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POLAR HARMONIC MAASS FORMS AND THEIR APPLICATIONS

KATHRIN BRINGMANN AND BEN KANE

Abstract. In this survey, we present recent results of the authors about non-meromorphic modular
objects known as polar harmonic Maass forms. These include the computation of Fourier coefficients
of meromorphic modular forms and relations between inner products of meromorphic modular forms
and higher Green’s functions evaluated at CM-points.

1. Introduction

While investigating the Doi-Naganuma lift, Zagier [46] encountered interesting weight 2k cusp
forms (z ∈ H, k ∈ N≥2, δ ∈ N)

fk,δ(z) :=
∑

Q∈Qδ

Q(z, 1)−k, (1.1)

where Qδ is the set of integral binary quadratic forms of discriminant δ. These cusp forms were
then used by Kohnen and Zagier [33] to construct a kernel function for the Shimura and Shintani
lifts between integral and half-integral weight cusp forms. Integrating the resulting theta function
against half-integral weight (parabolic) Poincaré series then yields the functions fk,δ as theta lifts.
Kramer [34] showed that related cusp forms fk,δ,[Q], defined by restricting the sum in (1.1) to those
Q in a fixed SL2(Z)-equivalence class [Q], span the space of weight 2k cusp forms. These fk,δ,[Q]

may also be viewed as (hyperbolic) Poincaré series which appeared in [38]; a good overview of these
Poincaré series and their connection to fk,δ,[Q] may be found in [30].

Choosing the discriminant to be negative instead, Bengoechea [3], in her thesis, constructed
meromorphic modular forms with poles at CM-points. To describe these, for a positive-definite
integral binary quadratic form Q of discriminant −D < 0, define

fQ(z) = fk,−D,[Q](z) := D
k
2

∑

Q∈[Q]

Q(z, 1)−k.

The fQ are meromorphic cusp forms, i.e., meromorphic modular forms which vanish towards
infinity like cusp forms. Given the connection between (1.1) and theta lifts, von Pippich and the
authors [12] investigated the interrelation between theta lifts and the sum

fk,−D :=
∑

Q∈Q−D/SL2(Z)

fk,−D,[Q]
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over all equivalence classes of (not necessarily positive-definite) Q−D/SL2(Z). Here a regularized
theta lift is required. In Theorem 6.1, we see that the singularities at the cusps are turned into sin-
gularities in the upper half-plane under this lift. A related construction of certain non-meromorphic
modular forms yield analogous results. To state these, one defines weight 2− 2k non-meromorphic
modular forms

GQ(z) = G1−k,−D,[Q](z) := D
1−k
2

∑

Q∈[Q]

Q(z, 1)k−1

∫ artanh
(√

D
Qz

)

0
sinh2k−2(θ)dθ, (1.2)

where for Q = [a, b, c] and z = x+ iy

Qz := y−1
(

a|z|2 + bx+ c
)

.

There are analogous so-called locally harmonic Maass forms which occurred in work of Hövel [28]
for weight 0 and in work of Kohnen and the authors [11] for negative weight.

The functions GQ also show up as outputs of a theta lift (see Theorem 6.2) with inputs half-
integral weight harmonic Maass forms with non-holomorphic principal parts at i∞. Furthermore,
the associated theta kernel is closely related to that used to obtain fk,−D, and the analogous theta
kernel for the omitted case k = 1, which appeared in [28], was used by Alfes, Griffin, Ono, and
Rolen [1] to construct a lift in the other direction, from integral to half-integral weight.

The functions GQ are also related to fQ via two differential operators from the theory of harmonic
Maass forms (see Theorem 6.3), which implies that they are what is known as polar harmonic Maass
forms, the central objects in this article (see Section 2 for the definition). In addition, the functions
GQ reappear when taking inner products of fQ against meromorphic cusp forms (see Theorem 6.4).
Moreover, it turns out that the inner product of two of these meromorphic cusp forms agrees with
the evaluation of higher Green’s functions at CM-points (see Theorem 6.6). This also yields an
identity between these inner products and heights of CM-cycles (see Corollary 6.7).

We next turn to Fourier coefficients of meromorphic forms. Before describing these, we first
recall what is known for weakly holomorphic modular forms. In work which gave birth to the
Circle Method, Hardy and Ramanujan [23, 24] derived their famous asymptotic formula for the
partition function p(n) (see (5.1)). Rademacher [43] later perfected the method to derive an exact
formula (see (5.2)). A key ingredient of the proof of (5.2) is the fact that the partition generating
function is essentially the reciprocal of a modular form with no roots in the upper half-plane, but
which vanishes at the cusp i∞ instead.

Using modern techniques, a new formula for p(n) as a (finite) trace of a certain weak Maass form
evaluated at CM points of discriminant 1− 24n modulo the action of Γ0(6) was recently proven by
Bruinier and Ono [18]. Much in the same way that the sum (5.2) restricted to k ≪ √

n gives a very
good asymptotic approximation to p(n), Masri [35] used Bruinier and Ono’s result to obtain a good
asymptotic approximation to p(n) with a shorter sum. The results above are not limited to the
partition function and rather follow from a general structure for harmonic Maass forms. Returning
to Rademacher’s formula (5.2), one sees that this is also part of a much more generic family of
identities. Rademacher and Zuckerman [44, 51, 52] generalized (5.2) to obtain exact formulas
for the coefficients of all weakly holomorphic modular forms of negative weight. Their formulas
are explicit in the sense that one only requires the principal part of a given weakly holomorphic
form. Conversely, one may ask whether one can detect modularity of a given Fourier expansion
merely by showing that it has the same shape of Rademacher and Zuckerman’s. However, Knopp
[31] determined that this was insufficient. Viewed in a modern setting, Knopp found examples
of such expansions which were only the holomorphic parts of harmonic Maass forms. Moreover,
using a basis (3.2) of harmonic Maass forms with the simplest principal parts, one can show that
the holomorphic parts of Fourier coefficients of all harmonic Maass forms have the same shape
as Rademacher and Zuckerman’s expansions [15]. The realization of the mock theta functions,
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mysterious functions introduced in Ramanujan’s last letter to Hardy, as holomorphic parts of
harmonic Maass forms by Zwegers [53] also implies that the coefficients of these have the same
shape. This approach was used in [14] to prove the Andrews–Dragonette conjecture [2, 20] about
one of Ramanujan’s mock theta functions.

Until recently much less was known about Fourier coefficients of meromorphic cusp forms. Hardy
and Ramanujan [25] considered the special case where the form has a unique simple pole modulo the
action of SL2(Z). In particular, they found a formula for the reciprocal of the weight 6 Eisenstein
series E6. Ramanujan [42] then stated further formulas for other meromorphic functions, such as
the reciprocal for E4 (see (5.3) for his formula), but, as usual for his writing, did not provide a
proof. His claims concerning meromorphic cusp forms with simple poles were then subsequently
proven by Bialek in his Ph.D. thesis written under Berndt [4]. Berndt, Bialek, and Yee [5] were
first to explicitly compute the Fourier coefficients of meromorphic cusp forms with second-order
poles, resolving the last of Ramanujan’s claims about the coefficients of meromorphic cusp forms.
The investigations in [4, 5, 25] all used the Circle Method, but the calculations become exceedingly
more difficult as the order of the poles increase. More recently, Sebbar and Sebbar [45] related
these meromorphic cusp forms with simple poles to equivariant functions and obtained the Fourier
expansion in another form. An alternate approach of Petersson [39] employs Poincaré series to yield
formulas resembling those of Hardy and Ramanujan if the poles are all simple. Combining this idea
with the construction of new Poincaré series and embedding the problem into the framework of
polar harmonic Maass forms, we see in Theorem 5.1 that the Fourier coefficients of all meromorphic
cusp forms indeed have the same shape. For example, if the only pole in SL2(Z)\H is at an elliptic
fixed point, then the coefficients may be written as a series over certain ideals (see (5.4)). This
result is explicit in the sense that the Fourier expansion is directly given for a set of basis elements of
a certain subspace of polar harmonic Maass forms. One may again obtain a more general formula
for the holomorphic parts of polar harmonic Maass forms and the expansion can once more be
given by determining the principal part of the form. We also note that some study has been done
on congruences for meromorphic modular forms; for example, see the work of Honda and Kaneko
[29]. It may be interesting to interpret and possibly generalize these results in the setting of polar
harmonic Maass forms.

One may wonder why polar harmonic Maass forms are employed if the ultimate goal is the Fourier
coefficients of meromorphic modular forms. One of the many reasons is that polar harmonic Maass
forms are simpler than meromorphic modular forms to construct because forms with arbitrary
principal parts exist. If the principal parts satisfy a certain condition dictated by the Riemann–
Roch Theorem, then the polar harmonic Maass form is necessarily a meromorphic modular form.
In the reverse direction, one may also obtain an explicit construction of all meromorphic modular
forms by determining when a given polar harmonic Maass form is meromorphic. By investigating
the Fourier coefficients of the basis elements, we obtain the Fourier coefficients of every meromorphic
modular form in particular. More specifically, given only the principal parts of a form one may write
it as a linear combination of Poincaré series built by Fay [21] with easily-determined principal parts.
Moreover, these are preimages of the elliptic Poincaré series under natural differential operators
(see Theorem 4.4). To obtain the coefficients in the style of Hardy and Ramanujan’s expansion for
1/E6, an alternate representation of these Poincaré series is given in Lemma 4.3.

The paper is organized as follows. In Section 2, we introduce polar harmonic Maass forms and
their Fourier and elliptic expansions as well as the connection between these expansions and a
pairing between weight 2 − 2k polar harmonic Maass forms and weight 2k cusp forms. In Section
3, we recall some properties of known Poincaré series. In Section 4, a splitting of elliptic Poincaré
series is explained by placing them into the framework of polar harmonic Maass forms, and certain
bases are also constructed. We give the Fourier expansions of polar harmonic Maass forms, and
therefore also meromorphic modular forms, in Section 5. The connections between fQ and GQ are
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investigated in Section 6. We finish the paper with some discussion about possible future directions
in Section 7.

2. Polar harmonic Maass forms

2.1. Basic definitions. For M =
(

a b
c d

)

∈ SL2(Z) and a function f : H → C, we require the weight

κ ∈ 1
2Z slash action

f |κM(z) :=

{

(cz + d)−κf(Mz) if κ ∈ Z,
(

c
d

)−2κ
ε2κd (cz + d)−κf(Mz) if κ ∈ 1

2Z\Z.
Here ( ··) denotes the Kronecker symbol and

εd :=

{

1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

Definition. For N ∈ N and 1 6= κ ∈ 1
2Z, a polar harmonic Maass form of weight κ on Γ0(N) is

a function F : H → C which is real analytic outside of a discrete set of points and satisfies the
following conditions:

(1) For every M ∈ Γ0(N), we have F|κM = F .
(2) The function F is annihilated by the weight κ hyperbolic Laplacian

∆κ := −y2
(

∂2

∂x2
+

∂2

∂y2

)

+ iκy

(

∂

∂x
+ i

∂

∂y

)

.

(3) For every z ∈ H, there exists n ∈ N0 such that (z − z)nF(z) is bounded in some neighborhood
of z.

(4) The function F grows at most linear exponentially towards cusps of Γ0(N).

If one allows a general eigenvalue in (2), then one obtains polar Maass forms. If F does not have
any singularities in H, i.e., if n = 0 in condition (3) for every z ∈ H, then F is a harmonic Maass
form; such functions were first introduced in Section 3 of [17]. Using a slight variant of the operator
∆κ, Fay [21] also studied Maass forms, although not specializing on the harmonic case.

We denote the space of polar harmonic Maass forms by Hκ(N) and those whose singularities in
H are all poles and which are bounded towards all cusps by Hκ(N). We furthermore let Hκ(N) be
the space of harmonic Maass forms and let M !

κ(N) stand for the subspace of weakly holomorphic
modular forms, those meromorphic modular forms whose poles (if any) are supported at cusps.
The subspace of meromorphic modular forms we further denote by Mκ(N) and use the notation
Sκ(N) for the subspace of meromorphic cusp forms, i.e., those meromorphic modular forms f for

which y
κ
2 |f(z)| decays towards all cusps. As usual, the space of cusp forms is Sκ(N). Throughout,

we omit N if N = 1 and κ ∈ Z or N = 4 and κ ∈ 1
2Z \ Z.

An important subspace of Hκ(N) is obtained by noting that the hyperbolic Laplacian splits as

∆κ = −ξ2−κ ◦ ξκ, (2.1)

where ξκ := 2iyκ ∂
∂z . If F satisfies weight κ modularity, then ξκ(F) is modular of weight 2− κ and

one sees from the decomposition (2.1) that ξκ(F) ∈ M2−κ(N) if F ∈ Hκ(N). It is thus natural to
consider the subspace Hcusp

κ (N) ⊆ Hκ(N) consisting of those F for which ξκ(F) is a cusp form. We
similarly apply the superscript “cusp” to denote the intersection of other subspaces with Hcusp

κ (N),
such as Hcusp

κ (N) := Hκ(N)∩Hcusp
κ (N). If g := ξκ(F) ∈ Sκ(N), then there is another non-modular

natural preimage of g, namely the non-holomorphic Eichler integral (cf. [47])

g∗(z) := (2i)1−κ

∫ i∞

−z
gc(w)(w + z)1−κdw, (2.2)

4



where gc(w) := g(−w). Then
ξκ(g

∗) = g. (2.3)

In addition to ξκ, if κ ∈ −2N0 there is another natural differential operator D1−κ from Hκ(N)
to M2−κ(N), where D := 1

2πi
∂
∂z . An identity of Bol relates this operator to the raising operator

Rκ,z := 2i ∂
∂z + κy−1. In particular, denoting by Rn

κ,z := Rκ+2n−2,z ◦ · · · ◦ Rκ,z repeated raising,

D1−κ is a constant multiple of R1−κ
κ .

2.2. Fourier and elliptic expansions. Polar harmonic Maass have a natural decomposition into
holomorphic and non-holomorphic parts. Both parts can contain singularities; the singularities
in the holomorphic part are poles, while one can determine the kind of singularities in the non-
holomorphic part by noting that its image under ξκ is meromorphic. To describe the principal
parts of polar harmonic Maass forms, we require their Fourier expansion around ̺ ∈ SN , the set
of inequivalent cusps of Γ0(N). Suppose that the cusp width of ̺ is ℓ̺ and choose M̺ such that
M̺̺ = i∞. The Fourier expansion at ̺ then has the shape (convergent for y ≫ 0)

F̺(z) := F
∣

∣

κ
M̺(z) = F+

̺ (z) + F−
̺ (z),

where, for some c±F ,̺(n) ∈ C,

F+
̺ (z) :=

∑

n≫−∞

c+F ,̺(n)e
2πinz

ℓ̺ ,

F−
̺ (z) := c−F ,̺(0)y

1−κ +
∑

n≪∞
n 6=0

c−F ,̺(n)Γ

(

1− κ,−4πny

ℓ̺

)

e
2πinz
ℓ̺ , (2.4)

with the incomplete gamma function Γ(j, v) :=
∫∞
v tj−1e−tdt. We call F+

̺ the holomorphic part

of F at ̺ and F−
̺ the non-holomorphic part. We may omit the dependence on F and ̺ if it is

clear from the context, while if F ∈ Mκ(N), then we simply write cF ,̺(n) instead of c+F ,̺(n). For

F ∈ Hκ(N) and ̺ ∈ SN , we call the terms of the Fourier expansion which grow towards ̺ the
principal part (at ̺).

The coefficients c−F ,̺(n) are closely related to coefficients of meromorphic modular forms of weight

2− κ. Indeed, this relationship follows from the fact that if F is modular of weight κ, then ξκ(F)
is modular of weight 2−κ, and thus ξκ maps weight κ polar harmonic Maass forms to weight 2−κ
meromorphic modular forms.

We next consider elliptic expansions of polar harmonic Maass forms. For this, let rz(z) := |Xz(z)|
with Xz(z) :=

z−z
z−z

and for 0 ≤ v < 1 and κ ∈ −N0 define

β0 (v; a, b) := β (v; a, b) − Ca,b
where β(v; a, b) :=

∫ v
0 t

a−1(1− t)b−1dt is the incomplete beta function and

Ca,b :=
∑

0≤j≤a−1
j 6=−b

(

a− 1

j

)

(−1)j+1

j + b
.

Here, for b ∈ N, we have

β0(v; a, b) = −β(1− v; b, a) = −(1− v)b

b
2F1(b, , 1 − a; 1 + b; 1− v).

The elliptic expansion of a polar harmonic Maass form is given in Proposition 2.2 of [9]. However,
it was later pointed out by Pioline that the following proposition is a special case of Theorem 1.1
of [21], where a more general expansion is given for polar Maass forms, although in another guise.
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Proposition 2.1. Suppose that κ ∈ −2N0 and z ∈ H.

(1) Assume that F satisfies ∆κ(F) = 0 and that for some n0 ∈ N the function rn0
z (z)F(z) is

bounded in some neighborhood N around z. Then there exist a±F ,z(n) ∈ C, such that for z ∈ N

F(z) = (z − z)−κ

(

∑

n≫−∞

a+F ,z(n)X
n
z (z) +

∑

n≪∞

a−F ,z(n)β0
(

1− r2z (z); 1 − κ,−n
)

Xn
z (z)

)

. (2.5)

(2) If F ∈ Hκ(N), then (2.5) runs only over those n which satisfy n ≡ −κ/2 (mod ωz,N), where
ωz,N := #Γz,N . Here Γz,N := Γz ∩ Γ0(N) with Γz the stabilizer of z in PSL2(Z). Furthermore,
if F ∈ Hcusp

κ (N), then the second sum only runs over n < 0.

Remark. The statement in Proposition 2.2 of [9] is slightly different; the functions β0 are replaced
with incomplete beta functions β. These functions only differ by a constant, so the change in this
version only differs by changing the coefficients of the meromorphic part.

We define the meromorphic part of the ellipic expansion around z by

F+
z (z) := (z − z)−κ

∑

n≫−∞

a+F ,z(n)X
n
z (z)

and the non-meromorphic part of the elliptic expansion by

F−
z (z) := (z − z)−κ

∑

n≪∞

a−F ,z(n)β0
(

1− r2z (z); 1 − κ,−n
)

Xn
z (z).

2.3. Bruinier–Funke pairing. For g ∈ S2k(N) and F ∈ Hcusp
2−2k(N), following Bruinier and Funke

[17], define the pairing
{g,F} := 〈g, ξ2−2k(F)〉 ,

where, for g, h ∈ S2k(N) and µN := [SL2(Z) : Γ0(N)],

〈g, h〉 := 1

µN

∫

Γ0(N)\H
g(z)h(z)y2k

dxdy

y2
(2.6)

is the standard Petersson inner-product. The pairing {g,F} was computed for F ∈ Hcusp
2−2k(N) by

Bruinier and Funke in Proposition 3.5 of [17]. We recall an extension of their evaluation of {g,F}
to the entire space Hcusp

2−2k(N), letting z = z1 + iz2 throughout.

Proposition 2.2 (Proposition 6.1 of [9]). If g ∈ S2k(N) and F ∈ Hcusp
2−2k(N), then

{g,F} =
π

µN

∑

z∈Γ0(N)\H

1

z2ωz,N

∑

n≥1

a+F ,z (−n) ag,z (n− 1) +
1

µN

∑

̺∈SN

∑

n≥1

c+F ,̺(−n)cg,̺(n). (2.7)

Sketch of proof: One uses Stokes Theorem for a fundamental domain with small neighborhoods
cut out around each of the cusps and the singularities of F . Integrating along the boundary of
these neighborhoods yields a product of the Fourier coefficients from the expansions around the
cusps and a product of the elliptic coefficients near each pole. �

2.4. Green’s functions. Recall that for k ∈ N>1 and Γ ⊂ SL2(Z) of finite index, the higher

Green’s function G
H/Γ
k : H×H → C is uniquely characterized by the following properties:

(1) G
H/Γ
k is a smooth real-valued function on H×H \ {(z, γz)|γ ∈ Γ, z ∈ H}.

(2) For γ1, γ2 ∈ Γ, we have G
H/Γ
k (γ1z, γ2z) = G

H/Γ
k (z, z).

(3) We have

∆0,z

(

G
H/Γ
k (z, z)

)

= ∆0,z

(

G
H/Γ
k (z, z)

)

= k(1− k)G
H/Γ
k (z, z) .
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(4) As z → z

G
H/Γ
k (z, z) = 2ωz log (rz(z)) +O(1).

(5) As z approaches a cusp, G
H/Γ
k (z, z) → 0.

These higher Green’s functions have a long history, appearing as special cases of the resolvent
kernel studied by Fay [21] and investigated thoroughly by Hejhal in [27], for example. Gross and
Zagier [22] conjectured that their evaluations at CM-points are essentially logarithms of algebraic
numbers. In the special case that the space of weight 2k cusp forms on Γ is trivial, the conjecture
reads as

G
H/Γ
k (z, z) = (D1D2)

1−k
2 log(α)

for CM-points z, z of discriminants D1 and D2, respectively and α some algebraic number. Various
cases of this conjecture have been solved. For example, Mellit, in his Ph.D. thesis [36], proved the
case k = 2, z = i and also gave an interpretation to α as a certain intersection number of certain
higher Chow cycles.

3. Poincaré series

3.1. Maass Poincaré series. An important tool to construct automorphic forms are Poincaré
series, which have a long history going back to Poincaré [41]. To be more precise, for κ > 2 and
m ∈ Z, the classical (weakly) holomorphic Poincaré series are defined by (see (2b.1) of [39])

Pκ,m,N (z) :=
∑

M∈Γ∞\Γ0(N)

e2πimz

∣

∣

∣

∣

κ

M ∈M !
κ(N), (3.1)

where Γ∞ := {± ( 1 n
0 1 )|n ∈ Z}. We further set

Pκ,m,N := Pκ,m,N

∣

∣

∣
pr ∈M !

κ(N),

where |pr is the identity for κ ∈ Z and the projection operator (see p. 250 of [32] for a definition)
into Kohnen’s plus space if κ /∈ Z. Here the restriction κ > 2 is made so that the series converge
absolutely and uniformly on compact sets.

To construct harmonic Maass forms, for κ < 0 and m ∈ Z\{0}, we define the harmonic function

ϕκ,m(z) :=
(− sgn(m))1−κ

Γ(2− κ)
(4π|m|y)−κ

2Msgn(m)κ
2
, 1−κ

2
(4π|m|y)e2πimx,

where Mµ,ν is the M -Whittaker function. These forms appeared in applications for a number
of authors (cf. [17, 21]) following work of Niebur [37], who built eigenfunctions under ∆0. For
κ ∈ −1

2N and N ∈ N, we then set

Fκ,m,N :=
∑

M∈Γ∞\Γ0(N)

ϕκ,m

∣

∣

∣

∣

κ

M ∈ Hκ(N).

and

Fκ,m,N := Fκ,m,N

∣

∣

∣
pr ∈ Hκ(N). (3.2)

For m < 0, the functions Fκ,m,N have principal parts qm at i∞ whereas for m > 0 they have a
non-holomorphic principal part. Furthermore, a straightforward calculation, using the fact that ξ
commutes with the slash action, yields for m ∈ Z \ {0} (e.g., see the displayed formula after (6.8)
of [19])

ξκ (Fκ,m,N ) =
(−1)κ−1(4πm)1−κ

Γ(1− κ)
P2−κ,−m,N .
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If κ ∈ −N, then Fκ,m,N also has a nice image under D1−κ. Specifically, Bruinier, Ono, and Rhoades
showed in (6.8) of [19] (see also Satz 9 of [39], where part of the computation was carried out) that

D1−κ (Fκ,m,N ) = m1−κP2−κ,m,N .

3.2. Elliptic Poincaré series. For N ∈ N, n ∈ Z, and 2 < κ ∈ 1
2Z, we next recall the elliptic

Poincaré series, defined in [38, 39],

Ψκ,n,N(z, z) :=
∑

M∈Γ0(N)

(z − z)n

(z − z)κ+n

∣

∣

∣

∣

κ,z

M. (3.3)

The functions z 7→ Ψκ,n,N(z, z) are weight κ meromorphic modular forms which are cusp forms if
n ∈ N0 and have a pole of order |n| if n ∈ −N0. We also note that

Ψc
κ,n,N(z, z) = Ψκ,n,N(−z, z). (3.4)

Moreover, for n = −1, these are closely related to other Poincaré series defined in (2b.9) of [39]
by

Hκ,N(z, z) := 2
∑

M∈Γ∞\Γ0(N)

1

1− e2πi(z−z)

∣

∣

∣

∣

κ,z

M.

To state the connection, define

Kκ,N (z, z) :=
i

π
(2iz2)

κ−1
∑

n∈N

Iκ,−n(z2)e
−2πinzPκ,n,N(z)

with (for some −2z2 < α < 0 and r ∈ Z)

Iκ,r(z2) :=
∫ iα+∞

iα−∞

e2πirt

(t+ 2iz2)
κ−1

dt

t
.

Petersson showed in (5b.6) of [39] that

(2iz2)
κ−1Ψκ,−1,N(z, z) = 2πiHκ,N (z, z)− 2πiKκ,N (z, z). (3.5)

While he recognized the left-hand side of (3.5) as a non-holomorphic modular form of weight
2 − κ, as a function of z, and investigated the meromorphic functions Hκ,N , on page 67 of [39] he
questioned the place of the functions Kκ,N within the framework of automorphic forms. They are
cusp forms as a function of z, but their properties as a function of z were rather mysterious. This
was investigated in [10], and its connection to the elliptical Poincaré series, defined in (3.3), is given
in Theorem 4.2.

4. Understanding Petersson’s splitting and bases for polar harmonic Maass forms

4.1. Petersson’s splitting. Throughout this section, 2 < κ ∈ 1
2N. One can recognize (3.5) as

the usual splitting of a weight 2 − κ polar harmonic Maass form into its holomorphic and non-
holomorphic parts around i∞.

Proposition 4.1 (Proposition 3.1 of [10]). For N ∈ N, z 7→ zκ−1
2 Ψκ,−1,N(z, z) ∈ Hcusp

2−κ(N) with
meromorphic part

π

(2i)κ−2
Hκ,N(z, z).

Proposition 4.1 implies that the functions Kκ,N are the non-holomorphic parts of polar harmonic
Maass forms. In particular, they are non-holomorphic Eichler integrals of the functions Ψκ,0,N(z, z).
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Theorem 4.2 (Theorem 1.1 of [10]). We have

Kκ,N (z, z) = − i
κ(κ− 1)

2κ−1π
Ψ∗

κ,0,N(z, z). (4.1)

Remark. The result in [10] is much more general, considering real weight with multiplier on more
general groups. In this note, we only introduce polar harmonic Maass forms in this restricted
setting to avoid extra notation. The right-hand side of (4.1) was also explicitly given as an integral
in [10], which follows by (2.2) and (3.4).

Sketch of proof: By Proposition 4.1, Kκ,N is (up to a constant) the non-holomorphic part of

z2 7→ zκ−1
2 Ψκ,−1,N(z, z). A short computation shows that

ξ2−κ,z

(

zκ−1
2 Ψκ,−1,N(z, z)

)

= (κ− 1)eπiκΨκ,0,N(z, z).

Moreover, (2.3) implies that the right-hand side of (4.1) is also mapped to a constant multiple of
Ψκ,0,N(z, z). Hence the difference is annihilated by ξ2−κ, implying that it is meromorphic. However,
one can show that both sides of (4.1) have expansions of the type (2.4), and such an expansion can
only be meromorphic if all coefficients are zero. Hence the difference vanishes, giving the claim.

�

4.2. Bases for meromorphic modular forms and polar harmonic Maass forms. One ob-
tains a basis for the space Hcusp

2−κ,N by repeatedly applying repeated raising to zκ−1
2 Ψκ,−1,N(z, z).

Note that the non-holomorphic part of a polar harmonic Maass form vanishes if and only if the
form is a meromorphic modular form. Hence comparing meromorphic parts and using Proposition
4.1 gives the following lemma.

Lemma 4.3 (Proposition 4.2 of [10]). If f ∈ S2−κ(N), then there exist z1, . . . , zr ∈ Γ0(N)\H and
aℓ,n ∈ C such that

f(z) =

r
∑

ℓ=1

nℓ
∑

n=0

aℓ,nR
n
κ,z [Hκ,N (z, z)]z=zℓ

.

Pioline pointed out an alternative way to obtain a basis of polar harmonic Maass forms which
are bounded towards the cusps, namely using Fay’s [21] polar harmonic Poincaré series in negative
weight. The Poincaré series Ψκ,n,N are formed by slashing the nth coefficient of the meromorphic
part of the elliptic expansion (2.5). Using the non-meromorphic analogue

ψ2−2k,n(z, z) := (z − z)2k−2 β
(

1− r2z (z); 2k − 1,−n
)

Xn
z (z),

one may define the weight 2− 2k < 0 Poincaré series

P2−2k,n,N(z, z) :=
∑

M∈Γ0(N)

ψ2−2k,n(z, z)
∣

∣

∣

2−2k,z
M.

These Poincaré series appear as a special case of (44) in [21] and they are connected to Petersson’s
Poincaré series. The following essentially follows by Theorem 2.1 of [21] (the notation for these
Poincaré series is different in [7], because z was only considered to be a parameter there)

Theorem 4.4 (Theorem 4.3 of [7], for N = 1). For k > 1, the Poincaré series P2−2k,n,N(z, z)
converge absolutely and locally uniformly. The functions z 7→ P2−2k,n,N(z, z) span the space of
weight 2− 2k polar harmonic Maass forms on Γ0(N) which are bounded in all cusps. Furthermore,

ξ2−2k,z (P2−2k,n,N(z, z)) = (4z2)
2k−1Ψ2k,−n−1,N(z, z), (4.2)

D2k−1
z (P2−2k,n,N(z, z)) = −(2k − 2)!

( z2

π

)2k−1
Ψ2k,n+1−2k,N(z, z). (4.3)
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The principal parts of P2−2k,n,N are given by










2ωz,N (z − z)2k−2 β0
(

1− r2z (z); 2k − 1,−n
)

Xn
z (z) if n ≥ 0 and n ≡ k − 1 (mod ωz,N ),

2ωz,NC2k−1,−n (z − z)2k−2Xn
z (z) if n < 0 and n ≡ k − 1 (mod ωz,N ),

0 otherwise.

Moreover, the functions z 7→ z2−2k+n
2 P2−2k,n,N(z, z) satisfy weight 2k − 2 − 2n modularity and are

eigenfunctions under ∆2k−2−2n,z with eigenvalue (2k − 2− n)(n+ 1).

Remark. For n < 0, the functions z 7→ R−n−1
2k,z (H2k,N (z, z)) from Lemma 4.3 are constant multiples

of the meromorphic parts of z2−2k+n
2 P2−2k,n,N(z, z).

Sketch of proof: In order to show that z2−2k+n
2 P2−2k,n,N(z, z) is a polar harmonic Maass form as

a function of z and a polar Maass form as a function of z, we rewrite the Poincaré series in terms
of functions defined in [21]. In particular, one can show that the P2−2k,n,N are constant multiples

of the Poincaré series zk−1
2 yk−1G−n,0

k,1−k(z, z) given in (44) of [21]. Combining with the results in

Theorem 2.1 of [21] and rewriting Fay’s differential operator D1−k in terms of ∆2−2k yields that

the functions z2−2k+n
2 P2−2k,n,N(z, z) are polar Maass forms in both variables. Furthermore, the

eigenvalues in each variable are also explicitly given in Theorem 2.1 of [21]. Its principal part
comes from the terms with M ∈ Γz,N .

It remains to prove (4.2) and (4.3). The argument for both is similar, so we only give an idea

of proof of (4.3). By (45) of [21], applying R2k−1
2−2k,z to yk−1G−n,0

k,1−k(z, z) yields a constant times

y−kG−n,2k−1
k,1−k (z, z). One can show that this is a constant multiple of Petersson’s Ψ2k,n+1−2k,N(z, z).

Bol’s identity then implies (4.3). �

We next discuss a splitting of weight 2k meromorphic cusp forms which is motivated by combining
(4.2) and (4.3). For the case k = 1, which is omitted here, recall that weight 2 meromorphic modular
forms f are in one-to-one correspondence with meromorphic differentials f(z)dz. Traditionally,
there is a splitting of meromorphic differentials into three kinds: the first kind comes from cusp
forms, the second coincides under the bijection above with meromorphic forms that are orthogonal
to cusp forms and have trivial residues, and the third kind corresponds to those with at most
simple poles. For weakly holomorphic forms, the space of forms yielding differentials of the third
kind is precisely the space spanned by Eisenstein series. Generalizing this to higher weight, the
space of Eisenstein series is distinguished in a number of ways. Concentrating on one of those, for
each Eisenstein series there exists a weight 2− 2k harmonic Maass form which maps to a constant
multiple of it under both ξ2−2k and D2k−1. One sees from (4.2) and (4.3) that the forms Ψ2k,−k,N

share this property, yielding a meromorphic analogue of the Eisenstein series. Since Eisenstein series
correlate with differentials of the third kind, it seems reasonable to view the functions Ψ2k,−k,N as
the generalization to higher weight of meromorphic cusp forms corresponding to differentials of the
third kind. Based on the Poincaré series (3.1), the Eisenstein series split the space of weight 2k
weakly holomorphic forms into three subspaces, those spanned by the Poincaré series with m > 0,
m < 0, and m = 0, respectively. The space spanned by the Poincaré series with m > 0 is precisely
the space of cusp forms and extending to weight 2 via analytic continuation, this matches the
splitting of meromorphic differentials. Furthermore, if F ∈ Hcusp

2−2k(N), then D2k−1(F) is in the
space spanned by forms with m < 0, so the differential operators naturally split the space. The
spaces spanned by forms with m < 0 and m > 0 are also orthogonal under a suitably regularized
inner product.

Paralleling this for meromorphic cusp forms, one can also split the space into three pieces. Let
Sz2k(N) denote the subspace of S2k(N) allowing poles at most at z. We then write

Sz2k(N) = Xz
2k(N) + Dz

2k(N) + Ez
2k(N),
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where Xz
2k(N) is spanned by those forms with poles of order at most k − 1, Ez

2k(N) is spanned by
the form Ψ2k,−k,N(z, z), and Dz

2k(N) is spanned by Ψ2k,n,N(z, z) with n < −k. One can show that

if F ∈ H2−2k(N) satisfies ξ2−2k(F) ∈ ⊕z X
z
2k(N), then D2k−1(F) ∈ ⊕zD

z
2k. Hence, motivated

by the differential operators and the fact that Ez
2k(N) parallels the Eisenstein series, one may ask

whether, under a suitable regularized inner product,

Xz
2k ⊥ Dz

2k.

Jenkins and the authors are currently investigating this question using an inner product which is
defined in Section 6.1.

4.3. Other representations of Ψ2k,−1(z, z). Note that the polar harmonic Maass form Fz(z) :=

z2k−1
2 Ψ2k,−1(z, z) may be presented in a few other ways. Firstly, since P2−2k,−1(z, z) has the same
principal part as Fz(z) up to a constant multiple and its weight is negative, the two functions
must agree up to a constant. Alternatively, a direct calculation, using (23) of [40] to flip the slash
operator between the two variables, yields

Fz(z) =
2k − 1

(4y)2k−1
P2−2k,−1(z, z).

One may also explicitly realize Fz(z) in terms of the functions H2k via (see Proposition 3.2 of [10])

Fz(z) =
π

(−4)k−1
H2k(z, z),

where

H2k (z, z) := H2k(z, z) +

2k−2
∑

r=0

(2iz2)
r

r!

∂r

∂zr
H2k (z, z) .

Furthermore, for y > max(z2, 1/z2), (3.9) of [10] states that H2k(z, z) may be written as the gener-
ating function

H2k (z, z) = −2
∞
∑

n=1

F2−2k,n(z)e
2πinz

5. Fourier coefficients of meromorphic modular forms

Before discussing the coefficients of weight 2−2k < 0 meromorphic cusp forms, we recall some of
the history of the Fourier coefficients of weakly holomorphic modular forms. Hardy and Ramanujan
[23, 24] proved, using the Circle Method, that, as n→ ∞,

p(n) ∼ 1

4n
√
3
e
π
√

2n
3 . (5.1)

Rademacher [43] then perfected this method to derive the exact formula

p(n) = 2π(24n − 1)−
3
4

∞
∑

j=1

Aj(n)

j
I 3

2

(

π
√
24n − 1

6j

)

. (5.2)

Here Iℓ(x) is the I-Bessel function of order ℓ and Aj(n) denotes a certain Kloosterman sum. These
asymptotic formulas use the fact that the generating function

P (q) :=

∞
∑

n=0

p(n)qn =

∞
∏

n=1

(1− qn)−1,

is essentially a weight −1/2 weakly holomorphic modular form. As mentioned in the introduction,
Rademacher and Zuckerman [44, 51, 52] obtained similar formulas for all negative-weight weakly
holomorphic modular forms.
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We next consider Fourier coefficients of meromorphic cusp forms, starting with Ramanujan’s
conjectured formula for 1/E4 which was later proven by Bialek [4]. In this case, we have, for
y >

√
3/2,

1

E4(z)
=

∞
∑

n=0

βne
2πinz

with

βn :=
6

E6(ρ)

∑

(λ)

∑

(c,d)

h(c,d)(n)

λ3
e

πn
√

3
λ . (5.3)

Here ρ := e
πi
3 , (c, d) runs over distinct solutions to λ = c2 − cd + d2, where λ = 3a

∏r
j=1 p

aj
j with

a ∈ {0, 1}, pj denoting primes of the form 6m + 1, and aj ∈ N0. We do not give the definition of
distinct here, but the interested reader may find it after (2.2.3) of [4]. Finally, we let h(1,0)(n) :=
(−1)n/2, h(2,1)(n) := 1/2, and for λ ≥ 7

h(c,d)(n) := cos

(

(ad+ bc− 2ac− 2bd)
πn

λ
− 6 arctan

(

c
√
3

2d− c

))

,

where a, b ∈ Z are any choices for which ad − bc = 1. It turns out that the Fourier coefficients of
all of the specific meromorphic modular forms investigated by Ramanujan may be written as linear
combinations of the series

Fκ,j,r(z, z) := z
−j
2

∞
∑

m=0

∑∗

b⊆OQ(z)

Cκ (b,m)

N(b)
κ
2
−j

(4πm)re
2πmz2
N(b) e2πimz, (5.4)

where z ∈ {i, ρ}, b runs over primitive ideals, N(b) is the norm, and Cκ are certain functions on
ideals which we next describe. For b = (cρ+ d) ⊂ OQ(ρ), we define

C6m (b, n) := cos

(

(ad+ bc− 2ac− 2bd)
πn

N(b)
− 6m arctan

(

c
√
3

2d− c

))

,

and we set Cm(b, n) := 0 if 6 ∤ m. Similarly, for b = (ci+ d) ⊆ OQ(i), we let

C4m (b, n) := cos

(

(ac+ bd)
2πn

N(b)
+ 4m arctan

( c

d

)

)

and Cm(b, n) := 0 if 4 ∤ m.
After analyzing a number of examples, Berndt, Bialek, and Yee [5] recognized certain similarities

between the coefficients. The pattern they noticed is much more general. Indeed, every negative
weight meromorphic cusp whose only pole in the standard fundamental domain F occurs at z0 ∈
{i, ρ} has an expansion as a linear combination of the functions defined in (5.4).

Theorem 5.1 (Theorem 1.2 of [10]). If z0 ∈ {i, ρ} and an ∈ C are chosen such that

f(z) =

n0
∑

n=0

anR
n
2k,z [H2k (z, z)]z=z0

∈ S2−2k, (5.5)

then, for y > y0, we have the Fourier expansion

f(z) = 2ωz0

n0
∑

n=0

an

n
∑

j=0

(2k + n− 1)!

(2k + n− 1− j)!

(

n

j

)

F2k+2n,j,n−j(z0, z).

Remarks.
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(1) By Lemma 4.3, every element of S2−2k which has a unique pole in SL2(Z)\H also has an
expansion of the type in (5.5).

(2) A more general formula for meromorphic cusp forms with poles at arbitrary points is given in
Theorem 4.1 of [10].

(3) It was shown in Theorem 1.3 of [10] that quasi-meromorphic cusp forms, which are products of
powers of the weight 2 quasi-modular Eisenstein series E2 times meromorphic cusp forms, also
have Fourier expansions of this shape.

Sketch of proof: The proof of Theorem 5.1 has essentially 3 steps. Firstly, one constructs a
basis for the space Hcusp

2−2k by applying repeated raising in z to H2k(z, z). One then determines
that the meromorphic parts of the resulting basis elements are the forms from Lemma 4.3. Noting
that f is meromorphic, the problem is hence reduced to computing the Fourier coefficients of
Rn

2k,z [H2k (z, z)]z=z0
. By Proposition 4.5 of [10], we may rewrite

Rn
2k,z (H2k(z, z)) =

n
∑

j=0

(2k + n− 1)!

(2k + n− 1− j)!

(

n

j

)

(−2i)n−j ∂
n−j

∂zn−j
H2k+2n,j(z, z),

where

H2k,j(z, z) := 2
∑

M∈Γ∞\SL2(Z)

z
−j
2

1− e2πi(z−z)

∣

∣

∣

∣

2k,z

M.

The coefficients of H2k,j were computed in Theorem 3.1 of [8], which is the last step. �

To use the result in explicit examples, one only needs to compute the principal part of a given
meromorphic cusp form to determine its representation in the form (5.5). This is carried out for
1/E4

6 in Theorem 6.2 of [10].

Remark. There are also results for the Fourier coefficients of meromorphic modular forms of higher
level if the pole order is small [48].

6. Theta lifts and inner products of meromorphic modular forms

In this section, we investigate lifts between forms of weights k + 1/2 and 2k as well as lifts from
forms of weight 3/2 − k to 2− 2k, where k ∈ N≥2.

6.1. Regularized inner products and theta lifts. Although (2.6) generally diverges if g or h
have poles or grow towards the cusps, for a number of applications it is useful to take such inner
products. Petersson [40] appears to be the first to consider this problem, defining a regularized
inner product 〈g, h〉 via the Cauchy principal value of the naive definition, essentially cutting out
small balls of hyperbolic radius ε > 0 around each pole and then taking ε→ 0. If the poles are at
the cusps, his construction was rediscovered and extended by Borcherds [6] and Harvey and Moore
[26], and then used by Bruinier [16] and others to define theta lifts of weakly holomorphic modular
forms. We are particularly interested in theta lifts coming from the Shintani theta kernel

Θk(z, τ) := y−2kv
1
2

∑

D∈Z

∑

Q∈QD

Q(z, 1)ke−4πQ2
zve2πiDτ .

The function z 7→ Θk(−z, τ) has weight 2k and τ 7→ Θk(z, τ) has weight k + 1/2. Hence taking
the inner product in one variable yields a lift between forms satisfying modularity in integral and
half-integral weights. In particular, for a weight k + 1/2 function H, we define the theta lift of H,

Φk(H)(z) := 〈H,Θk (z, ·)〉 .
13



The functions fQ were realized as theta lifts of weakly holomorphic modular forms by von Pippich
and the authors [12]. In order to obtain such a lift, one may apply Φk to

gk,−D :=
(4π)k

(k − 1)!
D

k
2Pk+ 1

2
,−D.

The lift is evaluated by a standard unfolding argument, yielding the following.

Theorem 6.1 (Theorem 1.1 of [12]). For every discriminant −D < 0, we have

Φk (gk,−D) = fk,−D.

A closely-related theta lift in negative weight is constructed via the theta kernel

Θ∗
1−k(z, τ) := vk

∑

D∈Z

∑

Q∈QD

QzQ(z, 1)k−1e
−

4π|Q(z,1)|2v
y2 e−2πiDτ .

The function z 7→ Θ∗
1−k(z, τ) has weight 2−2k and τ 7→ Θ∗

1−k(z, τ) has weight 3/2−k (see Theorem
4.1 of [6] for a general treatment and Proposition 3.2 (2) of [13] for this case). For a function H
transforming of weight 3/2 − k, we thus define the theta lift

Φ∗
1−k(H)(z) :=

〈

H,Θ∗
1−k (−z, ·)

〉

.

We obtain GQ, defined in (1.2), by applying Φ∗
1−k to the harmonic Maass form

P1−k,−D :=
12
√
πΓ
(

k + 1
2

)

Dk− 1
2 (k − 1)!(2k − 1)

F2−2k,−D.

Theorem 6.2 (Theorem 1.3 of [12]). For −D < 0 a discriminant, we have

Φ∗
1−k (P1−k,−D) =

∑

Q∈Q−D/SL2(Z)

GQ.

The functions GQ are furthermore related to fQ via ξ2−2k, as given in the following theorem.

Theorem 6.3 (Theorem 1.2 of [12]). The functions GQ are weight 2 − 2k polar harmonic Maass
forms whose only singularities in H \ SL2(Z) occur at τQ. Furthermore, we have

ξ2−2k (GQ) = fQ, (6.1)

D2k−1 (GQ) = −(2k − 2)!

(4π)2k−1
fQ.

Remark. It is rather unusual for the images of a harmonic function to agree (up to a constant)
under both operators. For example, although the Eisenstein series has this property, it is impossible
if the images are both cusp forms.

Sketch of proof: One obtains the modularity of GQ by writing it as a Poincaré series. The
functions fQ also have presentations as Poincaré series, and both of the differential operators map
the terms of GQ to a constant multiple of the summands in fQ. Similarly to Bengoechea’s [3] case
for fQ, one of the main steps is to show absolute and locally uniform convergence of GQ so that
one may apply differential operators termwise.

�
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6.2. Inner products between meromorphic modular forms. The functions GQ reappear
when taking inner products of fQ against meromorphic cusp forms with simple poles. Since Pe-
tersson’s regularization still diverges sometimes, one requires a further regularization. Roughly
speaking, the integrand in (2.6) is multiplied by an SL2(Z)-invariant function Hs(τ) which removes
the poles of the integrand. We then take the constant term of the Laurent expansion around s = 0
to be our regularization. To be more precise, let [z1], . . . , [zr] ∈ PSL2(Z)\H be the distinct SL2(Z)-
equivalence classes of all of the poles of g and h and choose a fundamental domain F∗ such that
all zℓ lie in the interior of ΓzℓF∗. Then let

〈g, h〉 := CTs=0

(

∫

SL2(Z)\H
g(z)Hs(z)h(z)y

2k dxdy

y2

)

,

where

Hs(z) = Hs1,...,sr,z1,...,zr(z) :=

r
∏

ℓ=1

hsℓ,zℓ(z).

Here

hsℓ,zℓ(z) := r2sℓzℓ
(Mz),

with M ∈ SL2(Z) chosen such that Mz ∈ F∗. Moreover CTs=0 denotes the constant term in the
Laurent expansion around s1 = s2 = · · · = sr = 0 of the meromorphic continuation (if existent).

This regularization was used to compute the inner product between fQ and f ∈ S2k. The results
in the case that the poles of f are all simple are collected below.

Theorem 6.4 (Theorems 1.7 (2) and 1.8 (2) of [12]). Suppose that f ∈ S2k has its poles in
SL2(Z)\H at [z1], . . . , [zr] with [zℓ] 6= [zj ] for ℓ 6= j and that all poles are simple.

(1) If [zℓ] 6= [τQ] for 1 ≤ ℓ ≤ r, then

〈f, fQ〉 = 2πi

r
∑

ℓ=1

1

ωzℓ

GQ(zℓ)Resz=zℓf(z).

(2) If zr = τQ, then

〈f, fQ〉 = 2πi

r−1
∑

ℓ=1

1

ωzℓ

GQ(zℓ)Resz=zℓf(z)

+
2πi

ωτQ

D
1−k
2 Resz=τQ f(z)

∑

Q∈[Q]\{Q}

Q(τQ, 1)
k−1

∫ artanh

( √
D

QτQ

)

0
sinh2k−2(θ)dθ.

Remarks.

(1) A more general version of Theorem 6.4, allowing higher order poles of f , is given in Theorem
1.8 of [12]. The residue of f is replaced with elliptic coefficients in the principal parts of f and
a more general family of polar Maass forms appears in place of GQ.

(2) Zemel has obtained an interesting vector-valued generalization of Theorem 6.4 in Theorem 10.3
of [49].

Sketch of proof of Theorem 6.4: (1) First recall that, by (6.1), GQ is a preimage of fQ under
ξ2−2k. We use Stokes Theorem and follow the proof of Proposition 2.2, except that we replace the
cusp form g by a meromorphic cusp form. From this we obtain a formula for 〈f, fQ〉 resembling
(2.7), except that we also have a contribution from the principal part of the elliptic expansions of
f . In particular, if all poles [z1], . . . [zr] ∈ SL2(Z)\H of f are simple, then one gets the product of
the 0th elliptic coefficient of G+

Q,zℓ
times the (−1)th coefficient in the elliptic expansion of f around
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z = zℓ. One concludes the claim by realizing that the 0th coefficient of G+
Q,zℓ

is essentially GQ(zℓ)

and the (−1)th coefficient in the elliptic expansion of f roughly equals its residue.
(2) The argument is essentially the same, but there is an additional difficulty which arises since
zr = τQ, so GQ has a singularity at zr. In this case, one determines that the 0th elliptic coefficient

of G+
Q,τQ

is the evaluation at z = τQ of GQ minus the Q = Q term. �

6.3. Relations with higher Green’s functions. The functions GQ are also closely related to
evaluations of higher Green’s functions at CM-points.

Proposition 6.5. We have

GQ(z) =
1

2kωτQ(k − 1)!
y2k−2Rk−1

0

(

G
H/SL2(Z)
k (z, τQ)

)

.

Sketch of proof of Proposition 6.5: One begins by directly computing a formula for the higher
Green’s functions raised and lowered in either variable (see also page 24 of [36]). This formula is
written in terms of Gauss’s hypergeometric 2F1, which we then show essentially matches the integral
appearing in GQ. Finally, we write Q(z, 1) in terms of its roots τQ and τQ to finish comparing the
two sides.

�

Theorem 6.4 together with Proposition 6.5 yields a connection between inner products and higher
Green’s functions. However, if we replace the form f from Theorem 6.4 with another fQ, we get
an even more direct relation between these two objects.

Theorem 6.6. For Q ∈ Q−D1 and Q ∈ Q−D2 (−D1,−D2 < 0 discriminants) with [τQ] 6= [τQ], we
have

〈fQ, fQ〉 = − π(−4)1−k

(2k − 1)β(k, k)

G
H/SL2(Z)
k (τQ, τQ)

ωτQωτQ

.

Sketch of proof of Theorem 6.6: The first part of the proof closely follows the application of
Stokes Theorem in the proof of Theorem 6.4 (1). If the function f from Theorem 6.4 is chosen
to have principal part X−n

z (z) instead of a simple pole, then the function GQ is replaced with a

constant multiple of Rn−1
2−2k(GQ). Applying raising k − 1 times to Proposition 6.5, in particular,

yields a constant multiple of G
H/ SL2(Z)
k . Since the pole of f = fQ occurs at τQ, we obtain the

higher Green’s function evaluated at these CM-points. �

Remark. By replacing fQ and fQ with slightly more general functions Ψ2k,−k(·, zj), defined in
(3.3), having poles at arbitrary z1, z2 ∈ H, one can obtain a relation between the inner product and

G
H/SL2(Z)
k (z1, z2).

If k = 1, which is excluded here, Gross and Zagier (see Proposition 2.22 in Section II of [22]) related
the Green’s function at CM-points with the infinite part of the height pairing on degree 0 divisors.
This has been generalized to higher k by Zhang [50], who obtained an identity between the infinite
part of the height pairing of CM-cycles and the higher Green’s functions at CM-points. Combining
Zhang’s result with Theorem 6.6 immediately yields a relation between the inner product and
the height pairing of CM-cycles. Denoting by Sk(τQ) the CM-cycle associated to τQ that was
constructed in Section 0.1 of [50], and using 〈·, ·〉h to denote the infinite part of the height pairing,
the following is an immediate consequence of Theorem 6.6 and Proposition 4.1.2 of [50].

Corollary 6.7. For Q ∈ Q−D1 and Q ∈ Q−D2 (−D1,−D2 < 0 discriminants) with [τQ] 6= [τQ],
we have

〈fQ, fQ〉 = − 2π(−4)1−k

(2k − 1)β(k, k)

〈Sk (τQ) , Sk (τQ)〉h
ωτQωτQ

.
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7. Future directions

We conclude the paper by discussing some possible future directions that research involving polar
harmonic Maass forms could take.

(1) It would be interesting to look for a meromorphic cusp form or polar harmonic Maass form
which encodes combinatorial information and investigate the application of Theorem 5.1 to this
form.

(2) Another natural function to study is 1/E2. Although it is neither modular nor quasi-modular,
its connection to the quasi-modular Eisenstein series E2 leads one to ask what its Fourier expan-
sion looks like and whether it belongs to a related space. Sebbar and Sebbar [45] investigated
this function from another perspective.

(3) In Theorem 6.2 there is a technical restriction because for n ≥ k the naive definition of Φ∗
n−k

has poles at every CM-point in H. Since F2k,Q = fQ is also a theta lift (using the theta kernel
Φk), it would be interesting to see if the other functions

∑

Q∈[Q]Fn,Q are theta lifts for all

n ∈ N. Steffen Löbrich is currently investigating this question.
(4) Since the Poincaré series P2−2k,n,N are preimages of the functions Ψ2k,−n−1,N by Theorem 4.4,

following the proof of Theorem 6.4, one could relate general inner products of meromorphic
cusp forms to the functions P2−2k,n,N evaluated at points in H.

(5) Recall the connection between the generating function of Zagier’s fk,δ (δ > 0) and cycle in-
tegrals, which may be considered real quadratic traces. One may wonder whether there is a
connection between CM-traces and the generating function of the fk,−D. The naive generating
function diverges, but it would be interesting to find a natural regularization.

(6) In Conjecture 4.4 of [22], Gross and Zagier take linear combinations of G
H/SL2(Z)
k acted on

by Hecke operators and conjecture that these linear combinations evaluated at CM-points are
essentially logarithms of algebraic numbers whenever the linear combinations satisfy certain
relations. These relations are determined by linear equations defined by the Fourier coefficients

of weight 2k cusp forms. Given the connection between G
H/SL2(Z)
k (z, τQ) and the weight 2− 2k

polar harmonic Maass form GQ(z) from Proposition 6.5, it might be interesting to understand
their condition in the language of polar harmonic Maass forms. On the one hand, it might
carve out a natural subspace of weight 2k meromorphic modular forms (corresponding to the
image of those forms satisfying these conditions) which may satisfy other interesting properties.
On the other side, by applying the theory of harmonic Maass forms, one may be able to loosen
the conditions and investigate what happens for general linear combinations.
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