29). Combining this with Theorem
2.6, one can conclude that the function 3 + y™+2- 2kIP"; 2,m( z) has weight 2k — 2 — 2n and
eigenvalue (n 4 1)(n + 2 — 2k) under Agy_o_2p ;.

(2) By Theorem 4.3 and Proposition 2.2, one may write the elliptic expansion of P _,, = around o
for n < 0 and 3 € H as

P) o (2) = Cak-1,-n (2 — 0™ (2%5[9 =X (2) + Z ok, o105 ) Xo(2)
>0
+ 3 A (0 0B (1= 12(2); 2k — 1,—0) Xﬁ(z)>. (4.10)
<0

Furthermore, using (2.7), Lemma 2.1 (1), and then Lemma 2.1 (2) yields
(—n — 1)I(2k — 2)!
(2k—2—mn)!

Copt,—n = B(1;—n, 2k — 1) = B(—n, 2k — 1) = (4.11)

giving the constant in (1.4) in terms of factorials.

Proof of Theorem 4.3. Using (2.28), we conclude that IP’Z’Q_ka satisfies weight 2 — 2k modularity.
The principal part of IP";_%’R around 3 comes from the terms M € T'; in (4.5). Vanishing of the

principal part for n # k — 1 (mod w;) follows from (3.4) together with [25, (2a.16)]. For n =k — 1

(mod w;), this yields 2“’590%—%,71' For 0 < n < 2k — 2, this directly yields the principal part. For

n > 2k—2 orn < 0, we rewrite the incomplete beta function using (2.6) and note that for n > 2k—2
16



only the non-meromorphic part grows as z approaches 3, while for n < 0 only the meromorphic
part grows.
Since every possible principal part in the elliptic expansion of an element of % ,, is obtained as

a linear combination of the Poincaré series IP";_Q/,C ,(n € Z), these span the space %”22’_%. Moreover,
eliminating the principal parts at different pointé in H one at a time implies that the space % _oy
is spanned by {IP’%_%W :3€H, neZ}.

We next compute the image of the Poincaré series under D?*~!. Using (4.9) and (2.15), we
obtain

-1,k
_ YUy
B (B () = =K (6.15(29)) (4.12)
Using Theorem 2.6 twice, we then find that
n,2k—1
K%kklz (gkl k(% 5)) = hm gsl ko (2:3)

We next employ Lemma 4.2 (1) and plug back into (4.12), yielding
3 (_4)ky2k—1cgk
Rglizii (P% 2k (% )> - -

47ra17k,n
We then plug in the definitions of Cy, and aj_g , and use (2.13) to conclude (4.7).
It remains to compute the image under &_of. Firstly, by Proposition 2.4 (1), with f : H — C,
we have

\Ila2k n+l— Zk( )

b (f(2) =y L (f(2) =y "Lk (v (2)).
Using (4.9) and (2.29) thus gives

k—1

§a—ok (]P’2 ok (Z )) =7 YLy g (Q,;?’Pk(zaé))-

a1—k,n

Now by Theorem 2.6, we have

gk*nvo (2,3) = ‘szl,g (Gr1-k(2,3)) if n >0,
’ Ky, (Gri-k(2,3)) ifn <O0.

Again using Theorem 2.6 and then applying (2.32) gives

—no e 1
ﬁl—k,z (gkﬁh—]@(zaz)) = ;I—I}}c gsjlnik (273) = ;I_I}}ﬁ gsjk_l(zaﬁ)'
For n > 0, we then use Lemma 4.2 (2) to obtain

y* ! (—dy)*
a1—kn 4w

a2k (P‘;_gk,n(z)> = W 1 (2).
We then simplify the factor in front using (2.23) to obtain the claim for n > 0. For n < 0, we use
Lemma 4.2 (2) to obtain that

k=1 (—4y)* (2k — 2 —n)!

o (P ): Y N3 .
&2 2k< 5ok (2) P 2k — 2)! 2h,—n—1(2)

Simplifying the constant yields the claim.

We may now combine the results in this section to obtain Theorem 1.1.
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Proof of Theorem 1.1. (1) Part (1) is the first statement in Theorem 4.3.

(2) The claim follows from (4.8) and (4.7) together with the fact that \I/‘;km € Sy if and only if
n > 0 and \I/‘;,m € D‘;k if and only if n < —2k. These claims about \I/‘;kn follow in turn from the
principal parts and orthogonality given in Proposition 4.1.

(3) This follows by (4.8), (4.7), and Proposition 4.1, since \I/‘;kn € B3, if and only if —2k <n <O0.

(4) The statements given here are precisely (4.8) and (4.7).
O

5. DUALITY, ORTHOGONALITY, AND THE PROOF OF THEOREM 1.2

5.1. Definition of the inner product. Petersson defined a regularized inner product (see [26, p.
34]) for meromorphic modular forms by taking the Cauchy principal value of the naive definition.
More precisely, suppose that all of the poles of f, g € Sox in SLo(Z)\H are at the points 31,..., 3,
where we abuse notation to allow 3, to denote both the coset [3¢] is SLa(Z) \ H as well as its
representative 3, € H. Petersson constructed a punctured fundamental domain (¢ > 0)

l
‘7::1,...,6," = fél,al),...,(gr,ar) = ]:*\ U B€j (3j) )

j=1

where F* is a fundamental domain with 3, in the interior of I';,7* and B.(3) is the ball around j
of hyperbolic radius ¢ (see (2.4)). He then defined the reqularized inner product between f and g

(f,g) == lim f<z>g<z>y2kdf/§y,

E1yery€r—0 Fr
1

and explicitly determined (see [26, (6)]) that this regularization converges if and only if for alln < 0
and p € H

co(n)cgo(n) = 0.
5.2. Proof of Theorem 1.2: Duality for meromorphic cusp forms.

Proof of Theorem 1.2. The basic idea is to use the fact that, by Proposition 4.1, \Ilékn is orthogonal
to cusp forms for n < 0 and then compute the inner product in a second way, evaluating it as the
sum of two elliptic coefficients. This method was used by Guerzhoy [18] to obtain duality results for
Fourier coefficients of weakly holomorphic modular forms. In order to evaluate the inner product
of meromorphic cusp forms as a sum of elliptic coefficients, we mimic calculations given in [14,
Theorem 4.1] and [12].

To begin, for 31,32 € H and n < 0 < m, we use Theorem 4.3 to compute, using Stokes’ Theorem,

_ok
0= (Wi, U5, ) =(4y2) 2 (i 6 o (PY o i) (5.1)

Rewriting

52*2]4 (P322—2k,—m—1(z)> = y_QkL272k <P322_2k’_m_1> s

(5.1) becomes
dxdy
v

i 31 32
lim N \IIQk,n(Z)LQ—Qk (P2—2k,—m—1(z))
€1,e2—07 J F*

(31-61),(32,67)

18



Stokes’ Theorem together with invariance of the integrand under the action of SLy(Z) then yields

— lim \113227n(z)P2’22_2k’_m_1(2)dz

—0t o
ot 98¢, (31)0}—(&1751)7(32752)

— 05,]450] lim W (2)PR L, . (2)dz,

o7 c2=0% 0Bz, (52)ﬁf{31,51),(32,52) " o
where 9B:(3) denotes the boundary of B:(3). The differential ¥,  (2)P¥ ,, .
under I';;, and hence we may extend the integrals to precisely one copy of B, (3j), obtaining

(z)dz is invariant

1 05,4
0= —T (1) + 72T (5) (5.2)
(/J51 (/J32
where
J (o) := lim \Ilz’Qlkm(z)sz’_%’_m_l(z)dz.

e—0t 9B (o)

Note that 7,(2) = € for z € 0B(p). Hence, plugging in the elliptic expansions (4.2) around o = j;,
of W3, ~and (4.10) of P ,, | we evaluate

20y, 0= X" + D B p(m, X (2%25[@1[321)( o
>0

+ Y A (m = LOX 4D AR (—m = 1,080(1 - €% 2k — 1, ) Xf> dz,
>0 <0

where we abbreviate X = X,(z) and r = r,(z). The integral gives 2mi times the residue of the
integrand at z = p, yielding

J(0) = 2miCok—1,m+1 <2w315[Q]=[3110522—7;—k,g(_m — 1, =0 — 1) + 2w3, 0[5 [;] Oy o (1, M)
+Y A (0, (—m—1,—L—1) lim Bo(l—e*2k—1,0+1) )
>0

However, Lemma 2.1 (1) implies that as, ¢ — 0,

Bo(l—e%2k — 1,0+ 1) <« 22
so that for £+ 1 >0

;%50(1 —e%2k—1,0+1)=0.
Therefore

T (0) = 4miCartmi1 (05 0gmp by (=1 = 1= = 1) + byl ,(n,m))
Plugging back into (5.2) yields
AmiCok—1,m+1 (C%Q_’Jgrml (=m—1,—n—1)+c . (n, m)) = 0.

This gives the claim after the change of variables n — —n — 1.
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Remark. The orthogonality to cusp forms shown by Petersson can also be reproven directly either

by rewriting \Il‘;lk , as a constant multiple of fg,gk(IP";l_Qk _p_1) Or rewriting pi2

km a5 @ constant

multiple of D2k71(]P>272k7m+2k71)~

[1]
2]

(26]
27]

(28]
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