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Abstract

In 2015, Lovejoy and Osburn discovered 12 q-hypergeometric series and proved that their Fourier 
coefficients can be understood as counting functions of ideals in certain quadratic fields. In this 
paper, we study their modular and quantum modular properties and show that they yield three 
vector-valued quantum modular forms on the group Γ0(2).

1. Introduction and statement of results

Starting with the work of Andrews, Dyson and Hickerson [1] and of Cohen [4], a surprising inter-
play has been uncovered between q-hypergeometric series, real-quadratic fields and classical Maass 
forms. They discovered this interplay by exploring the now famous function 
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which was first studied by Ramanujan in his lost notebook [11]. Here and throughout (a;q)n = (a)n :=
∏n−1

j=0
(1− aqj) for n ∈ ℕ0 ∪ {∞}. A key step in the analysis of [1] is the use of Bailey chains to 

rewrite σ(q) as a ‘false-indefinite theta function’: 

This representation allowed the authors of [1] to relate the Fourier coefficients of σ(q) to the arith-
metic of the real-quadratic field ℚ(

√
6) and to prove many interesting properties for these Fourier 

coefficients, which are not obvious from the combinatorial interpretation of the q-hypergeometric 
series in equation (1.1). Through this arithmetic interpretation, it was also possible to extend the 
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2 K. BRINGMANN AND C. NAZAROGLU

Fourier coefficients of σ(q) in 

σ(q) =
∞
∑
n=0

T(24n + 1)qn,

to a sequence T(24n + 1) defined for all n ∈ ℤ. This led the authors of [1] and [4] to a partner q-series 

∞
σ*(q) := ∑T(1− 24n)qn = 2 ∑ (−1)m+kqk2− m(3m+1)

n=1 m≥0
2k≥3m+1

2 (1 + q2(k−m)) ,

which also has a representation as a q-hypergeometric series: 

σ*(q) = 2
∞
∑
n=1

(−1)nqn2

(q;q2)
n

.

Now the remarkable fact discovered by [4] is that the Fourier coefficients of σ(q) and σ*(q) are those 
of a Maass form defined as 

√
u(τ) := τ2 ∑

n∈ℤ+ 1
24

T(24n)K0(2π|n|τ2)e2πinτ1 for τ = τ1 + iτ2 ∈ ℍ,

where Kν denotes the K-Bessel function of order ν. As reviewed in Section 2, Maass forms are 
invariant under modular transformations, and this forms the number theoretical aspect of the three-
piece interplay with the combinatorial and algebraic aspects mentioned above.

The expressions for σ(q) and σ*(q) as q-hypergeometric series are related to each other under the 
transformation q ↦ q−1 as noted by Cohen (see [4]). Building upon these results, Zagier showed in 
[12] that 

f (x) := e
πix
12 lim

t→0+
σ (e2πi(x+it)) = −e

πix
12 lim

t→0+
σ* (e−2πi(x−it))

is a so-called quantum modular form, which further elaborates the relation discussed above. Recall 
that in the simplest case, a quantum modular form of weight k and with quantum set 𝒬 ⊂ ℚ is a 
function g : 𝒬 →ℂ whose obstruction to modularity 

g(x)− (cx + d)−kg(ax + b
cx + d

) for (a b
c d

) ∈ Γ ⊂ SL2(ℤ)

is analytically ‘nice’, for example it extends real-analytically to ℝ⧵ {− d
c }. More generally, one 

can discuss vector-valued generalizations with non-trivial multiplier systems (as in Theorem 2.8) 
and require stronger analytic properties from the obstructions to modularity such as holomorphicity 
(as in Proposition 2.3 and Remark 2.4).
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 3

At this point we should note that the discussion we have had so far is not a peculiar property of 
the functions σ(q) and σ*(q). Since the work of [1] and [4], a number of generalizations have been 
investigated in [2, 3, 6, 9]. In fact, the main focus of this paper is on such a generalization developed 
by Lovejoy and Osburn [10]. They studied 12 q-hypergeometric series defined as 

n − n −

where the symbol * indicates that we take the average of even and odd partial sums (in n) to obtain 
convergence. They then showed that these functions are also related to the arithmetic of real-quadratic 
fields. In particular, L1,… ,L4 count ideals in the ring of integers 𝒪ℚ(

√
2) of the real-quadratic field 

ℚ(
√

2), L5,… ,L8 count ideals in 𝒪ℚ(
√

3) and L9,… ,L12 count ideals in 𝒪ℚ(
√

6). In this work, we 
investigate the modular aspect of these functions and prove the following result:

Theorem 1.1 The limits 

as well as the finite part of 

⎛⎜⎜⎜⎜⎜
⎝

e−2πixL5 (e2πi(x+it))− 2
π arctanh( 1√

3
)

e−πixL6 (e2πi(x+it))
e
πix
3 L7 (e2πi(x+it))

e−
2πix

3 L8 (e2πi(x+it))

⎞⎟⎟⎟⎟⎟
⎠

as t → 0+

all form vector-valued quantum modular forms over the group Γ0(2).

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haad005/7094239 by U

niversitaets- und Stadtbibliothek Koeln, M
ed. Abt. user on 04 April 2023



4 K. BRINGMANN AND C. NAZAROGLU

Figure 1.  Interrelations between mock Maass theta functions, their modular completions, and false-indefinite theta functions.

More precise statements are given in Propositions 4.5, 5.5 and 6.5. The quantum modular forms 
𝔣j, 𝔤j and 𝔥j referenced in these propositions are related to the functions Lj given above by Lemmas 
4.2, 5.2 and 6.2 and equations (4.4), (5.3) and (6.3).

To prove these results, we relate the functions Lj to Maass waveforms with the technology of mock 
Maass theta functions developed by Zwegers in [14]. These objects give a rare and precious glimpse 
into the behavior of false-indefinite theta functions under modular transformations. As reviewed in 
Fig. 1, mock Maass theta functions are certain theta functions that are eigenfunctions of the hyper-
bolic Laplacian that are in general not modular. Their construction ensures that they give rise to 
false-indefinite theta functions under certain ‘Eichler-type integrals’ following the work of Lewis 
and Zagier [7]. The one-form appearing in the integral is closed thanks to the hyperbolic Laplacian 
eigenfunction property of the mock Maass theta function. If it is further true that the mock Maass 
theta function is modular invariant, then we can find the obstruction to modularity for the corre-
sponding false-indefinite theta function as a period function of the aforementioned one-form. The 
question of modularity, on the other hand, can be studied through Zwegers’ modular completions for 
these mock Maass theta functions. In the special cases where the completing ‘shadow contributions’ 
cancel each other thanks to symmetry, the mock Maass theta function becomes a Maass waveform 
itself and the modular properties of the false-indefinite theta function then follows. 

If the functions Lj are rewritten as false-indefinite theta functions, such cancellations indeed occur 
as we show below and the corresponding mock Maass theta functions are modular. That in turn 
implies corresponding modular properties for the functions Lj on ℍ as discussed above. For the case 
of L1,… ,L4 and L9,… ,L12, these Maass forms do not have constant terms in their Fourier expansion, 
and the arguments of Zagier [12] immediately apply to give the quantum modularity results stated 
above. However, for the functions L5,… ,L8, the corresponding vector-valued Maass form does have 
a non-vanishing constant term and as a result the corresponding Lj(e2πi(x+it))s have divergent pieces 
as t → 0+ depending on j and x. So a novel technical aspect of this work is the handling of these 
divergent pieces to show that the remaining finite pieces lead to quantum modular forms.

This paper is organized as follows: In Section 2, we review and expand on the relation between 
Maass forms and quantum modular forms, with a particular emphasis on the aspects needed if the 
Maass form in question has non-vanishing constant terms. In Section 3, we review the work of 
Zwegers on mock Maass theta functions and their relation to false-indefinite theta functions that 
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 5

appear in this work. Then in Sections 4, 5 and 6, we analyze the functions L1,… ,L4, L5,… ,L8 and 
L9,… ,L12, respectively, and prove the results asserted in Theorem 1.1. Finally, in an appendix we 
display various numerical results that exemplify our discussion in the body of this paper.

2. Maass Forms and Quantum Modular Forms

In this section we consider quantum modular forms related to Maass forms. First we recall the 
definition of a (vector-valued) Maass form.

Definition 2.1 A set of smooth functions Uj : ℍ→ℂ with j ∈ {1,… ,N} is called a vector-valued 
Maass (wave) form for the group Γ ⊂ SL2(ℤ) if it satisfies the following conditions:

(1) For all M = ( a
b

b
c ) ∈ Γ we have 

Uj (
aτ + b
cτ + d

) =
N

∑
k=1

ΨM( j,k)Uk(τ), (2.1)

where ΨM  is a suitable multiplier system. Here and throughout we assume that ΨM  is diagonal 
on Γ∞ := Γ∩ {±( 1

0
n
1 ) : n ∈ ℤ}.

(2) There exists a λ ∈ ℂ such that Δ(Uj) = λUj for each j, where Δ := −τ2
2 ( 𝜕2

𝜕τ2
1

+ 𝜕2

𝜕τ2
2
) is the 

hyperbolic Laplace operator on ℍ.
(3) The functions U j have at most polynomial growth near the cusps.

The Maass forms U j with Laplace eigenvalue λ = 1
4 − ν

2 (where ν ∈ ℂ) have a Fourier expansion 
of the form 

Uj(τ) = ∑
n∈ℤ+αj

aj(τ2;n)e2πinτ1 ,

where, for some constants dj(n),bj,cj, 

aj(τ2;n) = dj(n)√τ2Kν(2π|n|τ2)if n ≠ 0 and aj(τ2;0) = {
bj log(τ2)√τ2 + cj

√τ2 if ν = 0,

bjτ
1
2−ν

2 + cjτ
1
2 +ν

2 if ν ≠ 0.

In this paper, our interest is on Maass forms with Laplace eigenvalue 1
4 . More specifically, we 

study functions Uj : ℍ→ℂ, j ∈ {1,… ,N} forming a vector-valued Maass form for Γ ⊂ SL2(ℤ) with 
Fourier expansion
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6 K. BRINGMANN AND C. NAZAROGLU

Uj(τ) = cj
√
τ2 +

√
τ2 ∑

n∈ℤ+αj
n≠0

dj(n)K0(2π|n|τ2)e2πinτ1 , (2.2)

where the coefficients dj(n) have polynomial growth in n. Following [7] we then define (throughout 
this paper we use the principal branch of the logarithm to define the square roots) 

Rτ(z) :=
√

z2

√(z− τ)(z− τ)
and [Uj(z),Rτ(z)] := 𝜕Uj(z)Rτ(z)dz + Uj(z)𝜕Rτ(z)dz,

where 𝜕f (z) := 𝜕f (z)
𝜕z  and 𝜕f (z) := 𝜕f (z)

𝜕z . For each j, the one-form [Uj(z),Rτ(z)] is closed thanks to the 
fact that both Rτ  and U j have eigenvalue 1

4  under the Laplacian. Using these closed one-forms, we 
define uj : ℍ→ℂ and 𝒰j,ρ : ℂ⧵ (ρ+ iℝ) →ℂ by (we also define 𝒰j,i∞(τ) := 0) 

uj(τ) := −
2
π
∫

i∞

τ
[Uj(z),Rτ(z)] and 𝒰j,ρ(τ) :=

2
π
∫

i∞

ρ
[Uj(z),Rτ(z)], (2.3)

for any 

ρ ∈ 𝒬Γ := {x ∈ ℚ : there exists Mx := (ax

cx

bx

dx
) ∈ Γwith x = −

dx

cx
} . (2.4)

The latter function is a period function that can be analytically continued in τ to a cut complex plane 
and that satisfies a functional equation under modular transformations. The correspondence between 
Maass cusp forms and their period functions was first elucidated by Lewis and Zagier in [7], where 
they also recognized its role similar to that of period polynomials for holomorphic cusp forms. The 
integrals are independent of the integration path, but for concreteness we assume throughout that the 
integrals are taken along vertical paths. Now the results of Lewis and Zagier in [7] and of Zagier 
in [12] show that if the U js form a Maass form with cj = 0 for all j, then the limits limt→0+ uj(x + it)
exist for all x ∈ 𝒬Γ and they form a quantum modular form for Γ.

Among the functions we study, L1,… ,L4 and L9,… ,L12 indeed fit into this framework. The func-
tions L5,… ,L8, on the other hand, are related to a vector-valued Maass form with a non-trivial 
constant term. So in this section we develop the technical details for how the results of [7] and 
[12] extend to this case.

Remark 2.2 In [7], a discussion of non-cuspidal SL2(ℤ) Maass forms was given (see equations (4.4) 

and (4.5) there with s = 1
2 − ν). However, note that the constant term bjτ

1
2−ν

2 + cjτ
1
2 +ν

2  degenerates for 
ν = 0, which is the case of interest in this paper, and we have not found an interpretation for the 
constant term given in (4.5) of [7] (that would correspond to the constant term of uj) to reproduce 
our result in Proposition 2.2.

We start with an elementary result that relates the Maass waveforms discussed here to q-series.
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 7

Proposition 2.2 The functions uj for j ∈ {1,… ,N} are holomorphic on ℍ and they satisfy 

uj(τ) = −
cj

π
+ ∑

n∈ℤ+αj
n>0

dj(n)qn.

Proof. This basically follows from the results of [7]. A detailed exposition for the case cj = 0
can be found in Proposition 3.5 of [8]. The contribution of the constant terms cj follow from a 
straightforward computation.

Next we note the analytic properties of the functions 𝒰j,ρ.

Proposition 2.3 For j ∈ {1,… ,N} and ρ ∈ 𝒬Γ, the integral defining 𝒰j,ρ(z) is convergent for all 
z ∈ ℂ⧵ (ρ+ iℝ) and defines a holomorphic function there.

Proof. Again this result basically follows from [7]. Here we give details both for reference and also 
to point out the new ingredients that appear in the presence of constant Fourier coefficients. We start 
by writing 

Then letting ρ = − d
c  for M = ( a

c
b
d ) ∈ Γ, we can use the modular transformations (2.1) to write (for 

any T > 0) 

Now looking at the Fourier expansion in (2.2), we find that for any ε > 0 we have constants Cε ,D > 0
such that for all τ2 ≥ ε and for all j ∈ {1,… ,N} we have 

||Uj(τ)− cj
√
τ2|| ,

|||4i𝜕Uj(τ)−
cj√
τ
||| ≤ Cεe

−Dτ2 , (2.6)

 thanks to the exponential decay of K-Bessel functions toward infinity. So separating the constant 

terms of U and 𝜕Us, it is easy to see that their contribution to (2.5) is convergent and yields a holomor-
phic function. The contribution of the constant terms can then be separately checked to be convergent 
and to be holomorphic for all z ∈ ℂ⧵ (ρ+ iℝ).
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8 K. BRINGMANN AND C. NAZAROGLU

Figure 2. Analytic continuation of 𝒰j,ρ(z).

Remark 2.4 Here it is also useful to note that by deforming the path of integration and the cut 
associated with the square roots as in Fig. 2, one can analytically continue 𝒰j,ρ(z) from the half-
plane Re(z) > ρ to the entire cut-plane ℂ⧵ (−∞,ρ]. Similarly, we can continue 𝒰j,ρ(z) from the 
half-plane Re(z) < ρ to the entire cut-plane ℂ⧵ [ρ,∞).

Now we are ready to state the modular transformations of uj on ℍ.

Proposition 2.5 For M := ( a
c

b
d ) ∈ Γ and τ ∈ ℍ with τ1 ≠ − d

c  we have 

uj (
aτ + b
cτ + d

) = sgn(cτ1 + d)(cτ + d)
N

∑
k=1

ΨM( j,k)(uk(τ) +𝒰k,− d
c
(τ)) .

Proof. The statement is trivial for c = 0, so we assume that c ≠ 0. We start with the definition in 
equation (2.3) for uj( aτ+b

cτ+d ) and make a change of variable z ↦ az+b
cz+d  to write 

uj (
aτ + b
cτ + d

) = −
2
π
∫

− d
c

τ
[Uj (

az + b
cz + d

) ,R aτ+b
cτ+d

(az + b
cz + d

)] ,

where the integral is taken over a piece of hyperbolic geodesic from τ to − d
c . Now we note that 

R aτ+b
cτ+d

(az + b
cz + d

) = χM(τ,z)(cτ + d)Rτ(z),
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 9

where 

χM(τ,z) := √ (cτ + d)2

(z− τ)(z− τ)
√(z− τ)(z− τ)

cτ + d
∈ {±1}.

Since we are using the principal values of the logarithm to define square roots, Rτ(z) is discontinu-
ous on the z-plane along the vertical cut from τ to τ. Then following the modular transformation, the 
sign factor χM(τ,z) is discontinuous along this vertical line and along another piece of a hyperbolic 
geodesic emanating from τ (to which the vertical cut of Rτ(z) transforms). Moreover, on these dis-
continuity cuts themselves, the sign factor χM(τ,z) takes a constant value (since Rτ(z) is continuous 
if it is restricted to its vertical cut). In particular, χM(τ,z) is constant along our integration line, which 
itself is a hyperbolic geodesic from τ to − d

c . We can determine this sign to be sgn(cτ1 + d) by setting 
z = − d

c . Then using the modular transformation in (2.1) and using our freedom to deform the path of 

integration to write ∫− d
c

τ = ∫i∞
τ −∫i∞

− d
c

 we obtain the result.

Our next goal is to define a function on rationals by taking vertical limits of uj(τ) and removing 
the growing pieces.

Proposition 2.6 For any M := ( a
c

b
d ) ∈ Γ with c ≠ 0, the limit 

lim
t→0+

(uj (−
d
c

+ it)−
1

π|c|t

N

∑
k=1

ΨM−1( j,k)ck) (2.7)

exists. Moreover, the same limit is obtained for any element of Γ in the same equivalence class as M 
in Γ∞\Γ. Using this limit we can define the functions 𝔲j : 𝒬Γ →ℂ by 

𝔲j(x) := lim
t→0+

(uj(x + it)−
γj,x

πt
)with γj,x :=

1
|cx|

N

∑
k=1

ΨM−1
x

( j,k)ck .

Here x = − dx
cx

 and Mx = ( ax
cx

bx
dx

) ∈ Γ as in the definition of 𝒬Γ in (2.4).

Proof. We start by explicitly writing the expression for uj(τ) in (2.3) as 

uj(τ) =
1

2π
∫

∞

0

(−4i𝜕Uj(τ + iv)
√

v + τ2√
v√v + 2τ2

+ Uj(τ + iv)
√

v
√

v + τ2(v + 2τ2) 3
2

)dv. (2.8)

Inserting τ = − d
c + it and separating the integral into two pieces as ∫1

0
 and ∫∞

1
, we easily find that 

the limit t → 0+ exists for the latter piece and can be computed by setting t = 0 thanks to the bounds 
in (2.6). For the integral ∫1

0
, on the other hand, we use the modular transformations in (2.1) and 
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10 K. BRINGMANN AND C. NAZAROGLU

separate the constant term to rewrite this contribution as 

Next we use a looser version of the bound in (2.6), namely that for any ε > 0 we have a constant 
Bε > 0 such that for all τ2 ≥ ε and for all j ∈ {1,… ,N} we have 

Using these two bounds, we find that for t,v ≤ 1 the integrands in the first and second lines can 
be bounded by C√

v  and C
√

v, respectively, for an appropriate constant C > 0. Thanks to these upper 
bounds and to the fact that the integrands are continuous at t = 0, for those two terms, the limit t → 0+

exists and they can simply be taken by explicitly setting t = 0. The third line, on the other hand, can 
be explicitly evaluated and we find that the piece of it that grows as t → 0+ is removed by the term 

1
π|c|t ∑

N

k=1
ΨM−1( j,k)ck  in (2.7).

Finally, the fact that the same limit is obtained for any ( a+rc
c

b+rd
d ) ∈ Γ (with r ∈ ℤ) follows from 

the diagonality of the multiplier system over Γ∞. 

Now the functions 𝔲j are defined through vertical limits in ℍ, we show how the same functions 
are obtained when we slightly deform the path through which we take the limit.

Lemma 2.7 For any x ∈ 𝒬Γ and for any smooth function X : ℝ+ →ℝ that satisfies X(t) = Bt2 + o(t2)
as t → 0+ we have 

𝔲j(x) = lim
t→0+

(uj (x + it + X(t))−
γj,x

π(t− iX(t))
) .

Proof. We prove the equivalent statement 

lim
t→0+

(uj (x + it + X(t))− uj (x + it)) =
iBγj,x

π
. (2.10)
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 11

We start by using equation (2.8) to write 

As in Proposition 2.6, we separate the integrals into two pieces as ∫1
0

 and ∫∞
1

. For the contribu-
tions from ∫∞

1
, the same argument that we use there can be employed to show that the limit t → 0+

can be computed by explicitly setting t = 0 inside the integrands. In particular, this shows that the 
contributions from ∫∞

1
 do not contribute to the limit in (2.10).

To study the contributions from ∫1
0

, we let M = ( a
c

b
d ) ∈ Γ be such that x = − d

c  and use modular 

transformations by M−1 to rewrite them as 

Now we choose T ≤ 1 to be small enough that |X(t)| ≤ t for all t ∈ [0,T ]. Then for v ∈ (0,1)

Im(a
c

+
i

c2 (v + t− iX(t))
) ≥

1
4c2

.

As in the proof of Proposition 2.6, this allows us to use the bounds in (2.9) to show that once we 
remove the constant terms of Uk  and 𝜕Uks we can take t → 0+ by setting t = 0 inside the integrands 
and hence we get no contribution to the limit in (2.10) from such terms. This leaves us the contribution 
from the constant terms:
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12 K. BRINGMANN AND C. NAZAROGLU

1
2π|c|

N

∑
k=1

ΨM−1( j,k)ck∫
1

0

(
√X(t)2 + (v + t)2

√
v
√

v + 2t (v + t− iX(t))2 −
1

√
v
√

v + 2t(v + t)

+
√

v

√X(t)2 + (v + t)2(v + 2t) 3
2
−

√
v

(v + t)(v + 2t) 3
2

)dv

=
γj,x

πt
∫

1
t

0

1
√

v(v + 2) 3
2

⎛⎜⎜
⎝

⎛⎜⎜
⎝

(v + 1)3

( X(t)2

t2 + (v + 1)2)
3
2
− 1

⎞⎟⎟
⎠

(1 +
iX(t)

t
v + 2

(v + 1)2
)

−
X(t)2

t2

1

( X(t)2

t2 + (v + 1)2)
3
2

+
iX(t)

t
v + 2

(v + 1)2
⎞⎟⎟
⎠

dv,

from which it is easy to see that the first two terms in the outer parentheses give vanishing contribu-
tions as t → 0+, whereas the contribution of iX(t)

t
v+2

(v+1)2  gives the right-hand side of (2.10) and thereby 
concludes our proof.

We are now ready to state the quantum modular transformation properties of the functions 𝔲j.

Theorem 2.8 For any M := ( a
c

b
d ) ∈ Γ and x ∈ 𝒬Γ ⧵ {− d

c } we have the quantum modular transfor-
mation property 

𝔲j (
ax + b
cx + d

) = |cx + d|
N

∑
k=1

ΨM( j,k)(𝔲k(x) +𝒰k,− d
c
(x)) .

Proof. We start by noting that ΨM  is a multiplier system for a weight zero modular object 
(see equation (2.1)). Therefore, it forms a genuine representation of the modular group Γ (as opposed 
to a projective one) and this leads to the identity 

N

∑
k=1

ΨM( j,k)γk,x = |cx + d|γj, ax+b
cx+d

. (2.11)

So plugging in τ = x + it (with t > 0) to the modular transformation worked out in Proposition 2.5 and 
using (2.11) we obtain 

uj (
ax + b
cx + d

+
it

(cx + d)(cx + cit + d)
)−

γj, ax+b
cx+d

πt
(cx + d)(cx + cit + d)

= sgn(cx + d)(cx + cit + d)
N

∑
k=1

ΨM( j,k)(uk(x + it)−
γk,x

πt
+𝒰k,− d

c
(x + it)) .

By Propositions 2.3 and 2.6, the right-hand side tends to the right-hand side of the claim as t → 0+. 
Finally, we note that the left-hand side tends to 𝔲j( ax+b

cx+d ) as t → 0+ by Lemma 2.7. 
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 13

3. Mock Maass theta functions

In the following sections, we see that the functions L1,… ,L12 can all be expressed in terms of certain 
theta functions of the form (note that throughout we write vectors in bold letters) 

∑
n∈ℤd+μ

(1− sgn(B(n,c1))sgn(B(n,c2)))qQ(n), (3.1)

where Q is a quadratic form of indefinite signature and the vectors c1 and c2 of negative norm ensure 
convergence. Such functions are not as well-studied as similar-looking indefinite theta functions of 
the shape 

∑
n∈ℤd+μ

(sgn(B(n,c1))− sgn(B(n,c2)))qQ(n),

which are known to yield mock modular forms thanks to the groundbreaking work of Zwegers [13]. 
The functions in equation (3.1), which are hybrids of indefinite and false theta functions, do not easily 
fit into a modular framework; but they are still interestingly related to the so-called mock Maass theta 
functions developed by Zwegers in [14]. In this section, we review the properties of such functions 
for our later use.

First, we restrict ourselves to 2-dimensional lattices and let Q be a binary quadratic form of signa-
ture (1,1). Throughout the paper we assume that Q(n) is integral for all n = (n1 n2)T ∈ ℤ2 (in which 
case we call the quadratic form even) and that Q(n) = 1

2n
T An, where A is a symmetric 2×2 matrix. 

Finally, we let B denote the bilinear form associated with Q as B(n,m) = nT Am.
Next, we recall that the set of vectors c ∈ ℝ2 with Q(c) = −1 splits into two connected com-

ponents. Fixing a vector c0 in one of the components, all the vectors in the same component are 
characterized by 

CQ := {c ∈ ℝ2 : Q(c) = −1,B(c,c0) < 0} .

In particular, if B(c1,c2) < 0, then c1 and c2 belong to the same component. Similarly, the set of 
vectors c ∈ ℝ2 with Q(c) = 1 splits into two components, as well. Choosing c⟂0  as one of the two unit 
vectors that are orthogonal to c0, all the unit vectors in the same component are given by 

C⟂
Q := {c ∈ ℝ2 : Q(c) = 1,B(c,c⟂0 ) > 0} .

It is convenient to parameterize CQ and C⟂
Q  using the reference quadratic form Q0(x) = x2

1 − x2
2 . 

For this, we let P ∈ GL2(ℝ) be such that 

A = PT (2 0
0 −2

)P, P−1 (0
1
) ∈ CQ and P−1 (1

0
) ∈ C⟂

Q .

Then we parameterize the vectors in CQ and C⟂
Q  by letting 

c(t) := P−1 (sinh(t)
cosh(t)) ∈ CQ and c⟂(t) := P−1 (cosh(t)

sinh(t)) ∈ C⟂
Q for t ∈ ℝ. (3.2)
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14 K. BRINGMANN AND C. NAZAROGLU

Also, when we consider a number of vectors cj ∈ CQ below, it is convenient to let tj ∈ ℝ be such that 
c(tj) = cj and let c⟂j = c⟂(tj).

Remark 3.1 The reference quadratic form we choose here is convenient since the quadratic forms 
in all of our examples are of the form Q(n) = α1n2

1 −α2n2
2 with α1,α2 ∈ ℕ. We then choose CQ as the 

set of c ∈ ℝ2 with Q(c) = −1 and c2 > 0, whereas C⟂
Q  as the set of c ∈ ℝ2 with Q(c) = 1 and c1 > 0. 

Finally, note that we fix P in all such examples by selecting P = (
√α1

0
0√α2

) to satisfy the conditions 

in (3.2).

Remark 3.2 In [14], Q0(x) = x1x2 was used as the reference quadratic form and one picks a 
matrix 𝒫 ∈ GL2(ℝ) such that A = 𝒫T ( 0

1
1
0 )𝒫 and 𝒫−1 ( 1

−1 ) ∈ CQ to parameterize CQ. By let-

ting 𝒫 = ( 1
1

1
−1 )P, we can see the equivalence of the two definitions up to the extra requirement 

P−1 ( 1
0 ) ∈ C⟂

Q  here. To see why this extra condition is included here, note that one can multiply any 

𝒫 as defined in [14] on the left by ( 0
−1

−1
0 ). This preserves both of the conditions A = 𝒫T ( 0

1
1
0 )𝒫

and 𝒫−1 ( 1
−1 ) ∈ CQ. However, this changes the parameter t on CQ as t ↦−t (and in particular 

tj ↦−tj) while also changing c⟂j ↦−c⟂j . Consequently, this transformation changes the overall sign 
of the mock Maass theta functions defined in [14], whereas the extra condition here eliminates this 
ambiguity.

With this background at hand, we follow Definition 2.3 of [14] and define the completed mock 
Maass theta function (with μ ∈ ℝ2 and c1,c2 ∈ CQ) 

Θ̂μ(τ) = Θ̂[c1,c2]
μ (τ) :=

√
τ2 ∑

n∈ℤ2+μ

qQ(n)∫
t2

t1

e−πB(n,c(t))2τ2dt. (3.3)

Note that it satisfies the basic properties 

Θ̂−μ(τ) = Θ̂μ(τ) and Θ̂μ+λ(τ) = Θ̂μ(τ) for all λ ∈ ℤ2.

More importantly, such functions are covariant under modular transformations as shown in [14].

Theorem 3.2 (Zwegers) Let Q(n) = 1
2n

T An be an even quadratic form of signature (1,1) on ℤ2

and let μ ∈ A−1ℤ2/ℤ2. Then we have the following transformations: 

Θ̂μ(τ + 1) = e2πiQ(μ)Θ̂μ(τ), Θ̂μ (−1
τ

) =
1

√|det(A)|
∑

ν∈A−1ℤ2/ℤ2

e−2πiB(μ,ν)Θ̂ν(τ).

The multipliers in Theorem 3.2 agree with the Weil representation associated with Q, so we can 
just as easily state the modular transformation under any element of SL2(ℤ) (see for example [5] for 
further details on Weil representations). We state this result more explicitly for later reference.
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 15

Theorem 3.3 Let Q(n) = 1
2n

T An be an even quadratic form of signature (1,1) on ℤ2 and let μ ∈
A−1ℤ2/ℤ2. Then, for any M = ( a

c
b
d ) ∈ SL2(ℤ) we have 

where 

The functions Θ̂μ are closely related to the mock Maass theta functions defined by [14] (here and 
throughout the paper sgn(x) := x

|x|  for x ∈ ℝ⧵ {0} and sgn(0) := 0) 

The exclusion of n = 0 from the sums and the addition of the final term (t2 − t1)√τ2δμ∈ℤ2  differs 
from [14], but this is an appropriate definition in view of Proposition 3.4. These mock Maass theta 
functions are eigenfunctions of hyperbolic Laplacian with eigenvalue 1

4  and hence are related to the 
theta functions we encounter in equation (3.1) through equation (2.3) and Proposition 2.2. More 
specifically, 

ϑμ(τ) := −
2
π
∫

i∞

τ
[Θμ(z),Rτ(z)]

satisfies 

ϑμ(τ) :=−
t2 − t1
π

δμ∈ℤ2 +
sgn(t2 − t1)

2
∑

n∈ℤ2+μ
n≠0

(1− sgn(B(n,c1))sgn(B(n,c2)))qQ(n). (3.5)

Our first step toward understanding the relation between the mock Maass theta functions Θμ and 

their completions Θ̂μ is the following result (following from Lemma 4.1 of [14]):
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16 K. BRINGMANN AND C. NAZAROGLU

Proposition 3.4 Let Q(n) = 1
2n

T An be an even quadratic form of signature (1,1) on ℤ2 and let 
μ ∈ A−1ℤ2/ℤ2. Also assume that Q(n) = 0 has no solutions on ℚ2 except for n = 0. Then 

where 

with 

In summary, we can follow the nomenclature for mock modular forms and refer to φ[c1]
μ  and φ[c2]

μ  as 
shadow contributions that correct the modular behavior of the mock Maass theta function Θμ. They 
do however break the property of being a Laplacian eigenfunction (in a way similar to the breaking 
of holomorphy property by completions of mock modular forms).

Now for our purposes, the property of being a Laplacian eigenfunction is crucial for making 
contact with q-series such as (3.5) that appear in our treatment of the functions L1,… ,L12. In turn, to 
prove modular properties for (linear combinations of) ϑμ as in Section 2, we need the corresponding 

shadow contributions to Θ̂μ to vanish. One criterion that can be used to prove such a statement is 
given by Lemma 5.1 of [14]. It states that if γ ∈ GL2(ℤ) is such that γT Aγ = A, det(γ) = +1 and 
γCQ = CQ, then we have 

φ[γc]
γa (τ) = φ[c]

a (τ).

In our work, we need a modified version of this criterion, which we state and prove next.

Lemma 3.5 Let Q(n) = 1
2n

T An be an even quadratic form of signature (1,1), let c3,c4 ∈ CQ and let 
γ ∈ GL2(ℤ) be such that γT Aγ = A, det(γ) = −1 and γc3 = ±c4. Then 

φ[c4]
γa (τ) = −φ[c3]

a (τ).

Proof. We first assume that γc3 = −c4 and note that it is not hard to see that 

γc(t) = −c(t3 + t4 − t). (3.6)

Then we have (by changing variables as t ↦ t3 + t4 − t and using (3.6) and that γT Aγ = A) 

∫
∞

t4

e−πB(γn,c(t))2τ2dt = ∫
t3

−∞
e−πB(γn,c(t3+t4−t))2τ2dt = ∫

t3

−∞
e−πB(n,c(t))2τ2dt.
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 17

Similarly, we have 

Using these identities with the fact that 

B(γn,c4)B(γn,c⟂4 ) = B(γn,−γc3)B(γn,γc⟂3 ) = −B(n,c3)B(n,c⟂3 ) ,

we immediately see that αt4
(γn√τ2) = −αt3

(n√τ2) and hence that φ[c4]
γa (τ) = −φ[c3]

a (τ).
For the case γc3 = c4, we can write γ = (−γ)(−I2), where −γ satisfies the hypotheses of the lemma 

with (−γ)c3 = −c4. Then the first part of the lemma together with the trivial identity φ[c3]
−a (τ) = φ[c3]

a (τ)
(see Lemma 5.1 of [14]) implies the result.

4. The functions L1–L4

In this section, we begin our investigation of the 12 functions introduced by Lovejoy and Osburn 
[10]. We start with the functions L1,… ,L4 that count ideals in the ring of integers of ℚ(

√
2).

4.1. Rewriting as theta functions

We start with the following lemma, which rewrites L1,… ,L4 in terms of theta functions as in 
equation (3.1).

Lemma 4.1 We have 
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18 K. BRINGMANN AND C. NAZAROGLU

Proof. We start with the following identity given in the proof of Theorem 1.1 of [9] 

q−17L1 (q32) = ∑
n≥1

−n≤j≤n−1

(q(16n−1)2−2(8j+3)2
+ q(16n+1)2−2(8j+3)2)

+ ∑
n≥0

−n≤j≤n

(q(16n+7)2−2(8j+1)2
+ q(16n+9)2−2(8j+1)2) .

First note that the conditions n ≥ 1 and n ≥ 0 can be dropped with the understanding that we are 
summing over all pairs (n, j) ∈ ℤ2 satisfying the conditions −n ≤ j ≤ n− 1 and −n ≤ j ≤ n, respec-
tively. We then change n ↦−n in the first sum and n ↦−n− 1 in the forth sum to obtain the claim 
for L1(q).

As the proof of the remaining identities are similar, we just state the related identities from the 
proof of Theorem 1.1 of [9]: 

q7L2 (q32) = ∑
n≥0

−n≤j≤n

(q(16n+3)2−2(8j+1)2
+ q(16n+13)2−2(8j+1)2)

+ ∑
n≥0

−n−1≤j≤n

(q(16n+21)2−2(8j+3)2
+ q(16n+11)2−2(8j+3)2) ,

q−33L3 (q32) = ∑
n≥1

−n≤j≤n−1

(q(16n−1)2−2(8j+1)2
+ q(16n+1)2−2(8j+1)2)

+ ∑
n≥0

−n≤j≤n

(q(16n+7)2−2(8j+3)2
+ q(16n+9)2−2(8j+3)2) ,

q−9L4 (q32) = ∑
n≥0

−n≤j≤n−1

q(16n+3)2−2(8j+3)2
+ ∑

n≥0
−n−1≤j≤n

q(16n+13)2−2(8j+3)2

+ ∑
n≥−1

−n−1≤j≤n+1

q(16n+21)2−2(8j+1)2
+ ∑

n≥0
−n≤j≤n

q(16n+11)2−2(8j+1)2
.

To express these functions more compactly, we define the quadratic form 

Q(n) := 8n2
1 − 4n2

2 (4.1)

and the vectors 

c1 :=
1

2
√

2
(−1 2)T and c2 :=

1

2
√

2
(1 2)T (4.2)

in CQ (as defined in Remark 3.1). For these choices, the theta function in equation (3.5) is
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 19

ϑμ(τ) =
1
2

∑
n∈ℤ2+μ

(1 + sgn(n1 + n2)sgn(n1 − n2))q8n2
1−4n2

2 for μ ∉ ℤ2.

We can now express the theta functions found in Lemma 4.1 in terms of these ϑμs.

Lemma 4.2 We have 

q−
17
32 L1(q) = f3(τ), q

7
32 L2(q) = f1(τ), q−

33
32 L3(q) = f0(τ), q−

9
32 L4(q) = f2(τ),

where 

fj(τ) := ϑμj(τ) + ϑμj+λ(τ) with μj := (2j + 1
16

1
8

)
T

and λ := (1
2

1
2

)
T

.

Proof. The claim follows from the relations 

ϑμ = ϑ−μ = ϑ(μ1 −μ2)T .

4.2. The corresponding Maass forms

Next we follow (3.4) and define the mock Maass theta functions Θμ for the quadratic form Q in (4.1) 
and vectors c1, c2 in (4.2). Noting that the vectors in C⟂

Q  corresponding to c1 and c2 are c⟂1 = 1
2 (1 − 1)T

and c⟂2 = 1
2 (1 1)T , we find (for μ ∉ ℤ2) 

Θμ(τ) =
√τ2

2
∑

n∈ℤ2+μ

(1 + sgn(n1 + n2)sgn(n1 − n2))K0 (2π (8n2
1 − 4n2

2)τ2)e2πi(8n2
1−4n2

2)τ1

+
√τ2

2
∑

n∈ℤ2+μ

(1− sgn(2n1 + n2)sgn(2n1 − n2))K0 (−2π (8n2
1 − 4n2

2)τ2)e2πi(8n2
1−4n2

2)τ1 .

We also have their modular completions given by equation (3.3) and Proposition 3.4: 

Θ̂μ = Θμ +φ[c1]
μ −φ[c2]

μ .

In the following it is also useful to note the trivial identities 

Θμ = Θ−μ = Θ(−μ1 μ2)T = Θ(μ1 −μ2)T , Θ̂μ = Θ̂−μ = Θ̂(−μ1 μ2)T = Θ̂(μ1 −μ2)T . (4.3)

Our main interest is of course on the linear combinations of ϑμs given in Lemma 4.2. So for 

j ∈ {0,1,2,3} we form the corresponding linear combinations of the Θμs and Θ̂μs to define 

Fj := Θμj +Θμj+λ and F̂j := Θ̂μj + Θ̂μj+λ.

With the next lemma, we show that the shadow contributions to F̂j do in fact vanish and hence the 

Fjs constitute a Maass form. Note that under any element of SL2(ℤ), the functions F̂j transform 
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20 K. BRINGMANN AND C. NAZAROGLU

into a linear combination of completed mock Maass theta functions Θ̂μ according to Theorem 3.3. 
According to Section 3 of [14], we have 

||||
qQ(n)∫

t2

t1

e−πB(n,c(t))2τ2dt
||||
≤ |t2 − t1|e−Cτ2(n2

1+n2
2)

for any n, with a constant C depending on c1 and c2. So the infinite series in equation (3.3) can 
be bounded from above with an ordinary theta function, and this ensures that each F̂j has at most 

polynomial growth at the cusps. This allows Fj = F̂j to satisfy the growth condition required from 
Maass forms in Definition 2.1. The same argument also applies to the relevant functions for L5,… ,L8
and L9,… ,L12 cases below. 

Lemma 4.3 For j ∈ {0,1,2,3} we have 

Fj = F̂j.

Proof. Suppose that γ ∈ GL2(ℤ) is an automorphism such that γT Aγ = A, det(γ) = −1 and γc = ±c
for some c ∈ CQ. Suppose moreover that γλ ≡ λ (modℤ2) and that γ transforms μ to ±μ or ±(μ + λ)
modulo ℤ2. Then the identity φ[c]

−a = φ[c]
a  and Lemma 3.5 yield 

φ[c]
μ +φ[c]

μ+λ = 0.

We use this fact with the automorphisms γ1 := (−3
4

−2
3 ) and γ2 := ( 3

4
−2
−3 ), which both satisfy 

det(γj) = −1 and γT Aγ = A, as well as γ1c1 = c1 and γ2c2 = −c2. Since 

γ1μj = (−6j−7
16

4j+5
8 )T

, γ2μj = ( 6j−1
16

4j−1
8 )T

, γ1λ ≡ γ2λ ≡ λ (modℤ2) ,

we also find that γ1 and γ2 transform μj to ±μj or ±(μj + λ) modulo ℤ2 to conclude that 

F̂j −Fj = (φ[c1]
μj +φ[c1]

μj+λ
)−(φ[c2]

μj +φ[c2]
μj+λ

) = 0 for all j.

We next state the details of modular transformations for the Fjs under the modular group Γ0(2), 

which is generated by T := ( 1
0

1
1 ), R := ( 1

2
0
1 ) and −I. Here and throughout we use ζn := e

2πi
n .

Proposition 4.4 The functions Fj for j ∈ {0,1,2,3} transform like a vector-valued modular function 
under Γ0(2): 

Fj (
aτ + b
cτ + d

) =
3

∑
k=0

ΛM( j,k)Fk(τ) for all M ∈ Γ0(2),
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 21

where the multiplier system Λ is as follows for T = ( 1
0

1
1 ) and R = ( 1

2
0
1 ): 

Proof. The behavior under translation follows from Theorem 3.3 and the fact that Q(μj + λ) =
Q(μj) + j + 1. We next consider the transformation τ ↦ τ

2τ+1 . By Theorem 3.3, we have 

Θ̂μ ( τ
2τ + 1

) = ∑
ν∈A−1ℤ2/ℤ2

ψ(μ,ν)Θ̂ν(τ),

where 

ψ(μ,ν) =
1

2√|det(A)|
∑

m∈ℤ2/2ℤ2

eπi(Q(m+μ)−B(m+μ,ν)+Q(ν)).

Since Q(m+μ)−B(m+μ,ν) + Q(ν) = Q(m) + B(m,μ− ν) + Q(μ− ν) and Q(m) = 8m2
1 − 4m2

2 is 
even we get 

The elements of A−1ℤ2/ℤ2 are of the form ( r1
16

r2
8 )T  with r1 ∈ {0,1,2… ,15} and r2 ∈ {0,1,2… ,7}. 

Letting μ = ( 2r1+1
16

2r2+1
8 )T  and ν = ( 2s1+ℓ1

16
2s2+ℓ2

8 )T , where r1,s1 ∈ {0,1,… ,7}, r2,s2 ∈ {0,1,2,3}
and ℓ1,ℓ2 ∈ {0,1}, we find 

∑
m∈ℤ2/2ℤ2

eπiB(m,μ−ν) = 4δℓ1,1δℓ2,1.

In particular, this shows that the Θ̂μs with μ of the form ( 2r1+1
16

2r2+1
8 )T  transform among each other. 

Moreover, because of equation (4.3), changing μ1 from 1
16 , 3

16 , 5
16 , 7

16  to 15
16 , 13

16 , 11
16 , 9

16 , respectively (or 

vice versa), or changing μ2 from 1
8 , 5

8  to 7
8 , 3

8 , respectively, does not change Θ̂μ. So we can combine 
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22 K. BRINGMANN AND C. NAZAROGLU

the contributions of cosets corresponding to μ,−μ,(−μ1 μ2)T ,(μ1 − μ2)T  by restricting μ to 

𝒮 := {μ0,μ1,μ2,μ3,μ0 + λ,μ1 + λ,μ2 + λ,μ3 + λ},

and by combining the corresponding factors in the transformation as 

ρ(μ,ν) := ψ(μ,ν) +ψ(μ,−ν) +ψ(μ,(ν1,−ν2)) +ψ(μ,(−ν1,ν2)) and ψ(μ,ν) =
eπiQ(μ−ν)

4
√

2
.

This yields 

Θ̂μ ( τ
2τ + 1

) = ∑
ν∈𝒮

ρ(μ,ν)Θ̂ν(τ) for μ ∈ 𝒮,

where we simplify ρ as 

ρ(μ,ν) =
eπi(Q(μ)+Q(ν))

√
2

cos(16πμ1ν1)cos(8πμ2ν2).

Since our ultimate goal is to study the transformation of F̂j, we write 

Θ̂μ ( τ
2τ + 1

) + Θ̂μ+λ ( τ
2τ + 1

) = ∑
ν∈𝒮

λ(μ,ν)Θ̂ν(τ),

where 

λ(μ,ν) := ρ(μ,ν) + ρ(μ + λ,ν).

Since Q(λ) = 1, B(μ,λ) = 8μ1 − 4μ2, μ2 ∈ { 1
8 , 5

8 } for μ ∈ 𝒮, we find the identity 

eπiQ(μ+λ) = ieπiQ(μ)e8πiμ1 for μ ∈ 𝒮,

which we can use to show 

λ(μ,ν + λ) = λ(μ,ν).

So we finally get 

Θ̂μj (
τ

2τ + 1
) + Θ̂μj+λ ( τ

2τ + 1
) =

3

∑
k=0

λ(μj,μk)(Θ̂μk(τ) + Θ̂μk+λ(τ))

and hence 

Fj (
τ

2τ + 1
) =

3

∑
k=0

λ(μj,μk)Fk(τ).

Computing the explicit values of λ(μj,μk) gives the stated transformation.
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 23

4.3. Quantum modularity

To summarize our findings so far, we know from Proposition 4.4 that the functions Fj for j ∈
{0,1,2,3} form a vector-valued Maass form for Γ0(2). Our next goal is to apply the results of 
Section 2 on these functions. First, we note that thanks to equation (2.3) and Proposition 2.2, the 
functions f j (which are basically equal to the functions L1,… ,L4 thanks to Lemma 4.2) are related 
to the Fjs as 

fj(τ) = −
2
π
∫

i∞

τ
[Fj(z),Rτ(z)].

Then thanks to Proposition 2.5, they satisfy the following modular transformation for any

M := (a b
c d

) ∈ Γ0(2) and τ ∈ ℍ with τ1 ≠ − d
c : 

Here the obstruction to modularity ℱk,− d
c
 is a holomorphic function on ℂ⧵ (− d

c + iℝ) (thanks to 
Proposition 2.3) defined as in equation (2.3): 

ℱj,ρ(τ) :=
2
π
∫

i∞

ρ
[Fj(z),Rτ(z)].

Next, following Proposition 2.6 we define the functions 𝔣j : 𝒬Γ0(2) →ℂ with j ∈ {0,1,2,3} by 

Then finally by Theorem 2.8 we find the quantum modular properties for the rational limits of 
L1,… ,L4.

Proposition 4.5 The functions 𝔣j : 𝒬Γ0(2) →ℂ with j ∈ {0,1,2,3} form a vector-valued quantum 

modular form transforming as follows for any M := ( a
c

b
d ) ∈ Γ0(2) and x ∈ 𝒬Γ0(2) ⧵ {− d

c }: 

Here the multiplier system Λ is as given in Proposition 4.4.

5. The functions L5–L8

We continue in this section with the functions L5,… ,L8 that count ideals in the ring of integers 
of ℚ(

√
3). This is possibly the most interesting family of functions among our examples since its 

discussion requires the novel features studied in Section 2 due to the presence of constant terms.
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24 K. BRINGMANN AND C. NAZAROGLU

5.1. Rewriting as theta functions

We begin as in Section 4.1 by rewriting our functions in terms of theta functions.

Lemma 5.1 We have 

Proof. As the proof is analogous to that of Lemma 4.1 we only state the identities used from 
Theorem 1.2 of [9]. These are 

To rewrite these expressions more compactly, we define the quadratic form 
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 25

and the vectors 

in CQ (as defined in Remark 3.1). The parameters t1 and t2 that describe these vectors according 
to (3.2) are 

According to these values, the theta function given in equation (3.5) becomes 

We can now rewrite the expressions in Lemma 5.1 in terms of these ϑμs.

Lemma 5.2 We have 

q−1L5(q)− 2
π

arctanh( 1√
3

) = g0(τ), q−
1
2 L6(q) = g3(τ), q

1
6 L7(q) = g1(τ), q−

1
3 L8(q) = g2(τ),

where 

gj(τ) := ϑμj(τ) + ϑμj+λ(τ) with μj := ( j
6

0)
T

and λ := (1
2

1
2

)
T

.

5.2. The corresponding Maass forms

We next follow equation (3.4) and define the mock Maass theta functions Θμ given the quadratic 
form Q in (5.1) and vectors c1, c2 in (5.2). For this purpose, we first find the vectors in C⟂

Q  that 
correspond to c1 and c2 as c⟂1 = 1

2 (1 − 1)T  and c⟂2 = 1
2 (1 1)T . Then we get 

We also have the corresponding modular completion given by equation (3.3) and Proposition 3.4: 
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26 K. BRINGMANN AND C. NAZAROGLU

As before, these functions satisfy the following elementary properties: 

Since we are interested in the linear combinations of ϑμs given in Lemma 5.2, we make the 
following definitions for j ∈ {0,1,2,3}: 

We now proceed as in Lemma 4.3 to show that the shadow contributions to Ĝj vanish.

Lemma 5.3 For j ∈ {0,1,2,3} we have 

Gj = Ĝj.

Then following the arguments of Proposition 4.4, we find the modular properties of the Maass 
forms Gj.

Proposition 5.4 For j ∈ {0,1,2,3} the functions Gj transform like vector-valued modular function 
under Γ0(2): 

Gj (
aτ + b
cτ + d

) =
3

∑
k=0

ΦM( j,k)Gk(τ) for all M ∈ Γ0(2),

where the multiplier system Φ is as follows for T = ( 1
0

1
1 ) and R = ( 1

2
0
1 ): 

− 4 12

5.3. Quantum modularity

In summary, from Proposition 5.4 we know that Gj for j ∈ {0,1,2,3} form a vector-valued Maass 
waveform for Γ0(2). We next apply the findings of Section 2 on these functions. First, we note 
that equation (2.3) and Proposition 2.2 imply that the functions gj (which are basically equal to the 
functions L5,… ,L8 thanks to Lemma 5.2) are related to the Gjs as 

gj(τ) = −
2
π
∫

i∞

τ
[Gj(z),Rτ(z)].

Then Proposition 2.5 gives their modular transformation for any M := ( a
c

b
d ) ∈ Γ0(2) and τ ∈ ℍ with 

τ1 ≠ − d
c : 

gj (
aτ + b
cτ + d

) = sgn(cτ1 + d)(cτ + d)
3

∑
k=0

ΦM( j,k)(gk(τ) +𝒢k,− d
c
(τ)) .
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 27

Here the obstruction to modularity 𝒢k,− d
c
 is a holomorphic function on ℂ⧵ (− d

c + iℝ) (according to 
Proposition 2.3) defined as in equation (2.3): 

Next we follow Proposition 2.6 and define the functions 𝔤j : 𝒬Γ0(2) →ℂ with j ∈ {0,1,2,3} by 

where x = − dx
cx

 and Mx = ( ax
cx

bx
dx

) ∈ Γ0(2). Then finally by Theorem 2.8 we find the quantum modular 
properties for (the finite parts of) the rational limits of L5,… ,L8.

Proposition 5.5 The functions 𝔤j : 𝒬Γ0(2) →ℂ with j ∈ {0,1,2,3} form a vector-valued quantum 

modular form transforming as follows for any M := ( a
c

b
d ) ∈ Γ0(2) and x ∈ 𝒬Γ0(2) ⧵ {− d

c }: 

Here the multiplier system Φ is as given in Proposition 5.4.

6. The functions L9–L12

In this section we study our final family of functions from [10] with L9,… ,L12 that count ideals in 
the ring of integers of ℚ(

√
6).

6.1. Rewriting as theta functions

We begin like the previous two families of functions and rewrite L9,… ,L12 in terms of theta functions.
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28 K. BRINGMANN AND C. NAZAROGLU

Lemma 6.1 We have 

q−
9
16 L9(q) =

1
2

⎛⎜⎜
⎝

∑
n∈ℤ2+(0 3

8 )
T

+ ∑
n∈ℤ2+( 1

2
7
8 )

T

⎞⎟⎟
⎠

(1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 ,

q−
17
16 L10(q) =

1
2

⎛⎜⎜
⎝

∑
n∈ℤ2+(0 1

8 )
T

+ ∑
n∈ℤ2+( 1

2
5
8 )

T

⎞⎟⎟
⎠

(1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 ,

q
5
48 L11(q) =

1
2

⎛⎜⎜
⎝

∑
n∈ℤ2+( 1

6
1
8 )

T

+ ∑
n∈ℤ2+( 2

3
5
8 )

T

⎞⎟⎟
⎠

(1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 ,

q−
19
48 L12(q) =

1
2

⎛⎜⎜
⎝

∑
n∈ℤ2+( 1

6
3
8 )

T

+ ∑
n∈ℤ2+( 2

3
7
8 )

T

⎞⎟⎟
⎠

(1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 .

Proof. Again the proof is similar to that of Lemma 4.1 and the identities we require are taken from 
the proof of Theorem 1.3 of [9] 

q−9L9 (q16) = ∑
n≥1

−n≤j≤n−1

q6(4n)2−(8j+3)2
+ ∑

n≥0
−n≤j≤n

q6(4n+2)2−(8j+1)2

+ ∑
n≥1

−n+1≤j≤n

q6(4n)2−(8j−3)2
+ ∑

n≥0
−n≤j≤n

q6(4n+2)2−(8j−1)2
,

q−17L10 (q16) = ∑
n≥1

−n≤j≤n−1

q6(4n)2−(8j+1)2
+ ∑

n≥0
−n≤j≤n

q6(4n+2)2−(8j+3)2

+ ∑
n≥1

−n+1≤j≤n

q6(4n)2−(8j−1)2
+ ∑

n≥0
−n≤j≤n

q6(4n+2)2−(8j−3)2
,

q10L11 (q96) = ∑
n≥0

−n≤j≤n

(q(24n+4)2−6(8j+1)2
+ q(24n+20)2−6(8j+1)2)

+ ∑
n≥0

−n−1≤j≤n

(q(24n+32)2−6(8j+3)2
+ q(24n+16)2−6(8j+3)2) ,

q−38L12 (q96) = ∑
n≥1

−n≤j≤n−1

q(24n+4)2−6(8j+3)2
+ ∑

n≥0
−n−1≤j≤n

q(24n+20)2−6(8j+3)2

+ ∑
n≥−1

−n−1≤j≤n+1

q(24n+32)2−6(8j+1)2
+ ∑

n≥0
−n≤j≤n

q(24n+16)2−6(8j+1)2
.
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QUANTUM MODULAR FORMS FROM REAL-QUADRATIC DOUBLE SUMS 29

For more compact expressions, we define the quadratic form 

Q(n) := 6n2
1 − 4n2

2 (6.1)

and the vectors 

in CQ (as defined in Remark 3.1). Then the theta functions in (3.5) are 

ϑμ(τ) =
1
2

∑
n∈ℤ2+μ

(1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 for μ ∉ ℤ2.

With this expression at hand, we can rewrite the results in Lemma 6.1 as follows:

Lemma 6.2 We have 

where 

T T

6.2. The corresponding Maass forms

Our next step is to define the mock Maass theta function Θμ as in equation (3.4) for the quadratic 
form Q in (6.1) and vectors c1, c2 in (6.2). We first find the vectors in C⟂

Q  that correspond to c1 and 
c2 as c⟂1 = 1√

2
(1 − 1)T  and c⟂2 = 1√

2
(1 1)T  to get (for μ ∉ ℤ2) 

These mock Maass theta functions have modular completions, 

Θ̂μ = Θμ +φ[c1]
μ −φ[c2]

μ ,

as described in equation (3.3) and Proposition 3.4. Like the other two cases, these functions satisfy 
the following elementary properties: 
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30 K. BRINGMANN AND C. NAZAROGLU

Since we would like to study the linear combinations of ϑμs given in Lemma 5.2, we define the 
following for j ∈ {0,1,2,3}: 

The shadow contributions to the Ĥjs vanish following the arguments of Lemma 4.3.

Lemma 6.3 For j ∈ {0,1,2,3} we have 

Following the proof of Proposition 4.4, the H js have the following modular transformations:

Proposition 6.4 The functions Hj for j ∈ {0,1,2,3} transform like vector-valued modular function 
under Γ0(2): 

where the multiplier system Ω is as follows for T = ( 1
0

1
1 ) and R = ( 1

2
0
1 ): 

6.3. Quantum modularity

Summarizing the results above, we find from Proposition 5.4 that H j for j ∈ {0,1,2,3} form a vector-
valued Maass form for Γ0(2). Our next step is to apply the results of Section 2. First, we note that (2.3) 
and Proposition 2.2 imply that the functions hj (which are basically equal to L9,… ,L12 thanks to 
Lemma 6.2) are related to H js as 

j π τ
j , τ .

Then Proposition 2.5 gives their modular transformation for any M := ( a
c

b
d ) ∈ Γ0(2) and τ ∈ ℍ with 

τ1 ≠ − d
c  as 
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Here the obstruction to modularity ℋk,− d
c
 is a holomorphic function on ℂ⧵ (− d

c + iℝ) (according to 
Proposition 2.3) defined as in equation (2.3): 

Next we follow Proposition 2.6 and define the functions 𝔥j : 𝒬Γ0(2) →ℂ with j ∈ {0,1,2,3} by 

Then Theorem 2.8 implies that these functions (given by rational limits of L9,… ,L12) form a quantum 
modular form.

Proposition 6.5 The functions 𝔥j : 𝒬Γ0(2) →ℂ with j ∈ {0,1,2,3} form a vector-valued quantum 

modular form transforming as follows for any M := ( a
c

b
d ) ∈ Γ0(2) and x ∈ 𝒬Γ0(2) ⧵ {− d

c }: 

Here the multiplier system Φ is as given in Proposition 6.4.
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Appendix: Numerical Examples

In this appendix, we provide some numeric results on the functions gj and quantum modular forms 
𝔤j associated with the family L5(q),… ,L8(q). This example is distinguished from the other two by 
the presence of a non-zero constant term for the Maass form Gj. Due to this property, for a given 
x ∈ 𝒬Γ0(2) not all components of gj(x + it) converge as t → 0+. The quantum modular form 𝔤j is then 
defined by simply removing the leading growing term from this object. With the results below we 
try to exemplify various aspects of these statements.

First, in Table A1 we give the approximate values of gj(τ), gj( τ
2τ+1 ) and 𝒢j,− 1

2
(τ) for various values 

of τ that get close to 11
12 ∈ 𝒬Γ0(2). With these numbers one can check that the modular transformation 

property in Proposition 5.4 is satisfied to the order shown.
Now we note that for the point x = 11

12  we have 

γ0,x = 0.10974649141040139… ,

with all the other components zero. So g0(x + it) is the only component of g that diverges as t → 0+. 
This is already visible in Table A1. In fact, subtracting the growing piece as in Proposition 2.6 we 
find the results in Table A2.
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Table A2. g0(τ) as τ→ 11
12  with its growing part removed.

τ g0(τ)− 1
πτ2
γ0, 11

12

11
12 + i

102 −1.2918154651…− 1.7245334957… i
11
12 + i

103 −0.8698937600…− 1.5402665800… i
11
12 + i

104 −0.8445552866…− 1.5333698829… i
11
12 + i

105 −0.8421200156…− 1.5327590942… i

Table A3. 𝔤j ( 11
12 ) and its modular transformation under x ↦ x

2x+1 .

𝔤j ( 11
12 ) 𝔤j ( 11

34 ) 𝒢j,− 1
2

( 11
12 )

⎛⎜⎜⎜
⎝

−0.84185045− 1.53269207i
−0.30191635− 3.45091966i
−1.73260053− 0.14841718i
−1.41421356 + 1.41421356i

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

6.35925312− 8.25358660i
−1.30588754− 1.76561858i
−6.66512984− 3.49340997i
−7.79812377− 2.27823717i

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

0.48540561− 0.41339484i
−0.23705412 + 0.05092656i
0.07378198 + 0.09625928i
0.03179924 + 0.00680562i

⎞⎟⎟⎟
⎠

Given the integral representation of gj in (2.3) and the modular transformations of the Maass 
form Gj, one can efficiently compute the values of the quantum modular form 𝔤j. In particular,
we have 

One can check the quantum modular transformations using the approximate values in Table A3.
Finally, in Figs. A1 and A2 we display various values of 𝔤0 and its obstruction to modularity. 

Figure A1. On the left we plot Re(𝔤0(x)) and on the right we plot Im(𝔤0(x)) for x ∈𝒬Γ0(2) with −1 < x < 1 and denominator 
at most 40.
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Figure A2. On the left hand side we plot the real part and on the right hand side we plot the imaginary part of 𝔤0( x
2x+1 )−

|cx + d|∑3

k=0
ΦR(0,k)𝔤k(x) for x ∈𝒬Γ0(2) with x ∈ (−1,1) and denominator at most 40.
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