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Abstract

In 2015, Lovejoy and Osburn discovered 12 g-hypergeometric series and proved that their Fourier
coefficients can be understood as counting functions of ideals in certain quadratic fields. In this
paper, we study their modular and quantum modular properties and show that they yield three
vector-valued quantum modular forms on the group I(2).

1. Introduction and statement of results

Starting with the work of Andrews, Dyson and Hickerson [1] and of Cohen [4], a surprising inter-
play has been uncovered between g-hypergeometric series, real-quadratic fields and classical Maass
forms. They discovered this interplay by exploring the now famous function

[ C]T
=S4 1.1
o) Z:;) (=4:9), (a-h

which was first studied by Ramanujan in his lost notebook [11]. Here and throughout (a;q), = (@), :=

H]':Ol (1—aq’) for n € NyU{oo}. A key step in the analysis of [1] is the use of Bailey chains to

rewrite o(q) as a ‘false-indefinite theta function’:

alg)= Y, (=1 (1= g™ 5" .
n>0
—n<j<n

This representation allowed the authors of [1] to relate the Fourier coefficients of o(q) to the arith-
metic of the real-quadratic field Q(1/6) and to prove many interesting properties for these Fourier
coefficients, which are not obvious from the combinatorial interpretation of the g-hypergeometric
series in equation (1.1). Through this arithmetic interpretation, it was also possible to extend the
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2 K. BRINGMANN AND C. NAZAROGLU

Fourier coefficients of o(g) in

oo
=Y. T(24n+1)q"
n=0

to a sequence 7'(24n+ 1) defined for all n € Z. This led the authors of [1] and [4] to a partner g-series

]

a'(q): ZT(1—24n)q =2 Z ’"+qu2 e (1+q< ))

n=1 >0
2k23m+1

which also has a representation as a g-hypergeometric series:

Now the remarkable fact discovered by [4] is that the Fourier coefficients of g(q) and o”(¢) are those
of a Maass form defined as

=T Z T(24n)K,(27|n|r,)e*™ ™ for T =1, +it, € H,

nEZ+ 2

where K, denotes the K-Bessel function of order v. As reviewed in Section 2, Maass forms are
invariant under modular transformations, and this forms the number theoretical aspect of the three-
piece interplay with the combinatorial and algebraic aspects mentioned above.

The expressions for (¢q) and 0" () as g-hypergeometric series are related to each other under the
transformation ¢ — ¢~' as noted by Cohen (see [4]). Building upon these results, Zagier showed in
[12] that

f(x) =™ lim g (27040 = —¢ ™ lim ¢ (e~ 2milv=in))

t—=0* t—0*

is a so-called quantum modular form, which further elaborates the relation discussed above. Recall
that in the simplest case, a quantum modular form of weight k and with quantum set Q C Q is a
function g : Q — C whose obstruction to modularity

_ —k ax+b) a b
g(x)—(cx+d) g(cx+d for { = 4 eI cSL,(2)

is analytically ‘nice’, for example it extends real-analytically to R\{—%} More generally, one
can discuss vector-valued generalizations with non-trivial multiplier systems (as in Theorem 2.8)
and require stronger analytic properties from the obstructions to modularity such as holomorphicity
(as in Proposition 2.3 and Remark 2.4).
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 3

At this point we should note that the discussion we have had so far is not a peculiar property of
the functions o(g) and 0" (g). Since the work of [1] and [4], a number of generalizations have been
investigated in [2, 3, 6, 9]. In fact, the main focus of this paper is on such a generalization developed
by Lovejoy and Osburn [10]. They studied 12 g-hypergeometric series defined as

wom X e 0B e o
L@ =0 3 l)mifgq?'ﬁ(';/w;z >( - w3 G l)nig)??n;m <>)
_q1<zk<n T )<qqq> Fsld) :=1§5n<1(—q)22+k1(>< o )<q>
:=20§;<l<_‘;351ff?§;f_?szzl>k’ =192 3 ;f?;ff;)’
b= 2, <_<i)—2(_]>><(qq>)<qq>  hol@=a 2 e kl<qq> —
R PRI e

where the symbol * indicates that we take the average of even and odd partial sums (in #) to obtain
convergence. They then showed that these functions are also related to the arithmetic of real-quadratic
fields. In particular, L,,...,L, count ideals in the ring of integers (9@( V2) of the real-quadratic field
@(\@), Ls,...,Lg count ideals in O@(ﬂ) and Ly, ...,L,, count ideals in OQ<\/5>. In this work, we
investigate the modular aspect of these functions and prove the following result:

THEOREM 1.1 The limits

o 17]7éi.x Ll ( 27ri(x+it)) e 97”” < 277 x+zt))
Trix I7mx
2771 (x+it) 271'1 (oc+ir)
hm ¢ ::’m»lz (e 2. ) s hm Smix <2 ) s
=0 | e 716 Ly (27 >0t [ e Ly, (2T )
Imix ; ; 197nx
— 27X 27t (x+it Tri(x+it
e Ly (271) Ly (270)

as well as the finite part of

2 arctanh ( %)

—me (6‘27” (oc+ir) )

e’%”‘ L7 (e2m(x+tt))
z’m ( 27Tl(x+tt))

e—sz ( 27Ti(x+it )

ast— 0f

e

all form vector-valued quantum modular forms over the group T'y(2).
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4 K. BRINGMANN AND C. NAZAROGLU

O] #(r): Completed mock Maass theta function
39,(7): False-indefinite theta function + Not an eigenfunction of Laplacian
+ Modular invariant

Eichler-type integral:

o i Adding shadow
@ =-—| [0,,R (]
i T

contributions

0,(7): Mock Maass theta function

+ Eigenfunction of Laplacian
* Not modular invariant

Figure 1. Interrelations between mock Maass theta functions, their modular completions, and false-indefinite theta functions.

More precise statements are given in Propositions 4.5, 5.5 and 6.5. The quantum modular forms
f;» 6; and b; referenced in these propositions are related to the functions L; given above by Lemmas
4.2,5.2 and 6.2 and equations (4.4), (5.3) and (6.3).

To prove these results, we relate the functions L; to Maass waveforms with the technology of mock
Maass theta functions developed by Zwegers in [14]. These objects give a rare and precious glimpse
into the behavior of false-indefinite theta functions under modular transformations. As reviewed in
Fig. 1, mock Maass theta functions are certain theta functions that are eigenfunctions of the hyper-
bolic Laplacian that are in general not modular. Their construction ensures that they give rise to
false-indefinite theta functions under certain ‘Eichler-type integrals’ following the work of Lewis
and Zagier [7]. The one-form appearing in the integral is closed thanks to the hyperbolic Laplacian
eigenfunction property of the mock Maass theta function. If it is further true that the mock Maass
theta function is modular invariant, then we can find the obstruction to modularity for the corre-
sponding false-indefinite theta function as a period function of the aforementioned one-form. The
question of modularity, on the other hand, can be studied through Zwegers’ modular completions for
these mock Maass theta functions. In the special cases where the completing ‘shadow contributions’
cancel each other thanks to symmetry, the mock Maass theta function becomes a Maass waveform
itself and the modular properties of the false-indefinite theta function then follows.

If the functions L ; are rewritten as false-indefinite theta functions, such cancellations indeed occur
as we show below and the corresponding mock Maass theta functions are modular. That in turn
implies corresponding modular properties for the functions L; on H as discussed above. For the case
ofL,...,L, and Ly, ..., L,,, these Maass forms do not have constant terms in their Fourier expansion,
and the arguments of Zagier [12] immediately apply to give the quantum modularity results stated
above. However, for the functions Ls, ..., Lg, the corresponding vector-valued Maass form does have
a non-vanishing constant term and as a result the corresponding Lj(e2” i+i1))s have divergent pieces
as t — 0" depending on j and x. So a novel technical aspect of this work is the handling of these
divergent pieces to show that the remaining finite pieces lead to quantum modular forms.

This paper is organized as follows: In Section 2, we review and expand on the relation between
Maass forms and quantum modular forms, with a particular emphasis on the aspects needed if the
Maass form in question has non-vanishing constant terms. In Section 3, we review the work of
Zwegers on mock Maass theta functions and their relation to false-indefinite theta functions that
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 5

appear in this work. Then in Sections 4, 5 and 6, we analyze the functions L, ...,L,, Ls,...,Lg and
Ly, ...,L,,, respectively, and prove the results asserted in Theorem 1.1. Finally, in an appendix we
display various numerical results that exemplify our discussion in the body of this paper.

2. Maass Forms and Quantum Modular Forms

In this section we consider quantum modular forms related to Maass forms. First we recall the
definition of a (vector-valued) Maass form.

DEFINITION 2.1 A set of smooth functions U; : H — C with j € {1,...,N} is called a vector-valued
Maass (wave) form for the group I' C SL,(Z) if it satisfies the following conditions:

(1) Forall M = (Zf) € I" we have

l’j<mb> D, (k) U, (1), 2.1)

ct+d pur]

where W), is a suitable multiplier system. Here and throughout we assume that ¥;, is diagonal
onT ::Fn{i(é’f) ‘n€Z}.

(2) There exists a A € C such that A(U;) =AU, for each j, where A := —T%(g—:z+ g—:z) is the
1 2
hyperbolic Laplace operator on H.

(3) The functions U; have at most polynomial growth near the cusps.

The Maass forms U; with Laplace eigenvalue 4 = i —v? (where v € C) have a Fourier expansion
of the form

where, for some constants d;(n), b;, c;,

b; l?g(fz)\/‘?+ ¢y ifv=0,
3+

a;(ty;n)=d.(n)/T,K,(27|n|t,)if n#0 and a.(7,;0)= 1_
;1 (Tyin) =d;(n) /K, (27|n|T,) ;(75;0) {bjrf * o) v 0.

In this paper, our interest is on Maass forms with Laplace eigenvalue %. More specifically, we
study functions U; : H — C, j € {1,...,N} forming a vector-valued Maass form for I' C SL,(Z) with
Fourier expansion
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6 K. BRINGMANN AND C. NAZAROGLU

Ui(t) =cvm+T D, di(n)Ky(27lnlzy)e?™ ™, (2.2)

n€Z+a;
n#0

where the coefficients dj(n) have polynomial growth in n. Following [7] we then define (throughout
this paper we use the principal branch of the logarithm to define the square roots)

R =——Y2  and [U(2).R,(2)] = 0U, ()R, (2)ds+ Uy()3R, (2)dz,
(z—1)(Z—71)

where 9f (z) := 6./;7(;) and 9f (z) := ag%?. For each j, the one-form [U;(z), R, (z)] is closed thanks to the
1

fact that both R; and U; have eigenvalue ; under the Laplacian. Using these closed one-forms, we
defineu; : H > Cand U; ,: C\ (p+iR) — C by (we also define U; ;,(7) := 0)

2 ico 2 ico
=2 [ WeRE] w w0=2 [ Gere, e
T 2
for any
. a, b, . d,
PEQr:=qx€Q: thereexists M, = o d €TI'with x = [ 2.4)

The latter function is a period function that can be analytically continued in 7 to a cut complex plane
and that satisfies a functional equation under modular transformations. The correspondence between
Maass cusp forms and their period functions was first elucidated by Lewis and Zagier in [7], where
they also recognized its role similar to that of period polynomials for holomorphic cusp forms. The
integrals are independent of the integration path, but for concreteness we assume throughout that the
integrals are taken along vertical paths. Now the results of Lewis and Zagier in [7] and of Zagier
in [12] show that if the U;s form a Maass form with ¢; = 0 for all j, then the limits lim,_,q. u; (x +if)
exist for all x € Qp and they form a quantum modular form for I'.

Among the functions we study, L,,...,L, and L, ..., L, indeed fit into this framework. The func-
tions Ls,...,Lg, on the other hand, are related to a vector-valued Maass form with a non-trivial
constant term. So in this section we develop the technical details for how the results of [7] and
[12] extend to this case.

REMARK 2.2 In [7], a discussion of non-cuspidal SL, (Z) Maass forms was given (see equations (4.4)

and (4.5) there with s = % —v). However, note that the constant term bjl'z% U CJTZ% g degenerates for
v =0, which is the case of interest in this paper, and we have not found an interpretation for the
constant term given in (4.5) of [7] (that would correspond to the constant term of ;) to reproduce
our result in Proposition 2.2.

We start with an elementary result that relates the Maass waveforms discussed here to g-series.
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 7

PROPOSITION 2.2 The functions u; for j € {1,...,N} are holomorphic on H and they satisfy

n€Z+a;
n>0

Proof. This basically follows from the results of [7]. A detailed exposition for the case ¢; =0

can be found in Proposition 3.5 of [8]. The contribution of the constant terms ¢ follow from a
straightforward computation. U

Next we note the analytic properties of the functions U; ;.

PROPOSITION 2.3 For j € {1,...,N} and p € Qr, the integral defining U, ,(z) is convergent for all
z € C\ (p+iR) and defines a holomorphic function there.

Proof. Again this result basically follows from [7]. Here we give details both for reference and also
to point out the new ingredients that appear in the presence of constant Fourier coefficients. We start
by writing

uj,p(r)=21ﬂf0 <4it5U,-(p+it)—::((TT:p)) (p+1t>\/\/t2T7p

Then letting p = for M= ( ) €T, we can use the modular transformations (2.1) to write (for
any 7>0)

L (=, d \ t+i(r+4 d . dt
uj’p(f):zn'f (4”5(]] (_E +lt> _l‘_l((7_'+51>)[]j<_c +lt>) m (25)
T ¢ W+ (t+4
1 R et a i\ t+i(t+?) ra i dr
_27[;1}[}”_1(]’]()./(; (CztaUk <C+C2l>+t—i(1’+g) Uk<C+C2t> —\/ ( )2.

Now looking at the Fourier expansion in (2.2), we find that for any € >0 we have constants C,,D > 0
such that for all 7, > € and for all j € {1,...,N} we have

U,(1) =,/ [4idU, () — if < Cem, 2.6)

thanks to the exponential decay of K-Bessel functions toward infinity. So separating the constant

terms of U and 0Uss, it is easy to see that their contribution to (2.5) is convergent and yields a holomor-
phic function. The contribution of the constant terms can then be separately checked to be convergent
and to be holomorphic for all z € C\ (p+iR). ]
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8 K. BRINGMANN AND C. NAZAROGLU

4

)
i

T W\

~-

Figure 2. Analytic continuation of U; ,(z).

REMARK 2.4 Here it is also useful to note that by deforming the path of integration and the cut
associated with the square roots as in Fig. 2, one can analytically continue U; , (z) from the half-
plane Re(z) > p to the entire cut-plane C\ (—o0,p]. Similarly, we can continue U;,(z) from the
half-plane Re(z) < p to the entire cut-plane C \ [, o).

Now we are ready to state the modular transformations of u; on H.

PROPOSITION 2.5 For M := (f Z) €T and T € H with 1, # —4 we have

at+b N
U | —— | = cty+d)(ct+d W, (j.k) lu U, _4 .
((85vd) =sentern ) ew v 20 () (1 (2)+ 2y 0)

Proof. The statement is trivial for c=0, so we assume that ¢ # 0. We start with the definition in

equation (2.3) for uj(g:(?) and make a change of variable z — ‘C’;:Z to write

d
atr+b 2 (¢ az+b az+b
. =—= U. JRacwr | ——
u’(cr+d) ﬂ[ [ ’(cz+d> ﬁ(cz+d>

where the integral is taken over a piece of hyperbolic geodesic from 7 to —%. Now we note that

k)

7> =Xy (T.2)(cT+d)R,(2),
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 9

where

V=D E=T) ¢y

Xu(T:2) = cTt+d

Since we are using the principal values of the logarithm to define square roots, R_(z) is discontinu-
ous on the z-plane along the vertical cut from 7 to 7. Then following the modular transformation, the
sign factor y,,(7,z) is discontinuous along this vertical line and along another piece of a hyperbolic
geodesic emanating from 7 (to which the vertical cut of R,(z) transforms). Moreover, on these dis-
continuity cuts themselves, the sign factor yx,,(7,z) takes a constant value (since R, (z) is continuous
if it is restricted to its vertical cut). In particular, y,,(7,z) is constant along our integration line, which
itself is a hyperbolic geodesic from 7 to —4 . We can determine this sign to be sgn(ct; +d) by setting
z=-42 <. Then using the modular transformatlon in (2.1) and using our freedom to deform the path of

integratlon to write fr ¢ = T’°° — /™% we obtain the result. ad

Our next goal is to define a function on rationals by taking vertical limits of uj(f) and removing
the growing pieces.

PROPOSITION 2.6 For any M := (‘C‘ Z) € ' with ¢ # 0, the limit

. d
SRR .

exists. Moreover, the same limit is obtained for any element of T in the same equivalence class as M
in T \I'. Using this limit we can define the functions u; : Qr — C by

e Vin 1 & )
u(x) = tlir(1)1+ ( u;(x+it) — - ) withy;, = o] ;‘I’M;l (j.k)cy
Here x = —f—j and M, = (‘;i Zi) € T as in the definition of Qr in (2.4).

Proof. We start by explicitly writing the expression for u; (1) in (2.3) as

W
,/v+1'2(v+21'2)%

ﬁ\/v+2r2

Ui(t+iv) dv. (2.3)

1 o0
u;(t) = 2f —4idU, (T +iv) ————=
0

T

Inserting 7 = —% +it and separating the integral into two pieces as fol and fl°°, we easily find that
the limit r — O* exists for the latter piece and can be computed by setting 7 =0 thanks to the bounds
in (2.6). For the integral [ 1, on the other hand, we use the modular transformations in (2.1) and
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10 K. BRINGMANN AND C. NAZAROGLU

separate the constant term to rewrite this contribution as

ZHCzZ‘I’M G ">fl (0 (£ g ) weene=1) ﬁ\/ﬁ;w)

*fzq’M"’ /( <Ccl+c2<vi+r>)‘|c|7(m) m{fmﬁ”’”

Ny k) .
7T||Z u-rlJ k./\fv+2t3

dv

(%)

Next we use a looser version of the bound in (2.6), namely that for any ¢>0 we have a constant
B, > 0 such that for all 7, > € and for all j € {1, ...,N} we have

< % (2.9)

. C;
4i0U;(t) = —=| < 2

Vo

|Uj(7) = v/

Using these two bounds, we find that for 7,v < 1 the integrands in the first and second lines can
be bounded by \% and C+/v, respectively, for an appropriate constant C >0. Thanks to these upper
bounds and to the fact that the integrands are continuous at ¢ =0, for those two terms, the limit ¢t — 0*
exists and they can simply be taken by explicitly setting #=0. The third line, on the other hand, can
be explicitly evaluated and we find that the piece of it that grows as r — 0" is removed by the term
LSV @, (j.k)e, in (2.7)
alelt Lig=y ¥ MK e
Finally, the fact that the same limit is obtained for any € I" (with r € Z) follows from
the diagonality of the multiplier system over I u

<a+rc b+rd )

Now the functions u ; are defined through vertical limits in H, we show how the same functions
are obtained when we slightly deform the path through which we take the limit.

LeMMA 2.7 For any x € Qr and for any smooth function X : R* — R that satisfies X (t) = Bt* + o(t?)
as t = 0" we have

1 (x) = lim <uj (x+it +X(1)) = yf) .

1—0* w(t—iX(1))

Proof. We prove the equivalent statement

lim ( ,~(X+it+X(t>)—u,~<x+it))=%. (2.10)

t—0* - ’ 4
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 11

We start by using equation (2.8) to write

wi(x+it+X(t)) —u;(x+it)

VV+it d
— v
VW +2t

+— oo(Uj()c+X(t)+i(v+t))—Uj()c+i(v+t))) Vv

B AS— )
27 J, Vv+t(v+2t)2

;f —4i0U;(x+X(t) +i(v+1)) +4i0U;(x +i(v+1)))

As in Proposition 2.6, we separate the integrals into two pieces as j; and f1°°. For the contribu-

tions from fl°°, the same argument that we use there can be employed to show that the limit t — 0*
can be computed by explicitly setting #=0 inside the integrands. In particular, this shows that the
contributions from fl°° do not contribute to the limit in (2.10).

To study the contributions from f’ ! weletM = <i Z) €I be such that x = —% and use modular
transformations by M~! to rewrite them as

RN : a [ Vv+i
Y Wi (k) | 40U, | -+ . d
27rc2; wU )/ l "(c c? V+t—zX(t))> VWY H2t(v+1—iX(1))2 ’

0

(
1 & a i ) 1
——— > W (), 40U, [ — dv
277.'62; w1 )/0‘ k(c 2(v+1) \ﬁw/v+2t(v+t)%
| & ! (a i ) NG
+— > W, i),k U, | —+ - dv
2 2 Pt )fo et avr-xm)) e

1 & ! a i Vv
—— > W,k U | —+ dv.
Zn; w1 )/0< k <c cz(v+t)) v+t (v+2t)%

Now we choose T < 1 to be small enough that |X(¢)| < ¢ for all 7 € [0,T]. Then for v € (0,1)

m(%s_ = s 1
c Alv+r—iX(1)) ~ 4%

As in the proof of Proposition 2.6, this allows us to use the bounds in (2.9) to show that once we
remove the constant terms of U, and dU,s we can take t — 0* by setting =0 inside the integrands
and hence we get no contribution to the limit in (2.10) from such terms. This leaves us the contribution
from the constant terms:

€202 11dY 0 UO J9sn "Jqy “Pa| ‘UI20Y 3OUIOIIGIGIPEIS Pun -SjeeyisIoAun Aq 6€Z160./S00PEEY/YIEWD/EE0 L0 L/10p/a[o1e-80uBAPE /Y ewlb/woo"dno-olwapese//:sdny Wwoly papeojumoq



12 K. BRINGMANN AND C. NAZAROGLU
1 ZN:IP (i) f‘ X(1)2+(v+1)?2 1
- _i(j,k)e —
2mle| &M PR b \ VWV E2t (vt —iX (1)) W H2L(v+e)
N Vv - Vv N
X(1)2+(v+1)2(v+26)2  (v+1)(v+21)2
Ve [T 1 (v+1)? iX(t) v+2
K2 3 2 U t (v+1)?
h 2\ (i)’
X(1)? 1 iX(t) v+2

- T+ 5 dv,
(X(t)2+(v+1)2>2 t (v+1)

2

from which it is easy to see that the first two terms in the outer parentheses give vanishing contribu-

tions as  — 0*, whereas the contribution of X t(t> (Vv:12)2 gives the right-hand side of (2.10) and thereby

concludes our proof. u

We are now ready to state the quantum modular transformation properties of the functions u;.

THEOREM 2.8 For any M := (‘; Z) €T and x € Qp \ {—2} we have the quantum modular transfor-
mation property

W, (M> - |cx+d|ZN:lPM(j,k) (uk(x)+l(k’_%(x)> .

cx+d paet

Proof. We start by noting that ¥,, is a multiplier system for a weight zero modular object
(see equation (2.1)). Therefore, it forms a genuine representation of the modular group I' (as opposed
to a projective one) and this leads to the identity

=

2 ¥ (k)Y = lex +d1Y, as . @11)
k=1 )

So plugging in 7 = x + it (with # > 0) to the modular transformation worked out in Proposition 2.5 and
using (2.11) we obtain

ax+b it Y axtb
; + — == (ex+d)(cx+cit+d
Y (cx+d (cx+d)(cx+cit+d)> it (cx-+d)(ex+cit +d)

=sgn(cx+d)(cx+cit+d)

TM-

Wy (k) (uk(x+it) - % + uk’_g(x+it)) .

By Propositions 2.3 and 2.6, the right-hand side tends to the right-hand side of the claim as z — 0*.
Finally, we note that the left-hand side tends to u;( @ty a5 t — 0* by Lemma 2.7. O

cx+d
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 13

3. Mock Maass theta functions

In the following sections, we see that the functions L, ..., L, can all be expressed in terms of certain
theta functions of the form (note that throughout we write vectors in bold letters)

2, (I=sen(B(n.cy))sgn(B(n.c,)))q%", 3.1

n€Z%u

where Q is a quadratic form of indefinite signature and the vectors ¢; and ¢, of negative norm ensure
convergence. Such functions are not as well-studied as similar-looking indefinite theta functions of
the shape

Y. (sen(B(m.cy)) —sgn(B(n.cy)))q?",

n€Zd+pu

which are known to yield mock modular forms thanks to the groundbreaking work of Zwegers [13].
The functions in equation (3.1), which are hybrids of indefinite and false theta functions, do not easily
fit into a modular framework; but they are still interestingly related to the so-called mock Maass theta
functions developed by Zwegers in [14]. In this section, we review the properties of such functions
for our later use.

First, we restrict ourselves to 2-dimensional lattices and let Q be a binary quadratic form of signa-
ture (1, 1). Throughout the paper we assume that Q(n) is integral for all n = (n, n,)” € Z? (in which
case we call the quadratic form even) and that Q(n) = %nTAn, where A is a symmetric 2X2 matrix.
Finally, we let B denote the bilinear form associated with Q as B(n,m) =n’ Am.

Next, we recall that the set of vectors ¢ € R* with Q(¢) = —1 splits into two connected com-
ponents. Fixing a vector ¢ in one of the components, all the vectors in the same component are
characterized by

Cp:={c€R*:Q(c)=—1,B(c,cy) < 0}.

In particular, if B(c;,¢,) <0, then ¢; and ¢, belong to the same component. Similarly, the set of
vectors ¢ € R? with Q(c) = 1 splits into two components, as well. Choosing ¢y as one of the two unit
vectors that are orthogonal to ¢, all the unit vectors in the same component are given by

C5={ceR*:0(c)=1.B(c.cy) > 0}.

It is convenient to parameterize C, and Cé using the reference quadratic form Q,(x) = x7 —x3.

For this, we let P € GL,(R) be such that

2 0 {0 (1
A=PT(O _2>P, P1<1>ECQ and P1<0>ecé.

Then we parameterize the vectors in C, and Cé by letting

inh h
c(t) =P (ig;h((?)) €c, and c*(t):=P""! (‘;i’;h((g) ecy forreR. (32
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14 K. BRINGMANN AND C. NAZAROGLU

Also, when we consider a number of vectors ¢ € CQ below, it is convenient to let 1€ R be such that
- L_ .l
c(t;) =c; and let ¢;- == (f;).
REMARK 3.1 The reference quadratic form we choose here is convenient since the quadratic forms
in all of our examples are of the form Q(n) = a;n? — a,n3 with a;,a, € N. We then choose C o as the

set of ¢ € R* with Q(¢) = —1 and ¢, > 0, whereas CJ as the set of ¢ € R* with Q(c) =1 and ¢, > 0.

0

Finally, note that we fix P in all such examples by selecting P = (\/(‘;T‘ /G

in (3.2).

) to satisfy the conditions

REMARK 3.2 In [14], Q,(x)=x,x, was used as the reference quadratic form and one picks a

matrix P € GL,(R) such that A =27 (? é)? and P! (_11> € C, to parameterize Cy. By let-

ting P = (i _11 ) P, we can see the equivalence of the two definitions up to the extra requirement
P! ((1)) € Cé here. To see why this extra condition is included here, note that one can multiply any

P as defined in [14] on the left by (_01 _01 ) This preserves both of the conditions A = P (? é) P

and P! ( _1]) € Cy. However, this changes the parameter 7 on Cj, as ¢ — —7 (and in particular

1; = —1;) while also changing cjl - —cjl. Consequently, this transformation changes the overall sign
of the mock Maass theta functions defined in [14], whereas the extra condition here eliminates this
ambiguity.

With this background at hand, we follow Definition 2.3 of [14] and define the completed mock
Maass theta function (with u € R? and ¢4,¢, € Cop)

5]
Bun) =0 0) = vE 3, o [ enctiear (33)
n€Z+pu H

Note that it satisfies the basic properties

~

©_,(1)=0,(r) and ©,,,(r)=0,(r) foralldeZ*.

More importantly, such functions are covariant under modular transformations as shown in [14].

THEOREM 3.2 (Zwegers) Let Q(n) = in"An be an even quadratic form of signature (1,1) on Z*
and let u € A=\ Z2/Z2. Then we have the following transformations:

~ oA ~ 1 1 B A
0,(t+1)=WO (1), © (—7) = e~ mBBYP, (7).
g g “U o) Vldea)] Z/ ”

The multipliers in Theorem 3.2 agree with the Weil representation associated with Q, so we can
just as easily state the modular transformation under any element of SL,(Z) (see for example [5] for
further details on Weil representations). We state this result more explicitly for later reference.
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 15

THEOREM 3.3 Let Q(n) = %nTAn be an even quadratic form of signature (1,1) on Z* and let u €
A~'Z2/7?. Then, for any M = (‘: Z) € SL,(Z) we have

@M (%) = Z ¢M( ”))@v<f)’

veA~172/72

where

lcv/]det(A)]

ZmabQ(#)aﬂysgn @ | ifc=
Yypv)i=< 1 ¢ *F (@Q(mgn)=B(m+pu.v)+d0() i ¢ £ (),
mez?/c7?
The functions @M are closely related to the mock Maass theta functions defined by [14] (here and
throughout the paper sgn(x) := pp forxr e R\ {0} and sgn(0) :=0)

0,(17) : *Sgn( 1)V D, (1=sgn(B(n,e;))sgn(B(n,c,))Ko(2wQ(n)z,) e 0
n€Z*+u
n#0

+= sgn( -1 \FZ(I—sgn( <n cl>)sgn(B(n,ch>)>Ko(_2nQ(n)T2)62mQ(n)r,

n€Z?+u
n#0

+(ty = 1))yT0 ez 3.4

The exclusion of 7 =0 from the sums and the addition of the final term (#, —1,),/7,8 2 differs
from [14], but this is an appropriate definition in view of Proposition 3.4. These mock Maass theta
functions are eigenfunctions of hyperbolic Laplacian with eigenvalue i and hence are related to the
theta functions we encounter in equation (3.1) through equation (2.3) and Proposition 2.2. More
specifically,

2 ico
ICEEES IRCHENAE)
satisfies
9, (1) =~ L=h Spez2 + sen(, =1) z (1—sgn(B(n,c;))sgn(B(n,c,)))q2™. (3.5)
d 2 neZ*+u
n#0

Our first step toward understanding the relation between the mock Maass theta functions ©, and
their completions @# is the following result (following from Lemma 4.1 of [14]):
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16 K. BRINGMANN AND C. NAZAROGLU

PROPOSITION 3.4 Let Q(n) = 1n"An be an even quadratic form of signature (1,1) on Z* and let
K EATIZ2/72. Also assume that Q(n) = 0 has no solutions on Q* except for n = 0. Then

0,(r) =0,(1) + i (1) — g (1),

where

co] \/*Z tn\/>qQ

n€Z+pu
with

[P i By B(met) >0,
0
a, ()= — [0 e~mBne®)’qr if B(n,cy)B(n,ct) <0,

0 otherwise.

In summary, we can follow the nomenclature for mock modular forms and refer to qof[ﬁ] and qo}fﬂ as

shadow contributions that correct the modular behavior of the mock Maass theta function ©,,. They
do however break the property of being a Laplacian eigenfunction (in a way similar to the breaking
of holomorphy property by completions of mock modular forms).

Now for our purposes, the property of being a Laplacian eigenfunction is crucial for making
contact with g-series such as (3.5) that appear in our treatment of the functions L, ...,L;,. In turn, to
prove modular properties for (linear combinations of) 19” as in Section 2, we need the corresponding

shadow contributions to @# to vanish. One criterion that can be used to prove such a statement is

given by Lemma 5.1 of [14]. It states that if y € GL,(Z) is such that YAy = A, det(y) =+1 and
yCo = Cyp, then we have

[rel s\ _ el
Pra (T) =a (T)-
In our work, we need a modified version of this criterion, which we state and prove next.

LEMMA 3.5 Let Q(n) = 2nTAn be an even quadratic form of signature (1,1), let ¢3,¢4 € Cy and let
¥ € GL,(Z) be such that yT Ay = A, det(y) = —1 and yc3 = +c4. Then

@ (7) = ~gi (1),
Proof. We first assume that yc; = —c4 and note that it is not hard to see that
ye(t) =—c(ty+ty—1t). (3.6)

Then we have (by changing variables as ¢ > t; +, — t and using (3.6) and that y? Ay = A)

) I A
f e—rrB(yn c(t))? Dl = / e—ﬂB(yn,c(t3+t4—t))212dt — / e—ﬂB(",C(t))zfzdt.
1, - —00

4 [o8)
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 17

Similarly, we have

iy o0 o0
f e—ﬂB(yn,c(t))zrz dt = f e—rrB(yn,c(t3+t4—t))21'2 dt = f e—nB(n,c(t))zrzdt‘
P ' t

3 3

Using these identities with the fact that
B(yn.cy)B(yn.c;) = B(yn,~yc3)B(yn.ycy) = —B(n.c3)B(n.c3),

we immediately see that o, (yn/7;) = —a,, (n,/7,) and hence that gog,ca‘] ()= —pled! (7).
For the case yc3 = ¢4, we can write y = (—y ) (—1, ), where —y satisfies the hypotheses of the lemma

with (—y)c3 = —c,4. Then the first part of the lemma together with the trivial identity go[ff‘l] (1) = qo‘[f 3 (7)
(see Lemma 5.1 of [14]) implies the result. U

4. The functions L,-L,

In this section, we begin our investigation of the 12 functions introduced by Lovejoy and Osburn
[10]. We start with the functions L, ..., L, that count ideals in the ring of integers of Q(v/2).

4.1. Rewriting as theta functions
We start with the following lemma, which rewrites L,,...,L, in terms of theta functions as in
equation (3.1).
LEmMA 4.1 We have
1
q_%Ll (q) = 5 Z + Z (1+sgn(n; +n,)sgn(n _”2))618"%_4"%’

nez+( 3) nezze(L 1)’

; 1 o
Fh@=5| X+ % | (smin tm)sentn —m))g¥i,

33 1 nZ_ n2
q 2Ls(q)= 5 Z + Z (1+sgn(n; +ny)sgn(n) —n,))g¥i=*s,

_9 1 4
g 2Ly(q)= 5 Z + Z (1+sgn(n +n,)sgn(n, _”2))618"% it
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18 K. BRINGMANN AND C. NAZAROGLU

Proof. We start with the following identity given in the proof of Theorem 1.1 of [9]

q—17Ll (q32) — Z (q(16n—1)2—2(8j+3)2 +q(16n+1)2—2(8j+3)2>

n>1
—n<j<n—1

+ Z <q(16n+7)2—2(8j+1)2+q(16n+9)2—2(8j+1)2>_
n>0
—n<j<n

First note that the conditions n > 1 and n > 0 can be dropped with the understanding that we are
summing over all pairs (n,j) € Z* satisfying the conditions —n <j <n—1 and —n <j < n, respec-
tively. We then change n — —n in the first sum and n — —n — 1 in the forth sum to obtain the claim
for L,(g).

As the proof of the remaining identities are similar, we just state the related identities from the
proof of Theorem 1.1 of [9]:

q7L2 (q32) — Z (q(16n+3)2—2(8j+1)2+q(16n+13)2—2(8j+1)2>

+ Z <q(]6n+21)2—2(8j+3)2+q(]6n+]1)2—2(8j+3)2> ,

q‘33L3 (q32) — Z (q(16n—1)2—2(8j+1)2 +q(l6n+l)2—2(8j+l)2)

+ Z <q(16n+7)2—2(8j+3)2+q(16n+9)2—2(8j+3)2>

>

_ 143)2—2(8i43)2 " 2 H(Riin)2
g 9L4(q32): Z gl1om3)P=2(8143)° 4 Z gU16m+13)°=2(8+3)

n>0 n>0
—n<j<n—1 —n—15j<n
(16n421)2=2(8j+1)? (16n+11)2=2(8j+1)?
+ q + q .
n;l r;) D
—n—1<j<n+l1 —n<j<n
To express these functions more compactly, we define the quadratic form
Q(n) :=8n} —4n3 4.1)
and the vectors
! (=1 2)T d ! (1 2)T 4.2)
= —=(— and ¢, i=—+ .
o2 272

in C, (as defined in Remark 3.1). For these choices, the theta function in equation (3.5) is
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 19

u(r) =5 Z (1+sgn(n, +n,)sgn(n; —n,))g¥ =+ for u & 72
n€Z%+pu
We can now express the theta functions found in Lemma 4.1 in terms of these 9,,s.
LEMMA 4.2 We have

17

aEL(q) =f(1), qPLy(q)=fi(1), q FLy(q)=fy(1), g FLy(q) =fr(7),

where
, 2i+1 1\T 1 1\
fi(T) Z=~9ﬂj(‘f)+19#j+/l(‘[') with p; == ( T §> and A := (5 5) .
Proof. The claim follows from the relations
S =0 =0y - o

4.2. The corresponding Maass forms

Next we follow (3.4) and define the mock Maass theta functions ©,, for the quadratic form Q in (4.1)
and vectors ¢y, ¢, in (4.2). Noting that the vectors in Cé corresponding to¢; and ¢, are ¢j = %(1 -
and c3 = 1(1 1)7, we find (for u ¢ Z?)

©,(7) = § >, (L+sgn(n, +ny)sgn(n, —n,))Ky (27 (8n} —4n3) 7, ) e¥mi(ri=4)m

n€Z2+u

V)
5

> (1—sgn(2n +n,)sgn(2n, —n,))K, (=27 (8n3 —4n3) 1) e2mi(Bni—dni)r

nEZ%+u
We also have their modular completions given by equation (3.3) and Proposition 3.4:

®M=®”+g0£f‘] —fp,[f I,

In the following it is also useful to note the trivial identities

0,=0_,=06

6,=0 = G)(—Ml w)T = 6(#1 —p)T> M

w= P-p =0 4.3)

—py )T 1 )T

Our main interest is of course on the linear combinations of 9,s given in Lemma 4.2. So for

Jj €{0,1,2,3} we form the corresponding linear combinations of the O,s and @ﬂs to define
F;:= G)ﬂj +®#j+l and F;:= G)#j +®#j+l.

With the next lemma, we show that the shadow contributions to ?7] do in fact vanish and hence the
Fs constitute a Maass form. Note that under any element of SL,(Z), the functions I?J transform
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20 K. BRINGMANN AND C. NAZAROGLU

into a linear combination of completed mock Maass theta functions @# according to Theorem 3.3.
According to Section 3 of [14], we have

< |l2 —1 |e—C1'2(n%+n§)

153
22 f e—Bne(0)’ gy
t

1

for any n, with a constant C depending on ¢; and ¢,. So the infinite series in equation (3.3) can
be bounded from above with an ordinary theta function, and this ensures that each F] has at most

polynomial growth at the cusps. This allows F; = IA*"J to satisfy the growth condition required from
Maass forms in Definition 2.1. The same argument also applies to the relevant functions for Ls, ..., Lg
and L, ..., L, cases below.

LemMa 4.3 Forj € {0,1,2,3} we have

F=F,

Proof. Suppose that y € GL,(Z) is an automorphism such that y”Ay = A, det(y) = —1 and yc¢ = *¢
for some ¢ € Cy,. Suppose moreover that yA =4 (mod Zz) and that y transforms g to g or +(u+4)

] _

modulo Z2. Then the identity ¢, = ¢’ and Lemma 3.5 yield

‘P/[f] + 9",[51,1 =0.

We use this fact with the automorphisms y; := <_43 _32) and y, = (i :2>, which both satisfy

det(y;) =—1and y"Ay = A, as well as y,¢; = ¢; and y,¢, = —¢,. Since

r= ("% B2 =% %) nid=pni=a (modZ?),

we also find that ¥, and y, transform g; to +u; or +(u; +4) modulo 72 to conclude that

B Fy= (ol + ot ) = (ol + o2 ) =0 forall). 0

We next state the details of modular transformations for the F;s under the modular group T';(2),

2mi

which is generated by T := ((1) } ), R:= (é ?) and —I. Here and throughout we use §, ;= ¢ .

ProOPOSITION 4.4 The functions F) forj € {0,1,2,3} transform like a vector-valued modular function

under T'y(2):
at+b 3 .
F, (CT+d> > Ay K)F (1) forall M €Ty(2),

k=0
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where the multiplier system A is as follows for T = (0 | ) and R = (2 X )

S0 0

)
A 1 Ghoos(f5)  Gasin(§5)  GGicos(§F) G sin({)
R= /5
2
V2| dlsin(z) Gheos(3) @sin(3) Gyeos(F)
Hsin(3F)  Gsin(E)  Gheos(f)  &Ghcos(3F)

Proof. The behavior under translation follows from Theorem 3.3 and the fact that Q(u; +4) =

(k) Theorem 3.3, we have
0 ()= D BwvB,()
22 - ) » )
2r+l veA-122/72
where
1 A
¢w,v) - - 7i(Q(m+p)—B(m+p,v)+Q(v))
|det(A)] ,,e72)222

Since Q(m+pu)—B(m+p,v)+Q(»)=0(m)+Bm,u—v)+Q(u—») and Q(m)=8m} —4m3 is
even we get

£TIO(u—)

V) = m’B(m,;L—v)'
Y= D) e

mez2/27?

The elements of A~'Z%/7 are of the form (7= 2)” with r; € {0,1,2...,15} and r, € {0,1,2...,7}.
Letting p= (2 2207 and » = (2124 22007 where 1,5, € {0,1,...,7}, 13,5, € {0,1,2,3}

and ¢,,¢, € {O 1}, we find

) 48, 5,
mez?(27?

2ri+1 2+l

i 3 )T transform among each other.

to 15 13 11 9
16’16’16’16 167162 16° 16°
3 to 1 3 8, respectively, does not change (E) So we can combine

In particular, this shows that the @ s with g of the form (

Moreover, because of equation (4. 3) changlng U, from respectively (or

vice versa), or changing u, from . 33
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22 K. BRINGMANN AND C. NAZAROGLU

the contributions of cosets corresponding to p, —g, (—tt; )7, (i, —H,)T by restricting u to
S = {Mo My. Mo M3 o + Ay + Ay + A, i3 + A1,

and by combining the corresponding factors in the transformation as

omi0u—)
Pl ) = (1) + 4t =) + 0 (0 =02)) + Bl (i) and () = S

This yields

) pr, 1,‘[ foru €S,

vES

(2r+1

where we simplify p as

)

p(u.v) = 2

Since our ultimate goal is to study the transformation of f:j’ we write

6, (Til) +@#+’1(2r+1) ZA #2)0,(

cos(167u, v, ) cos(8mu,v,).

where
Ap,v) :=p(u,v) +p(u+4,v).
Since Q(4) =1, B(u,A) = 8u; — 4y, u, € {4, 3 } for u € S, we find the identity
eTOWHA) — i) STy for y € 8,
which we can use to show
Ap,v+24)=A(u,v).

So we finally get

3
Gﬂj(2T11>+® (2‘[+1> ;0’1/“1"":< (1) +8,,,(0)

and hence

3
F(5) = 2 Ay FL(0)

Computing the explicit values of A(ﬂj, M) gives the stated transformation.
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4.3. Quantum modularity

To summarize our findings so far, we know from Proposition 4.4 that the functions F; for j €
{0,1,2,3} form a vector-valued Maass form for T';(2). Our next goal is to apply the results of
Section 2 on these functions. First, we note that thanks to equation (2.3) and Proposition 2.2, the
functions f; (which are basically equal to the functions L,, ..., L, thanks to Lemma 4.2) are related
to the F;s as

Then thanks to Proposition 2.5, they satisfy the following modular transformation for any

M = (Z Z) €Ty(2) and T € H with 7, # —¢:

3

f (M) =sgn(crt, +d)(cr+d)ZAM(j,k) (fk(r)+5‘“k’_%(‘f)) .

ct+d =

Here the obstruction to modularity #; _. is a holomorphic function on C\ (—% +iR) (thanks to
Proposition 2.3) defined as in equation (2.3):

Next, following Proposition 2.6 we define the functions f; : Qr,2) > C withj € {0,1,2,3} by
f;(x) == lim f; (x + it). 4.4
=0+

Then finally by Theorem 2.8 we find the quantum modular properties for the rational limits of
Ly,....Ly.

PROPOSITION 4.5 The functions f; : Qr o) = C with j € {0,1,2,3} form a vector-valued quantum
modular form transforming as follows for any M := (’Z Z) €Tly(2)andx € Qr,2) \ {—%}:

cx+d

ax+b 3 .
(500 =lexrd Y A Gk (Rl +7 o)
k=0
Here the multiplier system A is as given in Proposition 4.4.

5. The functions Ls;—Lg

We continue in this section with the functions Ls, ..., Lg that count ideals in the ring of integers
of Q(v/3). This is possibly the most interesting family of functions among our examples since its
discussion requires the novel features studied in Section 2 due to the presence of constant terms.
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24 K. BRINGMANN AND C. NAZAROGLU

5.1. Rewriting as theta functions

We begin as in Section 4.1 by rewriting our functions in terms of theta functions.

LEMMA 5.1 We have

_ 1 1202
q 'Ls(q) = 5 Z + Z (1+sgn(n; +n,y)sgn(n; —n,))g™i=2",
nezZ2\{0 T

SN0} nez24() L)

_1 1 12 —2n2
q 2L¢(q) = 5 Z + Z (1+sgn(n; +ny)sgn(n; —ny))g™i—2",
nez2+(0 })" nez2+(L0)

1 1 2o
qsL,(q) = 5 Z + Z (1+sgn(n; +ny)sgn(n; —ny))g™i—2s,
nez2+(4 1) nezz+(} 0)"

6

1
q_§L8 (('I> = E Z + Z (1 + Sgn(nl +n2)sgn<n] — nz))qﬁn%—Zn%.
ezl 1) nezin}o)

Proof. As the proof is analogous to that of Lemma 4.1 we only state the identities used from
Theorem 1.2 of [9]. These are

q7Ls(¢*) =2 )] Fe=@7 4 3 P =21

n>1 n>0

—n<j<n—1 —n<j<n
q—lLG(qZ)zz Z q3(2n)2—(2j+1)2+2 Z q3(2n+1)2—(2j)2’
nx1 n>0
—n<j<n—1 —n<j<n
qL, <q6): z (q(6n+8)2—3(2j+1)2+q(6n+4)2—3(2j+1)2>
n>0
—n—15j<n
+ Z <q(6n+1)2—3(2j)2+q(6n+5)2—3(2j)2),
n>0
—n<j<n
C]_2Lg (q6)= Z q(6n+1)2—3(2j+1)2+ Z q(6n+5)2—3(2j+1)2
n>0 n>0
—n<j<n—1 —n—15j<n
+ Z q(en+8)2—3(2j)2+ Z q(6n+4)2—3(2j)2'
n>—1 n>0 [l
—n—1<j<n+l —n<j<n

To rewrite these expressions more compactly, we define the quadratic form

Q(n) :=6n? —2n3 (5.1)
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and the vectors
: (=1 3)7 and «¢,:= 1 (1 3)7
2V3 2723

in C, (as defined in Remark 3.1). The parameters #, and 7, that describe these vectors according
to (3.2) are

¢y = (5.2)

1 1
t; = —arctanh (—) and ¢, =arctanh <—

7 )

According to these values, the theta function given in equation (3.5) becomes

2 1 1
’9,14(7) - arctanh (%) 5#622 + 3 z; (1+sgn(n, +n,)sgn(n, — nz))qﬁ"%_z’l%_
nEZ +p
n#0

We can now rewrite the expressions in Lemma 5.1 in terms of these 9,,s.

LEMMA 5.2 We have

1 1

7' Lq) — Zarctanh (=) =g0(0). 47 Lela) = 85(0), a¥Lala) =51(0), 0 Ly() = ),

. T T
. . () (11
§i(1) =8, (1) +8, 4 (1) with = (8 o) and A = (5 5) .

5.2. The corresponding Maass forms

We next follow equation (3.4) and define the mock Maass theta functions ©, given the quadratic
form Q in (5.1) and vectors ¢y, 02 in (5.2). For this purpose, we first find the vectors in Cé that
correspond to ¢; and ¢, as ¢ = (1 —1)" and e3 = 1(1 1)”. Then we get

T .
0,(1) = % Z (1+sgn(ny +n,)sgn(n; —my))K, (27 (6n7 —2n3) 1,) (=)
E(Z2+p)\{0}

+ ? Do (1—sgn(3n, +ny)sgn(3n, —ny))K, (=27 (60} —2n3)7,) e2mi(6n1=2n3)7,
ne(Z2u)\ [0}

+2arctanh ( ) 2.
\f \/7 MEZ

We also have the corresponding modular completion given by equation (3.3) and Proposition 3.4:

@ @ +§0[ 1] §0[02]
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26 K. BRINGMANN AND C. NAZAROGLU
As before, these functions satisfy the following elementary properties:

Ou=0_, =01y 1,7 =0y Ou=0_, =01y 1,7 = O, -

Since we are interested in the linear combinations of «9ys given in Lemma 5.2, we make the
following definitions for j € {0,1,2,3}:

G = G)ﬂj +G)ﬂj+,1 and f}j = @ﬂj +@ﬂj+,1
We now proceed as in Lemma 4.3 to show that the shadow contributions to @j vanish.
LeEmMA 5.3 Forj € {0,1,2,3} we have
G,=G.,.

Then following the arguments of Proposition 4.4, we find the modular properties of the Maass
forms G,.
i

PROPOSITION 5.4 Forj € {0,1,2,3} the functions G, transform like vector-valued modular function
under T'y(2):

atr+b
(cr+d> ZCI) (j,k)G, (T Sforall M €Ty(2),

where the multiplier system ® is as follows for T = (é } ) and R = (é ?):

10 0 0 0 2, 0 &

— 0 §6 0 0 _ 1 412 0 1121 0
®r=lo 0 g of ™ %= Fl0 ¢ 0 &
00 0 -l &0 2, O

5.3. Quantum modularity

In summary, from Proposition 5.4 we know that Gj for j € {0,1,2,3} form a vector-valued Maass
waveform for T'j(2). We next apply the findings of Section 2 on these functions. First, we note
that equation (2.3) and Proposition 2.2 imply that the functions g; (which are basically equal to the
functions Ls, ..., Lg thanks to Lemma 5.2) are related to the G;s as

Then Proposition 2.5 gives their modular transformation for any M := (‘C‘ Z) €TIy(2) and T € H with
T, # —%:

(ar+b
\er+d

3
) = senler, +d) (et +d) Y, By (k) (84(0)+ 5, (7))
k=0
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Here the obstruction to modularity G, _a is a holomorphic function on C '\ (—g +iR) (according to
Proposition 2.3) defined as in equation (2.3):

Next we follow Proposition 2.6 and define the functions g; : Qr, ) = C withj € {0,1,2,3} by

2arctanh (i)
— 17 ) . — 7\/? .
g;(x) .—tl_l)%}r (gj(x+lt) et (I)M)(—l(],())) , (5.3)

where x = —% and M, = (Zj Zi) € I'y(2). Then finally by Theorem 2.8 we find the quantum modular

C

properties for (the finite parts of) the rational limits of Ls, ..., Lg.

PROPOSITION 5.5 The functions g; : Qr o) = C with j € {0,1,2,3} form a vector-valued quantum
modular form transforming as follows for any M := (’Z Z) €Tly(2)andx € Qr,2) \ {—%}:

8 (ax+b) = |cx+d|i¢)M(j,k) (gk(x)+9k!_%(X)> .

cx+d =
Here the multiplier system ® is as given in Proposition 5.4.

6. The functions Ly-L,,

In this section we study our final family of functions from [10] with L, ...,L,, that count ideals in
the ring of integers of Q(1/6).

6.1. Rewriting as theta functions

We begin like the previous two families of functions and rewrite Ly, ..., L,, in terms of theta functions.
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28 K. BRINGMANN AND C. NAZAROGLU

LEMMA 6.1 We have

1
aWLoq)=5 | D+ D5 | (1+sen(n +ny)sen(n; —ny))g®is,
2 3\T 1 7\
nez2+(0 3) nez’+(3 %)
1
q % Ly(q) = 5 Z + Z (1+sgn(m; +ny)sgn(n, —my))g®i—s,
nez2+(0 L)' nez24(L )"
1
GFly@=y| N+ Y | (esenln n)senin —ny))giE,
nezz+(} 1) nez2+(33)
_19 1 12— dn2
g %L (q) = 5 Z + Z (1+sgn(n; +n,y)sgn(n; —ny))g® =472,

nez2+( 3) nez2+(2 1)

Proof. Again the proof is similar to that of Lemma 4.1 and the identities we require are taken from
the proof of Theorem 1.3 of [9]

_ 22— (8i43)2 22— (8i4+1)2
7Ly (q'%) = Z GO =437 4 z GO =(§+1)

n>1 n>0
—n<j<n—1 —n<j<n
2_(Qi_n\2 2_(Qi_1)2
+ Z q6(4n) (8—3) + Z q6(4n+2) (8—1) ,
n>1 n>0
—n+1<j<n —n<j<n

- n)2—(8j+1)% 4212 —(8i43)2
gLy (g"%) = Z b=+ 4 Z GO =(§43)

n>1 n>0
—n<j<n—1 —n<j<n
2_(Qi_1)2 2_(gi_n)2
+ 2 q6(4n) (8j—1) + Z q6(4n+2) (8j—3) ,
n>1 n>0
—n+1<j<n —n<j<n

qu” (q%) — Z (q(24n+4)2—6(8j+1)2 +q(24n+20)2—6(8j+1)2)

+ Z <q(24n+32)2—6(8j+3)2+q(24n+16)2—6(8j+3)2),

n>0
—n—15j<n

_ )2 —6(8i43)2 " 2 f(Riin)2
GBLy, (¢%) = Z g =6(843) 4 Z 24420/ =6(8]+3)

n>1 n>0
—n<j<n—1 —n—15j<n
+ Z q(24n+32)2—6(8j+1)2 + Z q(24n+16)2—6(8j+l)2.
n>—1 n>0 U
—n—1<j<n+l1 —n<j<n
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For more compact expressions, we define the quadratic form
Q(n) :=6n7 —4n3 6.1)
and the vectors

1 1
i=—=(=2,3)7 and =
“ 2\6( )7 oand o 2v/3

in C, (as defined in Remark 3.1). Then the theta functions in (3.5) are

(2,3)7 (6.2)

8,(t)=5 D) (1+sgn(n, +ny)sgn(n, —1,)) g4 for u ¢ 72

n€Z%+pu
With this expression at hand, we can rewrite the results in Lemma 6.1 as follows:

LEmMMA 6.2 We have

q_%[@(@ =hy(7), q_%LIO(Q) =hy(7), Q%Lll(Q) =h(7), q_‘l‘%le(‘]) =hy(7),

where
, j I\ 1 1\
h;(7) 2219#1,(7.')+19W+A(T) with p; := (5 §> and A = (E 5) .

6.2. The corresponding Maass forms

Our next step is to define the mock Maass theta function ©,, as in equation (3.4) for the quadratic
form Q in (6.1) and vectors ¢, ¢, in (6.2). We first find the vectors in C, é that correspond to ¢; and

cyascy = %(1 —1)T and ey = %(1 1T to get (for u & 7°)

0,(t)= Vo Do (1+sgn(n +ny)sgn(n, —ny)) K, (27 (613 —4nd) 1, ) 2 (Oni=Am)n

nEZ+pu

2
+ ? Z (1—sgn(3n, +2n,)sgn(3n; —2n,)) K, (—27(6n% — 4nd)t, ) €27 (6mi=4m)n,
n€Z+pu

These mock Maass theta functions have modular completions,

e1] [c2]

0,=0,+p." —pu*,

as described in equation (3.3) and Proposition 3.4. Like the other two cases, these functions satisfy
the following elementary properties:

Op=0_, =0y 1,1 =0, > Op=0_, =0y 1,7 =0, -
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30 K. BRINGMANN AND C. NAZAROGLU

Since we would like to study the linear combinations of «9ﬂs given in Lemma 5.2, we define the
following for j € {0,1,2,3}:

H; = G)ﬂj +®ﬂj+,1 and H;:= G)#j +®#j+,1.

The shadow contributions to the I?Ijs vanish following the arguments of Lemma 4.3.
LEMMA 6.3 Forj € {0,1,2,3} we have
H; =,
Following the proof of Proposition 4.4, the H;s have the following modular transformations:

PROPOSITION 6.4 The functions H, for j € {0,1,2,3} transform like vector-valued modular function
under Ty (2):

at+b
A

3
cHd) =kZZOQM(j,k)Hk(7:) for all M € Ty(2),

where the multiplier system Q is as follows for T = (é } ) and R = (; ?):

150 0 0
_| 0 &G o0 o0
Q=lo 0 & ol

0o 0 0 ¢
15 2(1_“@);’48 2413 (1+ﬁ> 11
2—V2 (1+\/§>§48 $s (1"‘\@) 4 f
2 8 (e G (1+V2)e
(1+v2)4ld 2k 2(1+v2)8 48

6.3. Quantum modularity

Summarizing the results above, we find from Proposition 5.4 that H f forj € {0,1,2,3} form a vector-
valued Maass form for I'(2). Our next step is to apply the results of Section 2. First, we note that (2.3)
and Proposition 2.2 imply that the functions h; (which are basically equal to Ly, ...,L;, thanks to
Lemma 6.2) are related to H ;s as

2 ico
ho==2 [ @R
T
Then Proposition 2.5 gives their modular transformation for any M := (‘j g) €TIy(2) and T € H with
d
T, £ —Cas
ar+b\ 2 .
hj (cHd) = san(er, +d)(ct+d) Y. Oy (k) (e () +36_a(2) ).

k=0
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Here the obstruction to modularity J; _a is a holomorphic function on C \ (—% +iR) (according to
Proposition 2.3) defined as in equation (2.3):

Next we follow Proposition 2.6 and define the functions b; : Qr, ) — C withj € {0,1,2,3} by
b;(x) := ;1—1{(1)1 hi(x +it). (6.3)

Then Theorem 2.8 implies that these functions (given by rational limits of L, ..., L;,) form a quantum
modular form.

PrROPOSITION 6.5 The functions I)j : Qr0(2> — C with j € {0,1,2,3} form a vector-valued quantum
modular form transforming as follows for any M := (’Z Z) €Tly(2)andx € Qr,2) \ {—%}:

b (0 < v 304,600 () 476, ().

cx+d =

Here the multiplier system ® is as given in Proposition 6.4.
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Appendix: Numerical Examples

In this appendix, we provide some numeric results on the functions g; and quantum modular forms
g; associated with the family Ls(g), ..., Lg(g). This example is distinguished from the other two by
the presence of a non-zero constant term for the Maass form G;. Due to this property, for a given
x € Qr, () not all components of g;(x + it) converge as t — 0*. The quantum modular form g; is then
defined by simply removing the leading growing term from this object. With the results below we
try to exemplify various aspects of these statements.

T

First, in Table A1 we give the approximate values of g;(7), g;(577) and §; _ 1 (7) for various values

of 7 that get close to % € Qr, (2)- With these numbers one can check that the modular transformation
property in Proposition 5.4 is satisfied to the order shown.

Now we note that for the point x = % we have

Yo =0.10974649141040139....,

with all the other components zero. So g, (x +it) is the only component of g that diverges as t — 0*.
This is already visible in Table Al. In fact, subtracting the growing piece as in Proposition 2.6 we
find the results in Table A2.
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Table A2. gy(7) ast— % with its growing part removed.

T 80(7) = 75 Vo1t

TS —1.2918154651 ... — 17245334957 ...
0, —0.8698937600... — 1.5402665800...i
i, —0.8445552866 ... — 1.5333698829...i
0, —0.8421200156.... — 1.5327590942.....

Table A3. g;({}) and its modular transformation under x - >X;.

11 11 11
g (1) g (5) -1 (13)
—0.84185045 — 1.53269207i\ / 6.35925312 — 8.25358660i \ / 0.48540561 — 0.41339484i
—0.30191635 — 3.45091966i | | —1.30588754 — 1.76561858i | | —0.23705412 +0.05092656i

—1.73260053 — 0.14841718i | | —6.66512984 — 3.49340997i 0.07378198 + 0.09625928i
—1.41421356 + 1.41421356i —7.79812377 —2.27823717i 0.03179924 + 0.00680562i

Given the integral representation of g; in (2.3) and the modular transformations of the Maass
form G;, one can efficiently compute the values of the quantum modular form g;. In particular,
we have

11
9o (E) =—0.8418504490893569688 ... — 1.532692070451105313....1i.

One can check the quantum modular transformations using the approximate values in Table A3.
Finally, in Figs. Al and A2 we display various values of g, and its obstruction to modularity.

Figure Al. Onthe left we plot Re(gy(x)) and on the right we plot Im(gy (x)) for x € Qr, () with —1 <x < 1 and denominator
at most 40.
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Figure A2. On the left hand side we plot the real part and on the right hand side we plot the imaginary part of go(z57) —
|ex+d| Zi:o @z (0,k)gy (x) for x € Qr, () with x € (—1,1) and denominator at most 40.
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