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QUANTUM MODULAR FORMS AND PLUMBING GRAPHS OF
3-MANIFOLDS

KATHRIN BRINGMANN, KARL MAHLBURG, ANTUN MILAS

ABSTRACT. In this paper, we study quantum modular forms in connection to quantum invariants
of plumbed 3-manifolds introduced recently by Gukov, Pei, Putrov, and Vafa. We explicitly com-
pute these invariants for any 3-leg star plumbing graphs whose associated matrix is unimodular
and positive definite. For these graphs we confirm a quantum modularity conjecture of Gukov.
We also analyze the invariants for general n-leg star graphs with unimodular plumbing matrices,
and prove that they can be expressed as linear combinations of quantum modular forms.

1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Introduction. Quantum invariants are important numerical invariants of knots and 3-
manifolds and are originally defined in [20] using tools of quantum field theory. Witten conjectured
the existence of topological invariants of 3-manifolds generalizing the Jones polynomial to links
in arbitrary closed oriented 3-manifolds. Using a modular tensor category coming from the quan-
tum group U,(slz) at roots of unity, Reshetikhin and Turaev [19] gave a rigorous construction of
3-manifold invariants associated to SU(2). These invariants are called the Witten-Reshetikhin-
Turaev (WRT) invariants and are often denoted by 7¢(M), where ( is a k-th root of unity (here
k € N is called the level).

The concept of unified WRT invariants, introduced by [I1], considers WRT invariants at all
lc\ € N. For integral homology spheres, Habiro constructed invariants taking values in a completion
Zlq] == @Z[q]/((q; q)n), where, for n € NgU{oo}, (a;¢), = H;‘;&(l —agq), such that evaluation
at each root of unity ( gives the WRT invariants. In a special case, invariants of this type
(“analytic” at roots of unity) appeared previously in work of Lawrence-Zagier [17] on the Poincaré
homology sphere 3(2,3,5) and work of Zagier [21I] on Vassiliev invariants. The latter paper was
the first appearance of Kontsevich’s intriguing series F(q) := Y, -,(¢;¢)n. Quite remarkably,
Zagier also constructed functions in the upper and lower half-plane that asymptotically agree with
f(7) = F(q) (g:=e*",7 € H) at all rational numbers. This function constitutes an example of a
quantum modular form. This notion was formalized by Zagier in [23], where he defined a quantum
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modular form to be a complex-valued function defined on the rational numbers that is essentially
modular (up to a correction factor that has “nice” analytic properties). Further examples of unified
invariants (and quantum modular forms) for knots/links and 3-manifolds were considered by
Hikami and other authors [I2H16]. There are other important aspects of quantum modular forms
including Maass forms, Fichler integrals, combinatorial generating functions, and meromorphic
Jacobi forms. In addition, quantum modular forms recently appeared in representation theory
of infinite-dimensional Lie algebras and vertex algebras in the form of characters of irreducible
modules [3l[7]. Another interesting direction concerns g-series identities for expressions coming
from unified WRT invariants [5,16].

In a very interesting recent paper [10], Gukov, Pei, Putrov, and Vafa introduced a new approach
to WRT invariants of 3-manifolds that was motivated by certain dualities in physics. In this
paper, among many other things, the authors defined quantum invariants of various families of
3-manifolds M3, including plumbed 3-manifolds. A plumbed 3-manifold M3(G) is associated
to a labeled graph G, so that M3(G) is obtained by a Dehn surgery on the corresponding link
of unknots. If the linking matrix M is positive definitd], the authors in [10] defined a g-series
denoted by Ea(q) with integral coefficients, and argued that the limiting values of Z(q) at roots
of unity are expected to capture /‘Ehe WRT invariants discussed above. The key novelty of the
approach is that the definition of Z,(q) is based on a straightforward contour integration, and the
invariants are defined as functions in the upper half-plane rather than at roots of unity. In [10],
several examples of Ea(q) series were computed in terms of unary false theta functions, which are
known to be quantum modular forms (see for instance [3]).

We note that functions closely related to Z\a(q) already appeared in the literature on the so-
called higher rank singlet W-algebras denoted by W(p)OQ [47). In [8] a more direct link between
quantum invariants from [10] and vertex algebras was given.

1.2. Statement of the results. Based on several examples calculated in [10], Gukov [9] conjec-
tured a striking general characterization of the analytic properties of Z4(q).

Conjecture 1.1. For any tree and labeling such that M is positive definite, Zl(q) 1S a quantum
modular form.

This paper is a ﬁrﬁt contribution towards the resolution of Gukov’s conjecture. We present a
detailed analysis of Zy(¢) for unimodular graphs and manifolds coming from n-leg star graphs,
which are also sometimes known as n-spiders, where n denotes the number of leaves or legs. More
precisely, we first introduce a closely related integral, denoted by Z(q), for which we show that
it agrees with 20(q2) for all unimodular positive definite plumbing matrices. Our main result
verifies the validity of the conjecture for all 3-leg star graphs with unimodular plumbing matrices,
and also provides strong evidence that quantum modularity is most likely true for general star
graphs if we allow the quantum set to be a proper subset of Q.

Theorem 1.2. (1) For any 3-leg star graph, there is some cpr € Q such that ¢°M Z(q) is a quan-
tum modular form.

n [10], M is negative definite, which we have accounted for by replacing it by —M when referring to their work.
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(2) For any n-leg star graph, we can write Z(q) = Fi(q) + --- F;.(q), where there are cpj € Q
such that each q°Mi F;(q) is a quantum modular form.

As a corollary, we obtain that for any positive definite unimodular 3-leg star plumbing graph,
there is some cy; € Q such that ¢°™ Zy(q) is a quantum modular form of weight % with quantum

set Q.

Remarks. (1) To clarify, the main difference between the two statements in Theorem is that
in the case of n-leg star graphs, the quantum sets of the summands do not necessarily coincide.
For more precise statements, see Theorems and below.

(2) In a paper [0] that appeared as a preliminary version of this paper was ready, Cheng, Chun,
Ferrari, Gukov, and Harrison independently calculated Zl(q) for a large number of additional
examples of 3-star graphs, as well as an example of a 4-star graph (see Section 8 of [6]).

The paper is organized as follows. In Section 2, we introduce the function Z(q) and prove
that it agrees with /Z\O(q) from [10] for any unimodular plumbing matrix. In Section 3 we present
elementary facts on rational functions and define the quantum modular forms in this paper. In
Section 4 we prove our first main result, Theorem 2] on quantum modularity of 3-leg star
graphs. Section 5 contains explicit computations of Z(q) for all D and E type Dynkin diagrams.
In Section 6 we prove a version of quantum modularity for all star graphs. We also present an
example illustrating that the quantum set of Z(q) can be smaller than Q. We end in Section 7
with several remarks and directions for future work.
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2. DEFINITIONS AND NOTATION

2.1. The quantum invariant. Consider a tree G = (V, E) Fwith N vertices numbered 1,2,...,N.
For such a G, we choose a symmetric integral matrix M = (m;;)1<jr<n such that mj, = —1 if
vertex j is connected to vertex k and zero otherwise. The diagonal entries m;; € Z, 1 < j < N are
known as framing coefficients, which for our purposes, may be freely chosen subject to the restric-
tion that M is positive definite (which ensures that the integrals below actually define Laurent
series). We typically label the vertices of G by these coefficients.

The first homology group of M3 := M3(G) (plumbed 3-manifold constructed from G) is

H(M3,Z) = coker(M) = Z~ /M7 .

If M is invertible then this group is finite and if M € SLy(Z) (e.g. G = Eg), then Hy(M3,Z) = 0.
To each edge joining vertices j # k in G, we associate a rational function
1

wj —w; ) (w —w; )

flwj,wi) == (

2Note that in [10] G was used to denote the gauge group (which is not discussed in this paper).



4 KATHRIN BRINGMANN, KARL MAHLBURG, ANTUN MILAS
and to each vertex w; a Laurent polynomial
- —1)2
g(wj) := (wj —w; ) .

In [10], a quantum invariant for plumbing graphs was introduced. In particular, given G and

M, set (throughout we use the vector notation w := (wy, ..., wx)7)
73N+tr(M) d
~ "y
Za(q) = PV/ Hg (wj) J] fwewe)O aralgiw)—> (2.1)
27” lw;i|= 1 (k)EE Wi
where PV means the Cauchy principal value. Here f‘wj‘:l indicates the integration f|w1|:1

. f\wN|=1= and the theta function is defined by

O_ma(g;w) = Z 1£T e H w;’, a € 2coker(M) + 6;
£€2M7ZN +a
the shift is defined by § := (§;) such that 6; = deg(v;) (mod?2), where §; denotes the degree
(valency) of the j-th node. Furthermore, the simplest shift is denoted in [10] by Zy(q) := Zs(q).

2.2. The Z-integral. We now introduce a closely related integral that is somewhat easier to
work with analytically, and is equivalent to Zp(¢) in an important special case, as we see below.
For positive definite M as above, we define

73N+tr(M)
20 = LV [ 1Hgw»(k]}@f(wk,we)@M(q;w)%, (22
where
N
Omlgw):= Y g™ M m]wl. (2.3)
meMZN J=1

Note that the only differences between (2.I) and (2.2)) are in the normalization of the g-powers
and the condition in the summation in the theta functions.

3. PRELIMINARIES

3.1. Basic facts for rational functions. In order to calculate Z(q), we need to compute prin-
cipal value integrals for various series and rational functions. We first observe that for m € Z,

L,PV/ (w—w_l) wmd—w = L (w—w_l) wmd—w
211 |w|=1 w 211 |w|=1 w (31)

= CTy ((w - w_l) wm) = Om=—1 — Om=1,
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where CT,,(h(w)) denotes the constant term of the meromorphic function f around w = 0, and
for a predicate P, we use the indicator notation

] 1 if Pis true,
P 0 if P is false.

We next give a simple test that we use throughout the paper in order to reduce principal value
integrals to constant term evaluations.

Lemma 3.1. Suppose that h(w) = e aqw® satisfies h(w™) = —h(w)w?™ for some m € Z.
Then

L,PV/ h(w)dw :CTU,< h(w) >

270 jwj=1 W(w — w1 w—w!

Proof. The only poles in the integrand are at w = 0,+1, and the lemma statement amounts to
the claim that the residues at w = 4+1 make no contribution. This is verified by calculating

Res,_ s <%> _ %Resw:ﬂ <h<w> - h(w-1>w-2m>

w(w—w1) w? —1

1 h(w)—h(w_l)w_2m_ 1 . 1y —omy
3t e M i ) < ) <0

We can then make use of the identity

" 1 i< 1
CTw< w ):{ 1 if m < —11is odd, (3.2)

w— w1 0 otherwise.

Furthermore, (8:2)) also implies that

T, <w —w” > _ {Sgn(m) if m is odd, (3.3)

w— w1l 0 otherwise.

In fact, there is a more general identity for m € Z, ¢ € Ny, namely

w
CTw <W> = Ojm|>041 Om=t+1 (mod2) SgN(M). (3.4)

m —m

—w
The following result helps us reduce general residue calculations to the above cases, which are

straightforward as they only involve simple poles.

Proposition 3.2. Suppose that h is a meromorphic function. For any £ € N and a € C, we have

Resus (2 wiyen) = s (e (100 7) ).

Proof. The claim follows from the simple fact that for meromorphic functions hy and ho, we have

Resy—a (R (w)ha(w)) = —Resy—q (h1(w)hy(w)) .
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The specific shape of the statement then follows from the derivative evaluation

1 1 o 2 | -
dw \ wf(w — w=1)* w(w —w1)tHH

As an immediate application, we see that this aids in the calculation of the constant term for
more complicated rational functions. First, we recall the (rising) Pochhammer symbol, (z), :=
H;-L;Ol (x + j) for n € Ny. We also need the simple symmetry relation

(2 —n+ 1), = (=1)"(@)n. (3.5)

Corollary 3.3. Fora € C, m € Z and £ € N, we have

m—_
w™ B (_2 +1)Z—1 wm—+1
Resw=a <w(w_w—1)e>_ -0 = \ww—w )

Proof. Proposition with f(w) =w™ and ¢ — ¢ — 1 implies that

w™ m-+{—2 wmt
Res,,— = Resy,— . 3.6
Fw=a (w (w— w‘l)é> 2(6-1) o <w(w - w_l)€_1> (36)
Writing =2 = M=t 4 ¢ — 1 and then iterating (3.6) £ — 2 more times gives the result. O

3.2. Unimodular matrices. Here we restrict to the case of unimodular matrices.
Proposition 3.4. Let M be a unimodular positive matriz, then 25((]2) =7(q).

Proof. Recall that in the definition of Zg (¢?) the summation in the theta function is over 2Z% 44,
whereas in the definition of Z(q) we are summing over the full lattice Z%.

If vertex j is a leaf (of degree one), then ¢; = 1, so the summation in 25 is over odd integers.
But according to (3.2)), the only non-zero contributions in Z(q) also come from odd powers.

For vertices of degree two we have J; = 0, and thus there is no rational function in wj;, so the
only contribution comes from the constant term - the zeroth (which is even) power of the variable.

For vertices of odd degree r > 3, §; = 1, and from Corollary 3.3 we obtain for m even

1 wi dw;
Z—MPV/ ) We — 0
wj|=1 (,wj _ wj‘l) j

Finally, for vertices of even degree r > 4, §; = 0, similarly we have, for m odd

1 w;n dwj
%PV B r—2 Ws — 0
lwj|=1 (wj — 1) j

The statement of the proposition follows. O
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3.3. An example with a non-unimodular matrix. In this section we calculate an example of
Z(q) for a non-unimodular matrix. Although this computation can be carried out with minimal

machinery (and was previously computed as the k = 1 case of Zo(q) in [6, (6.81)]), it is easiest
to carry out here if we make use of some of our general results. We consider the Dynkin diagram
for Dy (see Figure 2]), and its Cartan matrix

2 -10 0
_ [ -1 2 —-1-2

M = ( 0 -12 0 >‘
0 -10 2

Noting that
IMZ* + (1,1,1,1) = M (2Z + 1)*,
we can therefore write £ = M (2n + 1), where 1 := (1,1,1,1). We then calculate

-1 4
~ q er{1,3,4} (wk - Wy ) LeT p—1p ¢ dwj
Z1(q) = ——PV g —

W — Wy

LEM (2Z+1)4 1<j<4
-1 — il
_q v er{1,3,4} (wk Wy ) Z qi(2n+1)TM(2n+1)

(2mi)4 wy — wy ! f
jw;|=1 nez

4n1—2n2+1  4dno—2n1—2n3—2n4—1_ 4nz—2n2+1  4ng—2n2+1 dwj

X W) Wy ws Wy wi

1<j<a Y

Using (B.0]), the integrals on wy, ws, wy force the exponents to be +1. Furthermore, if the exponent
on wy is 1, then ny = 2n;. In particular, ns is even, so the exponent of ws is then 4ng —2no +1 =
1 (mod4), and thus it cannot be ws L. similarly for wy4. This shows that the only possibilities
are wjwswy or wy 1w3_ lwil. In the first case the remaining sum is parametrized by ne = 2n, and
n1 = ng = ng = n, and in the second case by ng = 2n + 1, again with n; = n3 = nqy = n. A short
residue calculation (as in Section B.I]) then gives

~ -1 L
Z1(q) = qT ( —) sgn(2n — 1)g3 (3124 (4n41)2 =3(4n+1)(2n+1)
nel

+ Z sgn(2n + 3)q;(3(2n+1)2+(4n+3)2—3(4n+3)(2n+1)))
nez

-1
= QT (_ ngn*(n)q%(4n2+2n+l) + ngn*(n + 1)q%(4n2+6n+3)>

neZ neL

_ Z sgn*(n)q%(4n2_2”_1).

nez
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For the second equality we change n +— —n in the first sum and n +— n — 1 in the second sum,
and we also use the notation sgn*(x) := sgn(z) for x € R\ {0}, and sgn*(0) := 1. As a point of
comparison, this is different from Zp,(q) in Proposition .11

3.4. Quantum modular forms. Define the following false theta functions (j,p € Z)

=Y s (m)g("H) (3.7)

MEZ

This definition may easily be extended to rational j and p; indeed, if j = % and p = % then
Fj, = Fyp ns- We also note the identities
1 n2
Foip(2pr)=2¢% — Y sga(n)g?, (3.8)
n=1 (mod 2p)
2

Fop(2p7) = — Z sgn(n)q%ﬂ (0 < a<2p). (3.9)
n=2p—a (mod 2p)

The second of these follows by substituting n = 2pm+a in ([B.1), whereas the first requires setting
n =1 — 2pm, and then separating the n = 1 term.

In [23] Zagier defined a quantum modular form to be a function f: Q@ — C (Q C Q), such that
the obstruction to modularity (M = (%) € SLy(Z))

f(r) = (er +d)~Ff(M7T) (3.10)

has “nice” analytic properties. The definition is intentionally vague to include many examples;
in this paper we require ([3.10) to be real-analytic. This assumption is particularly useful because
it guarantees that quantum modularity is preserved under differentiation, which is needed in the
proof of Theorem (see Section [A]).

It was shown in Section 4 of [3] that the F}, are quantum modular forms. In order to describe
this precisely, we first recall that

Ti(n) := {<Z Z) € SLy(Z) : a,d =1 (mod n),c =0 (mod n)}.

Proposition 3.5. The functions Fj, are quantum modular forms of weight % on T'1(4p) (with
explicit multiplier systems) and quantum set Q.

The asymptotic expansion of Fj,(it) as t — 0T is given by Corollary 4.5 of [3], as

2r+1 < ) —2t)”
F p(it) ~ —22 m)” (3.11)

2r +1 r!

where By(z) denotes the (-th Bernoulli polynomial. In particular, Bi(z) = = — § and Bs(z) =

2
xd — 3T 4

z
2 2°



We also require certain weight % quantum modular forms. Set

S\ 2
Gjp(T) = Z ‘m—l— 2]_;0‘ q<m+2J7’> .
meZ

The quantum modularity properties of these functions were given in Section 6.1 of [I] (up to
finitely many terms G;,(7) is ©3 (2p,j;7) from [1]). To state this result, define
2

{feQ:ged(h,k) =1, p|k,ordy(k) =orda(p)} if ptj,
Qo= {2 cQ:ged(h,k) =1, ordy(k) > ords(p) +1}  if j=p (mod2p),
{% € Q:ged(h k) =1, orda(k) =orda(p) +1}  if =0 (mod2p),
where for k € Z, ordy(k) = v if 2¥ is the largest power of 2 dividing k.

Proposition 3.6. The functions 7 — G ,(p7) are quantum modular forms of weight % on T'1(4p)
(and explicit multiplier systems) with quantum set Qap, ;.

Remark. One inconvenience in working with weight % quantum modular forms G;, is that for
different values of j and fixed IV the quantum sets can be disjoint.

The next result follows directly from the definitions.

Proposition 3.7. Let 7 — H(T) be a quantum modular form of weight % or % with respect to a
subgroup of SLa(Z) with a quantum set S C Q, and let a € Qt. Then 7 — H(at) is also quantum
modular on the set * - S (with respect to a subgroup of SLa(Z)).

4. 3-LEG STAR GRAPHS AND THE PROOF OF THEOREM [L.2((1)]

An (¢ — 1)-leg star graph consists of £ — 1 legs joined to a central vertex. We enumerate the
nodes as indicated in Figure[I, with the vertex of degree £ — 1 labeled by £, and the external nodes
(of degree 1) by 1,...,£ — 1. Furthermore, an (¢ — 1)-star graph is such a graph in which none of
the legs have any interior nodes; in other words, this is a tree with ¢ vertices, where one central
vertex is connected to (£ — 1) leaves.

FIGURE 1. An (¢ — 1)-leg star graph.

In this section we consider 3-leg star graphs, and prove Theorem
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4.1. Singularities. We consider the singularities of the integrand in (2.2]) in the case of 3-leg
star graphs, and show that the principal value integral is not needed. We have

73N+Z]VV:1 ay

q 2 1 dwy
Z(q) = ————PV h ,
(9) (27TZ)N lwa|=1 W4 — w4_1 () W4
where
3 » N duwy
h(wy) :== On(w) H (w, —w; ) H —.
|wi|=1 r=1 el W
k24

Proposition 4.1. For 3-leg star graphs, we have

_ N ay (_) . 1

Wy — w;l

Proof. First, observe that changing w — w™! gives

dw _,dw 1 dw 1 _,dw
w'— = w"—, w—— |w''— = — w—— |w"—. (4.2)
|w|=1 w |w|=1 w |w|=1 w w |lw|=1 w w

Furthermore, changing n — —n in the summation of © ;(w) implies that
On(w) =60y (w),
where w™! = (wi?,...,wy'). Combined with (@2)) this then directly gives that
h(wi') = —h(wy).
The conclusion follows from Lemma B.1] O

4.2. Quantum modularity. Here we prove that Z(q) is a quantum modular form for every 3-leg
star graph whose M matrix is positive definite.

Theorem 4.2. For any 3-leg star graph, Z(q) is a linear combination of quantum modular forms
(up to q-powers) of weight % and quantum set Q. In particular, the statement of Conjecture [ 1]
is true for unimodular linking matrices.

We begin by considering the special case where Z(q) is the 3-star graph (which has just four
vertices). If A = (ajk)1<jk<a is a positive definite symmetric 4 x 4 matrix with rational entries,
then we define, with Q(m) := $m” Am,

3 -1 ‘
ZA(Q) = CTy Hr:l (wT’ _2107“ ) Z qQ(m)e27r2mTz ] (43)
Wa — Wy meZinA—174

We next express Z4(q) as a linear combination of false theta functions for a large class of
matrices. In particular, up to a rational g-power, each of these terms is a quantum modular form.
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Proposition 4.3. Suppose that Am € Z* for all m € Z* such that ml,mg,mg € {1}, and my
is odd. Then we have, with the b; and c; defined in 1) and d; := c¢; —

2a44 ’
4
Zalq) = quj a14—bj 044 (2044T). (4.4)
j=1
Ast — 0T, we have

—27t 8
Zg (7)) ~ o <a44 (a12a34 + a13a24 + araas3) — 2&140246134>75- (4.5)

1

Proof. By assumption we have Am € Z* for any vector with mq,ma, m3 € {£1}, and m4 odd.
We may therefore evaluate the constant terms with respect to wy, we, and ws in (Z3)) using B1)),
which gives that

Zala) = CTy | (w=w ™) mamamg 3 g2

mi,ma,m3€{£1} m4€EL (4.6)
=CTy | (w— w_l)_l 24: Z - Z grasam?Ebymetey m |
Jj=1 meZ
where for brevity we write >, F> a(£) == —> a(+)+ > a(—), and
by = Z aja, be = a14 — a4 — az, b3 := —a14 — a4 + azy, by := —a1a + a4 — asa,
(4.7)

1 3
E Qg + Z g, Co = 5 E a5 —aj2 — a3 + a93,
j=1

1<j<e<3
3 13
Cc3 = 5 Zajj + ajg — ais — ags, Cy = 5 Z(Ijj — a2 + a3 — a3.
Jj=1 j=1
Note that according to the definition of Z4(q), the sum in (0] is over those m which satisfy
Am € Z*, and our assumption only guarantees that all odd my are included. However, we see

below that any even values of m,4 vanish regardless, so we may write the sum over m4 € Z. Indeed,
replacing m — —m in the terms with a minus sign , and then applying (3.3]), we obtain

m —m

ZA Z Z q—a44m 2_pimte; W — w_l
w—w

j=1meZ
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4
=37 3T sgn(m)greemihimre, (4.8)

J=1m=1 (mod?2)

In general, we can write

Z sgn(m)q%“mQ_bm =q 22 Fy_pq(2a7). (4.9)
m=1 (mod 2)

Applying this to (@8], we note that 2a44 € Z since by assumption A(£1,+1,+1, l)T € 7Z* and
adding these two relations gives the claim. Furthermore, since the fourth entry of A(ey,e9,e3,1)7
is e1a14 + €2a24 + €3a34 + aqq for any €; € {1}, we also conclude that b; — ass € Z for all j. We
therefore obtain (4.4]).

In order to prove (4.5), we plug in to (B.II]). A short calculation shows that »_;b; = 0, which
implies that the constant term in Z4(e~?"") vanishes. This leaves

4 4 4
—2omt d P 3_ 2 .
ZA (e ) N—% 6a442b]c] Zij a44Zb] t,
7j=1 7j=1 7j=1
which simplifies to the claimed expression (using the fact that > y b;-’ = 24a14a24a34). O

Our next goal is to modify the proof above so that it applies to any 3-leg star graph. First we
need to characterize the summation conditions that appear in the theta function (23)).

Lemma 4.4. Let MZN C ZN be an integral lattice and D := det(M). Then there exist an
additive subgroup S of (Z/DZ)N such that m € MZN if and only if m = s (mod D) for some
sef.

Proof of Lemma[.4} Clearly m € MZ" if and only if there exists € Z" with m = M. This
is equivalent to M ~'m = adj(M)det(M)~'m € Z". Now consider ¢ : & +— adj(M)x, which is a
group automorphism of (Z/DZ)™. Thus the subgroup S is simply the kernel ker (). O

We are now ready to prove Theorem

Proof of Theorem [{.2 The strategy is similar to the proof of Proposition 4.3l Beginning from
[23) and Proposition A1l we first evaluate the constant terms in ws, ..., wy, and find that

3 -1
—3N+32 H (w —w ) imT
v= r=1 T T m) 2mim* z
Za)=gq— 7 CTy = tn B g@ime
4 4 meMZN
B N 3 -1
B 3N+22u:1“v | (wr Wy ) Q2(m) 2mim™ 2
=q w1,W2,W3,W4 -1 1 €

m=(m1,m2,m3,mq,0,-,0)T eMZN
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_ N a, my
= —q 3N+Z2V:1 CTw4 Z mimomms (]QQ(T’,")w#_1 y (410)
m1,ma,mse{£1} Wa — Wy
m=(m1,ma,m3,ma4,0,-- 7O)TEJWZN

where we use ([B.1]) to evaluate the constant terms in wq, wy, and ws. Lemmald4 implies that there
exists an additive subgroup S C (Z/DZ)N such that m € MZ" if and only if m = s (mod D) for
some s € S. Now let T C S be the subset of elements of the form s = (o, 3,7,9,0,--- ,0)T € S,
where «, 3,7 = =1 (interpreting —1 as a residue modulo D), and g is a residue modulo D. The
fact that .S is a subgroup then implies that T' = —7T as well. Using this symmetry, we can therefore
pair s and —s, and write (£I0) as

—my

w —w
R D

Wy — Wy
seT m:(a75777m4707"' 70)T 4 4
my=g (mod D)

1 73N+lel\r: ay
:_iqu 1 Z Z aﬁysgn(m4)qQ2(m), (4.11)

s€T m=(oc,6;y7m4,0,~~~ 70)T
my=g (mod D)}
ma=1 (mod 2)

where we employ ([B.3]). Ignoring constant factors for fixed s, the inner sum has the form in (£IT])

Z Sgn(m)q%am2+bm+c
m=g (mod D)

m=1 (mod 2)

for certain a,b,c € Q. The system
m=g¢g (modD), m=1 (mod2) (4.12)

has a solution if and only if ged(2, D) | (¢ — 1), which splits into two cases depending on whether
D is odd, or whether D is even and g is odd.
If D is odd, then we have a unique solution A modulo 2D of (4I2]), so the sum turns into

2
Z Sgn(m)q%“m2+bm+c = qc_g_thaer,aD (2aD27') +7(q),
m=h (mod2D)
where 7(q) is a finite sum of rational powers of ¢ (due to the shift in the sgn-function the two
series can have different signs for finitely many m). As above, the F}, are all quantum modular
forms, and so is r.
If D is even and g is odd, then we have m = ¢ (mod D) (and D = 2k is even), so we get

1 v?
ST sgn(m)g ™ T = 0% Fygyar, (20k%7) + 1(q).
m=g (mod 2k)
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Combining all cases and recalling (£10), we therefore conclude that Z(q) is a finite sum of
terms of the form ¢2F(q), where g is rational and F is a quantum modular form with quantum
set @, which completes the proof. O

A closer analysis of the proof of Theorem also provides a criterion for when the calculation
of Z(q) reduces to a 3-star graph, which can then often be computed using Proposition [4.3l Let
A be the restriction of adj(M) to rows and columns 1, 2, 3, and 4. Furthermore, define

V= {m = (mqy,ma, mg, my,0,- - ,O)T i my,mo,mg € {£1},my € Z},

Q:={meV:adjM)m=0 (modD)}, Q4:= {m eV : A(my,mg,mg,my)’ =0 (modD)} .
By definition, 24 C Q.
Corollary 4.5. If Q = Qy4, then

*3N+ZZJ,\T:1 ay

Z@=q 2  Za(®).
Furthermore, if M is unimodular, then Proposition [{.3 always applies to Z(q).

Proof. We begin by rewriting (£I0) using the above notation, as well as the assumption that
Q = Q 4, which gives

73N+Z,]/V: ay wm4
Z(q) =—q = CTy, <Z m1m2m3qQ2(m)%)
4

meQ Wq—w

“3N4S )L ay wy’
= —q 2 CTy, E m1Momsq Q(m)_4 1 S
Wy — W
meQy 4

Evaluating and comparing to (4.3]), one sees that this second constant term expression is simply
Z4(q) (after evaluating the constant terms in wq, we, and ws).

Finally, in the case that M is unimodular, the congruences modulo D are trivial, so 2 = Q4 =
V. Proposition B3] also clearly applies, since A has integer entries. O

5. EXPLICIT EXAMPLES OF 3-LEG STAR GRAPHS

In this section we compute Z(q) for all cases where M is the Cartan matrix of a simple Lie group
whose Dynkin diagram is a 3-leg star graph (see [I8] pages 164-71]). In particular, throughout
we write Z,(g) to indicate Z(g) in the case that the 3-leg star graph G is the Dynkin diagram for
the Lie algebra g, with labeling matrix M defined by a; = 2. Note that the vertex numbering in
this section differs from our general constructions above. In all cases we write Z;(¢) as a quantum
modular form, and determine its asymptotic behavior as ¢ — 17.

Remark. Observe that the residue classes appearing in the formulas for Z;(q) below are always
exponents of the corresponding Lie algebra, namely: {1, N—1} for Do, {1,5} for Fg, {1,5,7,11}
for F7, and {1,11, 19,29} for Eg (see [I8, page 299]). It would be interesting to find an explanation
for this numerical coincidence.
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5.1. Dyio. We begin with the case g = Do for N > 2.
Proposition 5.1. (1) For N odd, we have

N 1
Zpy.o(q) =q 272N (F_1 N(2NT) + Fony—1,8(2NT))
77L27
= -27% > sea(m)g N 42077 (5:1)
m=1 (mod2N)

Ast— 07, we have
2
—2m
ZDyys (e77) ~ N
(2) For N even, we have
_N_ 1
ZDnyo(@) = g~ 272N (FLy N(2NT) + 2FN 11, N (2NT) + Fon 1,8 (2NT7))

m27
= —2q_% Z sgn(m)qW1 + 2q_%.
m=1,N—1 (mod2N)

Ast — 0T, we have
ZDyys (e_%t) ~ —2mt.

1 1
In particular ¢+ vz ZDno (qﬁ) s a quantum modular form with quantum set Q.

Proof. For Dyi9, N > 2, the graph is

AN+1

ai a2 aN—-1 an

AN+2

FiGURE 2. Labeled Dynkin diagram for Dy o.

Thus we have the following matrix associated to Dy (recalling that the Cartan matrix has
a; = 2 for all j)

By (41]), we need to compute

Wy — wr_l
CT., <@M(w)nre{1,N+1,N+2} ( )) .

WN — w&l
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It is known that det(Mpy42) = 4 for all N, and that the adjucate matrix is (see Table 2 on page
295 of [I§] for this and all other simple Lie algebras)

444 . 4 2 2
488 .. 8 4 1
4812 - 12 6 6

adj(Myq2) = | 1000 0
4812 - AN 2N 2N
246 - 2N N+2 N
246 - 2N N N+2

As explained in the proof of Lemma [£4] if we write the theta function using (2.3]), we obtain the

restriction adj(Myi2)m =0 (mod4).

We evaluate the constant terms in ws, ..., wy_1 in (B.3]), which means that ms, ..., my_1 are
set to zero. It is then clear that the system adj(My42)m = 0 (mod4) is equivalent to the
restriction along the rows 1, NN + 1, and N + 2. Thus we have L& =0 (mod4), where

44 2 2
£:= (mi,my,myt1,mN+2) and L= (3“21% e W > -
22N N N+2
We first assume that NV is odd. Then the congruence conditions reduce to my41 = my42 (mod2)
and 2my + 2my + Nmy41 + (N + 2)my42 = 0 (mod4). Plugging the first equation into the
second, we obtain my = mj + %(mN_H —mpn+2) (mod2). Thus evaluating the constant terms
with respect to wy, wn+1, and w42, (B3]) becomes

CTouy > A@)ywip~ | (5.4)
m1,myy1,mN426{—1,1}
mNEml—l-w (mod 2)
where
Q2(0) =¢" (iL) ¢
2 2  N+2 2
=mi + Nmy + —— (m¥41 + mip2) + my(2mi + Nmyy1 + Nmyyo)
N
+mi(my41 +myg2) + 5 MN+1MN+2
and )
1
A(L) := —mympyp1myi2q292® -
WN — Wy

Note that @5 is symmetric in my4+1 and myyo.
Since A(—£) = —A(£), if we group (mi, my+1, my2) with its negative, thus (5.4]) becomes

CT

wWN

mi=mpyy1=mpy4y2=—1
my=1 (mod2)

Z q%(Nm?v—2(1\/+1)mN+N+4)Jr

Z q%(Nm§V+2(N—1)mN+N)

mi=—mpyy1=—mpni2=—1
my=1 (mod2)
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12 | wiY —wy™N
19 Z qE(NmN+2mN+§) N—]Xl ,
— _ — WN —w
mi=—mpyn41=mpyy2=1 N
my=0 (mod2)
where the third sum is doubled to account for both (my, my41, my4+2) = (1,—1,1) and (1,1, —1).
By (B3)), the third sum does not contribute to the constant term, leaving only the contributions

from the first two sums. Using (4.9), we obtain

Z Sgn(m)q%(Nm2_2(N+1)m+N+4) n Z sgn(m)q%(NszF?(N—l)erN)
m=1 (mod 2) m=1 (mod 2)

= ql_ﬁF_l,N(QNT) + ql_ﬁFgN_l,N@NT).

Including the additional q_% from (4], we therefore have the first expression in (B.]); the
second expression in (5] follows from (B.8)) and (39).

Recalling (B.I1) yields the asymptotic behavior in (5.2)).

Next suppose that N is even. We renumber rows and columns to match the conventions of
Proposition 3] letting £ = (my, mga, ms3, my), and

ANyo =

= N= R
sizefze |-
¥
m\Z%‘fMZMl»—-
¥
=2 nlznlz =

Inspecting the corresponding matrices gives that Corollary 4.5 may be used, and a short additional
calculation shows that Proposition 3] applies. Plugging in the entries of Anyo and employing
B3), 3.9), and (B.II) then directly gives the claimed series and asymptotic expressions. O

5.2. E-series. For g = Ex (N € {6,7,8}) we enumerate the vertices as in Figure Bl

ae ar as
ai a2 a3 a4 as ay a2 a3z a4 as A ay a2 a3z a4 as G ar

FIGURE 3. Dynkin diagrams for Fg, 7, and Eg.

By (@), we need to compute

wy —w; !
CTL,<®AAUOIL€{LN_LN}( )>‘

-1
WN-3 —Wx_3

We treat each case separately.
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5.2.1. FEg. In the first case, we use Theorem in order to calculate the invariant series.

Proposition 5.2. We have
25 m2-1
Z(q) = q 12 (Foy6(127) + Frg(121)) = —¢> ) sgn(m)g = +2¢% (5.6
m=1,5 (mod12)

In particular q% ZES(q%) 1s a quantum modular form with quantum set Q.

Ast — 0T, we have
Zpg (e7™) ~ 1. (5.7)

Proof. We have the matrix

which has det(M) = 3, and the adjucate matrix

4
5
adj(M) = [ §
i%, 9 6 36

Proceeding as in the proof of Theorem .2 we evaluate the constant terms in all variables
except ws in (BH), obtaining (taking into account the different vertex labeling in (@10]))

_3 w3
ZEG(Q) =—q 2 CTw3 Z 7nlqnsqnﬁqQQ(T"")#_1
m1,ms,mee{+1} w3 — Wy
m=(m1,0,m3,0,m5,m¢)T €MZS
We observe that Corollary 5] applies (although Proposition 4] does not), since if mg = my =0,
the congruence restriction adj(M)m =0 (mod 3) is equivalent to Lm =0 (mod 3), where

4623
— _ [61869
L:= (mi,ms,ms,mg) and L:= <§ 6 §%>.

We may therefore suppress mo and my4. This system of congruences further reduces to the single
restriction m; = ms (mod 3), and with my, ms, mg € {£1}, this implies ms = m;. Thus

_3 1 wa'®
ZE,(q) = —q 2CTy, Y meq2 @) —3—— ||
mi=ms,mec{—1,1} w3 — Wy
ms3€Z

where

Q2() =" (3L) 2.
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Setting ms = mg, this simplifies to
Q2(£) = 6m3 + (8m1 + 6me)ms + 4mimeg + 6.

Changing for the terms m1; = mg = 1 and m; = —mg = —1 mg into —mg, we obtain
ms _, —ms3
CTu, Z q%(6m§—14m3+10) + Z q%(6m§+2m3+2) w3 w?il
S - w3 — Wy
mi=me=-—1 mi=—meg=1
m3€Z ms3€Z
2_ 2
— Z sgn(m) (q3m Tm+5 + q3m +m+1> 7
m=1 (mod 2)
using ([B.3]). Using (4.9)), this gives the first expression in (5.6]); the second expression follows from
B:8) and (B.9).
The asymptotic formula (5.7]) may be concluded from (B.I1)). O

5.2.2. E;. For E; and Eg we use Proposition [£3] and Corollary

Proposition 5.3. We have
61
Zp,(q) = q 2% (F_1,12(247) + Fi9,12(247) + F17,12(247) + F13,12(247))

_5 m?-1 _5 5.8
=—q 2 > sgn(m)q 21 +2q 2. (5:8)
m=1,5,7,11 (mod 24)
. 61 EIN
In particular q57 Zg,(q21) is a quantum modular form.
Ast — 0T, we have
Zp, (e72™) ~ —4t. (5.9)
Proof. We have the matrix
2 -10 0 0 0 0
-12 -10 0 0 0
0-12-10 0 0
M:=|o00-12-10-1],
0 0 0—-12-10
0 0 0 -12 0
0 0 0-10 0 2
which has det(M) = 2, and the adjucate matrix
345 6 423
5101818196
adj(M) = | 6121824 16 8 12
481216126 8
246 8 644
36 912847

We can immediately evaluate the constant terms in we, w3 and ws in ([B.3]), and the congruence
restriction adj(M)m =0 (mod2) reduces to L& =0 (mod 2), where

3623
— _ [624812
£:= (my,my,mg,m7) and L := (2844>.

3124 7
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This implies that Corollary applies. Swapping the second and fourth rows, we then use
Proposition [£.3] with

3133
A= (é 3 2 é ) ,
34612
and a short calculation gives the first expression in (0.8]); the second expression follows from (B.8])
and (3.9).
The asymptotic behavior (5.9) may be concluded from (Z4.5]). O

5.2.3. Eg. Note that Z\o(q) for this graph was also calculated numerically in [10} (3.155)], and is
our only explicit example with a unimodular matrix.

Proposition 5.4. We have

181

ZEs (q) =q 60 (F_1730(60T) + F49730(60T) + F41730(60T) + F31730(60T))

_ m2—1 _ 5.10
=—q? > sgn(m)q o0 +2¢7°. (5.10)
m=1,11,19,29 (mod 60)
. 181 1 )
In particular q3600 Zg,(qo0) is a quantum modular form.
Ast— 07, we have
Zpg (€72™) ~ —8nt. (5.11)
Proof. The Cartan matrix is
2 -10 0 0 0 0 0
-12-10 0 0 0 0
0 -12-10 0 0 0
_ |l 0oo0o-12-100 0
M:=119 070 12-10-1][>
000 0-12-10
000 0 0-120
000 0-10 0—1

which has det(M) =1 (thus Corollary and Propositio

5

are guaranteed to apply), and

23456 42 3

36 810128 4 6

1 5130501 8 i

adj(M) =M™ = 6 12 18 24 30 20 10 15
4812162014 7 10

246 8107 45

36 9121510 5 8

Extracting the constant terms with respect to we, w3, wy, and wg in (5.5]), we are left with the
minor along rows 1,5,7, and 8 of M~!. Further rearranging these rows and columns, we now

apply Proposition [4.3] with
51320
A= (3 5 8 15) :

6 10 15 30
This directly gives the first expression in (5.10); the second identity follows from (3.8)) and (3.9).
The asymptotics in (@5) implies (G.ITI). O
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Remark. Lawrence and Zagier studied a very similar series in [I7], namely

with

1 ifm=1,11,19,29 (mod60),
—1 if m=31,41,49,59 (mod60).

Comparing to (5.10), we see that ¢*Zp, (¢) = 2 — A(¢?). Furthermore, Theorem 2 of [I7] shows
that 2 — A(q) is also the rescaled WRT-invariant of the Poincaré homology sphere.

6. GENERAL LEG STAR GRAPHS AND THE PROOF OF THEOREM (2)]

In this section we extend the ideas used for 3-leg star graphs in order to prove the quantum
modularity of Z(q) for (¢ — 1)-leg star graphs with ¢ > 4 (recall Figure [).

6.1. Quantum modularity for (/—1)-leg star graphs. The main result of this section proves
Theorem by giving a more precise description of the quantum modular forms that arise in
Z(q) for (¢ — 1)-leg star graphs.

Theorem 6.1. For any (¢ — 1)-leg star graph, with ¢ > 4, Z( ) is a linear combination of

derivatives of (up to g-powers) quantum modular forms of weight L 5 or g’

Remark. The quantum modular forms in Theorem [6.1] do not necessarily have the same quantum
set.

Before proving Theorem [6.1] we require some auxiliary results. As in Section A1), we have

73N+Z]VV:1 ay

2@ =1 py / ;)th)@,

(2mi)N o1 (U)Z B wz—l Wy
where
-1 dwy
h(wy) := / O (w) H (wr — wr—l) H
|wy |=1 r—1 1<k<n Uk

Proposition 6.2. For (¢ — 1)-leg star graphs, we have
3N+ a Oy (w 5_1 wy —w: !
(W wy )

Proof. The statement amounts to the claim that the residues of h(wy)(w, —w, )™ at wy = £1
vanish. Plugging in (2.3]) and observing that the only poles in the 1ntegrand are wg, = 0, we have

/-1
h(wﬁ) = CTU}I,“‘7wl—17w€+17‘“7wN Z q 2mw ® H (wr - wr_l)

meMZN r=1
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Now (B1)) gives

h(we) = (1) > my - my_y g9y
my,---,my_1€{£1}
m=(my,,mg,0, 00T eMZN

Corollary [33] then implies that
h(wy) H (wy)
CTy, (ﬁ) = CTy, (F )
(we —w; ™) ¢ W

my—L€+5 oy —
H(wy) := ( — Z my - Mmy_q <£7> qu(m)wé =t (6.1)
: {—4

2
ma,my_1€{£1}
m=(m1, ,mg,0, 00T eMZN

As in the proof of Theorem B2, Lemma @4 gives that m € MZ" if and only if —m € MZN. We
can therefore change m — —m and use (3.1 in order to obtain

H (w;') = (=) (=1)""H (wg) = —H (w).
The proposition statement follows from Lemma [3.11 O

We are now ready to prove Theorem [6.1]

Proof of Theorem [61l We follow the basic approach from the proof of Theorem Applying
Proposition [6.2] and recalling (6.1]), we have

73N+Z£\]’:1 ay
2

_q -t
mg—0+5 oy wpe i
X CTUJ[ Z my - My_1 <%> qQ2( )57_1 . (62)
ml,m,mgflé{:tl} -4 We — 'UJZ

m=(my,,mg,0,,0)T eMZN

Lemma 4] again implies that there exists an additive subgroup S C (Z/DZ)" such that
m € MZ" if and only if m = s (mod D) for some s € S. Let T C S be the subset of elements of
the form s = (g1, ,€¢-1,9,0,---,0)7 € S, where ej =+1 (modD), and g is a residue modulo
D. We can therefore write the constant term from (6.2]) as (ignoring outside constants)

mg—0+5 oy wp
T, [ 3 T e <%> @ ()
{—4

Wy — W
seT m:(€17"'762717m2707'"70)T ¢ ¢
my=g (mod D)
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As before, T'= —T. Combining with (3.5]), we pair the s and —s terms, so (6.3]) becomes

—my

1 mg—4£+5 wy" —w
-CT E1-+ €1 <7> gQ2(m) ¢ L
2 wy Z Z . 2 i—d ’LUZ 4 (wZ —w, 1)

SeTm:(€17"'762717mf707'"70) ¢
my=g (mod D)

We now apply [B4) to the inner sum for a particular fixed s = (eq,--- ,£¢-1,9,0,---,0)7 € T,
which gives a sum of the form (ignoring all outside constants and g-powers)

m—{+5 w” —w™™
cT,, (m52) g
m=g %n;od D) 2 -4 w (w B w_l)
m—{l+5 m—{+5
= > ( 5 > Ojm|ze—s sgn(m)q?™ = 3" < 5 ) sgn(m)q@2(™).
m=g (mod D) €4 m=g (mod D) =4
m=(—3 (mod 2) m=(—3 (mod 2)

The last equality follows from observing that (m_TM)e—4 = 0 for all m that satisfy |m| < ¢ —3
and m=/¢—3 (mod?2).
We can therefore express Z(q) as a linear combination of series of the form

m—{+5 Lam?+bm4-c
> (f) sgn(m)gzamthmte, (6.4)
— {—4
m=g (mod D)
m=(—3 (mod?2)

where a € N, b € Z, and ¢ € C. We now simplify the system to a single congruence as in (£.12]).
If D is odd, then the system becomes m =t (mod 2D) for some t. As before, we complete the
square in the g-power to obtain that (6.4 equals

£ smm) <m—7€+5> g5 (mth)’ (6.5)

2
m=t (mod2D) -4

Note that the Pochhammer symbol can be decomposed as

(5, (o)) (i)

where P, and P, are polynomials of degrees at most {74 an
write (6.0]) as (ignoring the outside g-power)

£(@) + Pi(D) (Furspap (2aD?7)) + 2DPs(D) (Gartpap (2aD?7)), (6.6)

where D := qd% and where f(q) is a finite series in rational powers of g.

If D is even and g is odd, the calculations are analogous, with the only difference being that
the modulus 2D is replaced by D (which may be written as 2k). Recalling Propositions B35,
and 37, in all cases we can therefore express Z(q) in the desired form. O

|, respectively. We can now
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Observing that for £ = 5 the polynomials P; and P, in the proof of Theorem [6.1] are constants,
we obtain a special case.

Corollary 6.3. For any 4-leg star graph, Z(q) is a linear combination of quantum modular forms
3

(up to q-powers) of weights % or 5.
Remark. We are currently unable to prove that Z(q) is quantum modular on a dense subset of
Q. The key issue is that in Proposition we have three different types of quantum sets for the
functions G . These three sets are pairwise disjoint, so we would have to prove that only one
type can occur in a decomposition of Z(q).

6.2. An example of Z(q) with quantum set C Q. In this section we construct an example
of a 4-leg star graph such that Z(q) is a linear combination of quantum modular forms (up to
rational g-powers) that are not defined at all roots of unity. In particular, in this example Z(q)
is undefined at g = 1.

Consider the 4-leg star graph with matrix M

1-1-1

3 —1-1-1-1
-13 0 0 0
M = <—1 0 3 00 >,

-10 0 3 0

-10 0 0 3
which is clearly positive definite.
Proposition 6.4. For the matrix M given above,

2
Z(q) = —gq%Fzg(?)OT) + 5¢5 Ga.3(307). (6.7)

Both F53(307) and G23(307) are quantum modular forms on

S = {% € Q:ged(h, k) = 1,3|k:,4fk‘},

but Z(q) is not defined on all of Q.
Proof. We have

2(q) = €T, <@M<'“’) N 1>> |

1\ 2
(w1 —wy 1)
As this example is relatively straightforward, we take a direct approach to evaluate Z(q), rather

than switching to ([2:3]) and following the “inverse matrix” approach that appears in the proofs of
Theorems and Plugging in the matrix, we have

w3n1—n2—n3—n4—n5 5
20 = 3 o 0, (S LT (- ).
nezb (wl —w ) 2

r=

Applying [B1]) for we,ws,wy, and ws introduces the relations 3n, —n; = £1 for 2 < r < 5,
which further implies that all n, must be equal. Writing the common value as n, we then have
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n1 = 3n £ 1. This yields that

ZZqQ1(3ni1nnnn) CT, ( w3BnED)— > ZZW (150710043) oy, ( W3 > |
(

+ nez (w —w1)? + nez
Corollary B3] implies that

w™ m w1
ot () = 30 (75

15 wonE3-1
qu 2:|:5n+ 5n:|:3) CTy <m>

* nez

Thus

(6.8)
5n+3 _ ,,—5n—3
:_Z lo 2+5n+ 571+3)CTU, <w u)_l >7

nez w(w —w )
where for the minus term we change n — —n. We now apply (8.4]), which implies that

CTy < ww — w-1) > = Oj5m43>2 O5m+3=0 (mod2) SEN(5M + 3) = dp=1 (mod2) SgN(M).

Thus (6.8) equals

1

LS o+ 9

m=1 (mod 2)

A direct computation then gives (6.7)).
Note that Proposition implies that the series G2 3(37) has the quantum set

{%e@:@amm:13m2w}.
We therefore have that

&{heQ gahm_1akzm}

is a common quantum set for both Gg3(307) and F53(307). It is not hard to see that this set
equals S.

To finish the proof we are left to show that lim; o+ Go3(e™") does not exist. This follows
by following the well-known technique of Euler-MacLaurin summation for asymptotic series (see
Proposition 6.5 of [22]), and a short calculation verifies that the main term diverges. O

7. CONCLUSION AND FUTURE WORK

(1) In this paper we demonstrate the quantum modularity of Z(q) (up to a rational power of q)
for every 3-leg star graph. In order to extend this result to general n-leg star graphs we need
a better description of the individual quantum modular forms appearing in Theorem As
we discuss above, it is not clear whether the individual sums have a common quantum set.
Note however that in all of the examples we have checked this is the case.
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(2) More complicated (and interesting) examples of Z(q) functions arise from non-star graphs
such as (see [10]):

a2 as

a a4

as ae

The series Eo(q) in these examples are reminiscent of double false theta functions studied in [2].
It would be interesting to determine quantum modular properties of such series.
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