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Abstract. We develop a new technique for deriving asymptotic series expansions for moments of
combinatorial generating functions that uses the transformation theory of Jacobi forms and “mock”
Jacobi forms, as well as the Hardy-Ramanujan Circle Method. The approach builds on a sugges-
tion of Zagier, who observed that the moments of a combinatorial statistic can be simultaneously
encoded as the Taylor coefficients of a function that transforms as a Jacobi form. Our use of Ja-
cobi transformations is a novel development in the subject, as previous results on the asymptotic
behavior of the Taylor coefficients of Jacobi forms have involved the study of each such coefficient
individually using the theory of quasimodular forms and quasimock modular forms.

As an application, we find asymptotic series for the moments of the partition rank and crank
statistics. Although the coefficients are exponentially large, the error in the series expansions is
polynomial, and have the same order as the coefficients of the residual Eisenstein series that are
undetectable by the Circle Method. We also prove asymptotic series expansions for the symmetrized
rank and crank moments introduced by Andrews and Garvan, respectively. Equivalently, the former
gives asymptotic series for the enumeration of Andrews k-marked Durfee symbols.

1. Introduction and Statement of Results

In [1], Andrews defined the smallest parts function spt(n) as the sum of the total number of
appearances of the smallest part in each integer partition of n. For example if n = 4, then spt(4) =
10, since

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

are the partitions of 4, and they have smallest parts 4, 1, 2, 1, and 1, respectively. Andrews related
spt(n) to Dyson’s rank of the partitions of n (see (1.1) for the definition) through the formula

spt(n) = np(n)− 1

2
N2(n),

where N2(n) is the second rank moment n (defined in (1.4)) and p(n) is the number of partitions
of n. Alternatively, the spt-function may be written as the difference of second moments, namely,

spt(n) =
1

2
(M2(n)−N2(n)) .

This follows from Dyson’s identity np(n) = 1
2M2(n) (see [18]), where M2(n) is the second moment

of the crank statistic (using the definitions in (1.2) and (1.3)).
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These observations have been the catalyst for many works studying the relations between the
rank and crank statistics (see [7, 9, 21, 22]). For instance, since spt(n) is positive we have the strong
inequality

M2(n) > N2(n).

Additionally, the first two authors previously showed that as n goes to infinity

N2(n),M2(n) ∼ 1

2
√

3
e
π
√

2n
3 ,

whereas the difference of these moments has (polynomially) lower asymptotic order, as

spt(n) ∼ 1

π
√

2n
e
π
√

2n
3

(see [7] and [10]). The fact that the main asymptotic terms of the moments match exactly is notable
because it suggests that the rank and crank generating functions are more closely related than one
would expect from the definitions of the statistics. The primary purpose of this paper is to explain
how these types of asymptotic relationships follow from the fact that the underlying generating
functions for the partitions statistics are essentially examples of Jacobi forms and “mock” Jacobi
forms.

Jacobi forms should be understood as two variable automorphic forms satisfying an elliptic trans-
formation and a modular transformation. Such functions were introduced and studied by Eichler
and Zagier; see [19] for further background and applications. Key features of Jacobi forms include
the fact that the specialization of the elliptic variable to a root of unity yields a modular form,
whereas the Taylor coefficients with respect to the elliptic variable are each quasimodular forms in
the modular variable. Such functions are essentially defined to be linear combinations of derivatives
of modular forms, which also have well-understood transformation properties.

In his seminal thesis on mock theta functions [29], Zwegers also initiated the study of real-analytic
Jacobi forms, which are generalizations of classical Jacobi forms. These are non-holomorphic func-
tions of two complex variables that transform in the same way as Eichler and Zagier’s Jacobi forms
(see Proposition 2.5). In this case, if the elliptic variable of one of Zwegers’ functions is specialized
to a root of unity, then the resulting holomorphic part is a mock modular form, which is now known
to be related to the theory of harmonic weak Maass forms (see [16] for more on the development of
this theory, and [13, 28] for examples). In particular, Zwegers’ work was motivated by Ramanujan’s
famous mock theta functions, and the mock Jacobi forms helped provide a theoretical basis for
Ramanujan’s observations. Furthermore, the Taylor coefficients of these functions are quasimock
modular forms (following [9]), which are linear combinations of derivatives of mock modular func-
tions, and whose modular transformations are again understood. The real-analytic Jacobi forms
studied by Zwegers also fit into the more general framework of mock Jacobi forms introduced by
the first author and Richter in [14].

In previous work in the subject, the cuspidal asymptotic properties of quasimodular and quasi-
mock modular forms have only been studied through the action of modular transformations on each
individual function. In contrast, the method employed in this paper directly utilizes Jacobi trans-
formations in order to simultaneously study all of the Taylor coefficients. As a consequence, our new
approach will show that the nearly identical asymptotics of moments of the rank and crank statistics
arise from the fact that the Jacobi forms involved satisfy Jacobi transformations of different index.

Much of this subject can trace its motivation to Ramanujan’s famous congruences in [25], which
state that for ` ∈ {5, 7, 11}, the partition function satisfies the linear congruence p(`n + δ`) ≡ 0
(mod `) for all n ≥ 0, where δ` is defined as the minimal positive residue of 24 (mod `). In an effort
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to provide a combinatorial explanation of Ramanujan’s congruences Dyson introduced [17] the rank
of a partition λ, defined as

(1.1) rank(λ) := largest part of λ− number of parts of λ.

Dyson observed that the rank is not sufficient to decompose all three of Ramanujan’s congruences,
and thus he also conjectured the existence of an analogous statistic, the “crank”, that would explain
all of Ramanujan’s congruences simultaneously. Garvan found the crank statistic for vector parti-
tions [20], and together with Andrews presented the following definition [4]. Let o(λ) denote the
number of ones in λ, and define µ(λ) as the number of parts strictly larger than o(λ). Then

(1.2) crank(λ) :=

{
largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0.

LetM(m,n) (resp. N (m,n)) be the number of partitions of n with crank (resp. rank) m. Then
aside from the anomalous case ofM(m,n) when n = 1 (where the correct values areM(0, 1) = 1
andM(m, 1) = 0 for all m 6= 0), the two-parameter generating functions may be written as [4, 6]

C(x; q) :=
∑
m∈Z
n≥0

M(m,n)xmqn =
∏
n≥1

1− qn

(1− xqn)(1− x−1qn)
=

1− x
(q)∞

∑
n∈Z

(−1)nqn(n+1)/2

1− xqn
,

R(x; q) :=
∑
m∈Z
n≥0

N (m,n)xmqn =
∑
n≥0

qn
2

(xq; q)n(x−1q; q)n
=

1− x
(q)∞

∑
n∈Z

(−1)nqn(3n+1)/2

1− xqn
.

where (x; q)n = (x)n :=
∏n−1
j=0

(
1− xqj

)
for all n ∈ N0 ∪ {∞}. For a nonnegative integer k, define

the k-th crank moment as

Mk(n) :=
∑
m∈Z

mkM(m,n),(1.3)

and the k-th rank moment as

Nk(n) :=
∑
m∈Z

mkN (m,n).(1.4)

Due to the symmetries of the statistics, the crank and rank moments vanish when k is odd [5].
A vast generalization of the remarks concerning the spt-function was proposed by Garvan in [21].

In particular, he conjectured that for all k ≥ 1 and n ≥ 1

(1.5) M2k(n) > N2k(n).

In a groundbreaking recent paper, Garvan himself proved this conjecture by constructing explicit
higher order spt-functions [22]. In particular, this gives a precise combinatorial description for the
objects that are enumerated by M2k(n) − N2k(n) (or their symmetrized versions, see below), and
the moment inequalities follow directly from the positivity of these enumerations.

We consider asymptotic results for the rank and crank moments. The cases k = 2 and 3 of
Garvan’s Conjecture were previously proven by the first two authors [10] for sufficiently large n.
As is the case for k = 1, they proved that M2k(n) ∼ N2k(n) as n → ∞ for k = 2 and k = 3, and
conjectured this to be true for all k ≥ 1. All three authors then used an extension of this method
in [12] in order to prove Garvan’s Conjecture for any fixed k and sufficiently large n. The approach
relied on the Circle Method, identities for multiple sums of Bernoulli numbers, and the theory of
quasimock theta functions. In particular, the rank moments were related to the crank moments
through Atkin and Garvan’s rank-crank PDE [5].
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The rank-crank PDE is a relation between a triple sum of products of crank moment generating
functions, rank moment generating functions, and q-derivatives of rank generating functions. Atkin
and Garvan [5] had previously shown that the crank moment generating functions are quasimodular
forms. Along with Garvan, the first two authors used the rank-crank PDE to connect the auto-
morphic properties of ranks to cranks, and showed that the rank moment generating functions are
quasimock theta functions [9]. Consequently, these moment generating functions have automorphic
properties, which were exploited in order to prove congruences and asymptotics for their coefficients.
The first author and Zwegers [15, 30] further showed that this PDE may be understood via the ac-
tion of the heat operator on real-analytic Jacobi forms. However, our present approach circumvents
the use of the rank-crank PDE, as we instead work directly with the Jacobi transformations of the
two-variable generating series.

Let

Ck(q) :=
∑
n≥0

Mk(n)qn and Rk(q) :=
∑
n≥0

Nk(n)qn

denote the generating functions for Mk(n) and Nk(n). Let

C(u; q) :=
∞∑
k=0

Ck(q)
(2πiu)k

k!
and R(u; q) :=

∞∑
k=0

Rk(q)
(2πiu)k

k!

be the exponential generating functions for the crank and rank moment generating functions. Re-
arranging the order of summation yields

(1.6) C(u; q) = C
(
e2πiu; q

)
and R(u; q) = R

(
e2πiu; q

)
.

We determine the Taylor expansion for R(u; q) in u, calculate the asymptotics for the individual
coefficients with q = e

2πi
k

(h+iz), and finally use the Circle Method to obtain asymptotics for the
moments. It is important to note that the transformation properties and asymptotics for the rank
generating function are quite intricate due to its mock modular behavior.

In order to state our asymptotic formulas, we introduce some additional notation. If a, b, and c
are nonnegative integers, let

(1.7) κ(a, b, c) :=
(2(a+ b+ c))!

a!(2b+ 1)!(2c)!

(−1)a+c

πa4a+b
B2c

(
1

2

)
,

where Bn(x) denotes the nth Bernoulli polynomial, which is defined by the generating function
(3.1). Moreover, define the Kloosterman sum

(1.8) Kk(n) :=
∑

0≤h<k
(h,k)=1

ωh,ke
− 2πihn

k ,

where ωh,k is the multiplier of the partition generating function, which is given explicitly by

ωh,k := exp (πis(h, k)) .(1.9)

Here we follow the standard notation for Dedekind sums, namely

s(h, k) :=
∑

µ (mod k)

((µ
k

))((hµ
k

))
,

with the sawtooth function defined as

((x)) :=

{
x− bxc − 1

2 if x ∈ R \ Z,
0 if x ∈ Z.
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We prove the following asymptotic series expansion for the rank and crank moments.

Theorem 1.1. For all ` and n we have

M2`(n) = 2π
∑
k≤
√
n

Kk(n)

k

∑
a+b+c=`

kaκ(a, b, c)(24n− 1)c+
a
2
− 3

4 I 3
2
−2c−a

(
π
√

24n− 1

6k

)
+O

(
n2`−1

)
and

N2`(n) = 2π
∑
k≤
√
n

Kk(n)

k

∑
a+b+c=`

(3k)aκ(a, b, c)(24n− 1)c+
a
2
− 3

4 I 3
2
−2c−a

(
π
√

24n− 1

6k

)
+O

(
n2`−1

)
,

where Iν denotes the modified Bessel function of order ν.

Remark. Here and throughout the rest of the paper, the sums on a, b, and c are only for nonnegative
integers.

Remark. Using Iν(y) ∼ 1√
2πy

ey and y →∞ one sees that

N2`(n) ∼M2`(n) ∼ 2
√

3(−1)`B2`

(
1

2

)
(24n)`−1e

π
√

2n
3 .

Remark. In the approach used in this paper, the Bernoulli numbers B2`(
1
2) arise from the Fourier

expansion of 1
sinh(x) . On the other hand, in [12] they appear as a convolution of the usual Bernoulli

numbers B2i = B2i(0).

In [1], Andrews presents the computation of the asymptotics of the symmetrized rank moments
η2k(n) as a problem of significant interest. Furthermore, Garvan subsequently introduced sym-
metrized crank moments ν2k(n) in his study of generalized spt-functions [22]. See (4.2) and (4.3)
for precise definitions. Theorem 1.1 easily leads to precise asymptotics for these moments.

Corollary 1.2. Assuming the notation of Theorem 1.1, for all ` and n we have

η2`(n) =
2π

(2`)!

∑
k≤
√
n

Kk(n)

k

∑
a+b+c≤`

t(`, a+ b+ c)(3k)aκ(a, b, c)(24n− 1)c+
a
2
− 3

4 I 3
2
−2c−a

(
π
√

24n− 1

6k

)
+O

(
n2`−1

)
,

and

ν2`(n) =
2π

(2`)!

∑
k≤
√
n

Kk(n)

k

∑
a+b+c≤`

t(`, a+ b+ c)kaκ(a, b, c)(24n− 1)c+
a
2
− 3

4 I 3
2
−2c−a

(
π
√

24n− 1

6k

)
+O

(
n2`−1

)
,

where t(`,m) is defined by the generating function
∑`

m=0 t(`,m)x2m :=
∏`−1
j=0(x

2 − j2).

Remark. The case ` = 1 was given in [7]. Exact formulas for η2`(n) remain out of reach due to the
fact that the moment generating functions are comprised of terms with positive weight as (mock)
modular forms (specifically, as large as 2`− 1/2). In such situations the Circle Method or spectral
techniques cannot detect the contribution from holomorphic or cuspidal modular forms.

Remark. Andrews [1] stated the problem of asymptotics for η2`(n) in the context of a family of
generalized partition-type combinatorial objects known as k-marked Durfee symbols. Letting Dk(n)
denote the number of k-marked Durfee symbols, Andrews proved that Dk(n) = η2(k−1)(n).
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The remainder of the paper is structured as follows. In Section 2 we build upon Zwegers’ results
in order to derive Jacobi transformation formulas for the crank and rank generating functions, and
we also record some useful identities for the corresponding multiplier systems. We next study the
crank and rank moments as Taylor coefficients in Section 3, and provide bounds for their asymptotic
behavior. Finally, we conclude by applying the Hardy-Ramanujan Circle Method in Section 4 in
order to prove Theorem 1.1 and Corollary 1.2.

Acknowledgements

The authors thank Don Zagier for several fruitful conversations, and also for supplying the initial
suggestion of investigating the Taylor expansions of rank and crank generating functions.

2. Transformation Properties

In this section we derive transformation properties for the crank and rank generating functions. In
his study of mock theta functions [28], Zwegers proved transformation formulas for the completed
automorphic forms, but he did not find simplified transformations for the mock modular forms
themselves. It is therefore necessary for us to carefully study these transformations, and we use
properties of Fourier-Whittaker coefficient expansions in order to find cancellations in the non-
holomorphic terms.

Throughout, we let z ∈ C with Re(z) > 0 and 0 ≤ h ≤ k with (h, k) = 1. We write x = e2πiu

and q = e−2πz. Moreover we denote by [a]b the inverse of a modulo b, and we allow this notation to
(implicitly) extend to higher moduli, and also (implicitly) assume any legal divisibility properties.
In other words, [a]b can be replaced by [a]bc for any c such that (a, c) = 1, and we may assume
d | [a]b for any d such that (b, d) = 1. We will also make the explicit choices that 3 | [·]k if 3 - k,
and use [·]3k instead of [·]k and [·] k

3
if 3 | k, and also [·]8k instead of [·]k if k is even, and 8 | [·]k if k

is odd. To avoid ambiguity, this will be further clarified in the text that follows.

2.1. Cranks. We easily see

(2.1) C(x; q) =
(q)∞

(xq)∞(x−1q)∞
= −2 sin(πu)q

1
24 η2(iz)

ϑ(u; iz)
,

where the Dedekind eta function and the Jacobi theta function are defined by

η(iz) := q
1
24

∞∏
n=1

(1− qn) ,

(2.2) ϑ(u; iz) :=
∑

ν∈Z+ 1
2

e−πν
2z+2πiν(u+ 1

2) = −iq
1
8x−

1
2

∞∏
n=1

(1− qn)
(
1− xqn−1

) (
1− x−1qn

)
.

Define χ (h, [−h]k, k) to be the multiplier of the Dedekind eta-function, so that

(2.3) η

(
1

k
(h+ iz)

)
=

√
i

z
χ
(
h, [−h]k, k

)
η

(
1

k

(
[−h]k +

i

z

))
.

It is known that [3]

χ (h, [−h]k, k) :=

{(
h
k

)
i−

k
2 e

πi
12(−β[−h]k(1−k2)+k(h−[−h]k)) if k is odd,

i−
1
2

(
k
h

)
e
πi
12(hk(1−[−h]2k)−[−h]k(β−k+3)) if h is odd,

(2.4)

where β is defined by −h[−h]k − βk = 1.
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Remark 2.1. In the notation of Section 1 we have

χ (h, [−h]k, k) = i−
1
2ω−1h,ke

− πi
12k

([−h]k−h).

Note that we must be careful when picking the representative of the inverse of −h modulo k, as
χ(h, [−h]k, k) depends on the choice of [−h]k modulo lcm(24, k).

Moreover we will require the following transformation law for ϑ from [26]:

(2.5) ϑ

(
u;

1

k
(h+ iz)

)
=

√
i

z
χ3
(
h, [−h]k, k

)
e−

πku2

z ϑ

(
iu

z
;

1

k

(
[−h]k +

i

z

))
.

Inserting (2.3) and (2.5) into (2.1), we conclude a transformation law for the crank generating
function.

Proposition 2.2. We have

C
(
e2πiu; e

2πi
k

(h+iz)
)

= −2 sin(πu)χ−1
(
h, [−h]k, k

)√ i

z
e
πi
12k

(h+iz) η2
(
1
k

(
[−h]k + i

z

))
ϑ
(
iu
z ; 1

k

(
[−h]k + i

z

))eπku2z .

Remark. By rewriting the right-hand side of Proposition 2.2 in terms of the crank generating func-
tion, one sees that C(x; q) satisfies Jacobi transformations of weight 1

2 and index −1
2 .

2.2. Lerch sums and Zwegers’ thesis. In his landmark thesis [29], Zwegers constructed an
infinite family of so-called harmonic weak Maass forms by “completing” certain Lerch sums. To
state his results, first define the function

(2.6) µ(u, v) = µ(u, v; iz) :=
x

1
2

ϑ(v; iz)

∑
n∈Z

(−w)nq
n(n+1)

2

1− xqn
,

where x := e2πiu, w := e2πiv, and q := e−2πz. Zwegers proved that this function can be completed to
a non-holomorphic automorphic form. The non-holomorphic correction factor requires the definition

(2.7) S(u) = S(u; iz) :=
∑

ν∈Z+ 1
2

(−1)ν−
1
2

{
sgn(ν)− E

((
ν +

Im(u)

Im(iz)

)√
2Im(iz)

)}
e−2πiνuq−ν

2/2.

Here E(x) is defined by

E(x) := 2

∫ x

0
e−πu

2
du = sgn(x)

(
1− β

(
x2
))
,

where for positive real x we let β(x) :=
∫∞
x u−

1
2 e−πudu. Zwegers [29] proved several useful trans-

formation properties of S.

Proposition 2.3. If u ∈ C and Re(z) > 0, then
(i) S(u+ 1; iz) = −S(u; iz),

(ii) S(u; iz + 1) = e−
πi
4 S(u; iz),

(iii) S(u; iz) = − 1√
z
e
πu2

z

(
S

(
iu

z
;
i

z

)
−H

(
iu

z
;
i

z

))
,

where the Mordell integral is defined by

H(u; iz) :=

∫ ∞
−∞

e−πzx
2−2πxu

cosh(πx)
dx.

Moreover, we need the following “dissection” property of S proved by the first author and Folsom.
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Proposition 2.4 (Proposition 2.3 of [8]). For n ∈ N, we have

S

(
u;
iz

n

)
=

n−1∑
`=0

q−
1
2n(`−n−1

2 )
2

e−2πi(`−
n−1
2 )(u+ 1

2)S

(
nu+

(
`− n− 1

2

)
iz +

n− 1

2
;niz

)
.

Zwegers defined the real analytic function

µ̂(u, v) = µ̂(u, v; iz) := µ(u, v; iz) +
i

2
S(u− v; iz),

which should be considered as the modular “completion” of µ. This function satisfies the following
elliptic and modular transformation laws.

Proposition 2.5. Assume all of the notation and hypotheses from above. If k, `,m, n ∈ Z, then we
have

(i) µ̂(u+ kiz + `, v +miz + n) = (−1)k+`+m+ne−πz(k−m)2+2πi(k−m)(u−v)µ̂(u, v),

(ii) µ̂

(
−iuz,−ivz; 1

k
(h+ iz)

)
= χ−3(h, [−h]k, k)

√
i

z
e−πkz(u−v)

2
µ̂

(
u, v;

1

k

(
[−h]k +

i

z

))
.

2.3. Ranks. Here we prove a modular transformation formula for the rank generating function. To
state these we require the following multipliers

ξ`(h, k) := (−1)`+1e
−πih

4k
(2`+1)2∓πi

k

(
h̃−h
3

)
(2`+1)+ 2πih̃

9k ,

ξ(h, k) := e
πi
4 χ−3

(
h, [−h]k, k

)
(−1)h̃+he

2πih̃
9k
−πi[−h]k

k

(
h̃−h
3

)2
,

ξ′ (h, k) := (−1)kξ (h, k) .

Here h̃ ∈ {−1, 0, 1} is defined by h̃ ≡ h (mod 3). If 0 ≤ ` ≤ k − 1, then we also write α±(`, k) :=
1
k

(
±1

3 −
(
`− k−1

2

))
. Note that in all cases |α±(`, k)| < 1

2 .

Proposition 2.6. (i) For 3 | k, we have

R
(
e2πiu; e

2πi
k

(h+iz)
)

=− 2 sin(πu)√
z

e−
πz
12k
−πih

4k
+ 3πku2

z
+ π

3kz

×
∑
±
±

[
ξ′
(
h,
k

3

)
e∓

2πh̃u
z µ

(
3iu

z
,± h̃

k

(
[−h]3k +

i

z

)
;

3

k

(
[−h]3k +

i

z

))

+
i

2

√
3

k

k
3
−1∑
`=0

ξ`

(
h,
k

3

)
H

(
3iu

z
+ α±

(
`,
k

3

)
∓ h̃i

kz
;

3i

kz

)]

− 2

√
i

z
e

3πku2

z χ−1
(
h, [−h]3k, k

) sin(πu)e
πi
12k

(h+iz)η3
(
3
k

(
[−h]3k + i

z

))
η
(
1
k

(
[−h]3k + i

z

))
ϑ(3iuz ; 3

k ([−h]3k + i
z ))

.
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(ii) For 3 - k, we have

R
(
e2πiu; e

2πi
k

(h+iz)
)

=− 2 sin(πu)√
3z

e−
πz
12k
−πih

4k
+ 3πku2

z

∑
±
±
[
ξ(3h, k)µ

(
iu

z
,∓k

3
;

1

3k

(
[−h]k +

i

z

))

+
i

2
√
k

k−1∑
`=0

ξ`(3h, k)H

(
iu

z
+ α± (`, k) ;

i

3kz

)]

− 2

3

√
i

z
e

3πku2

z χ−1
(
h, [−h]k, k

) sin(πu)e
πi
12k

(h+iz)η3
(

1
3k

(
[−h]k + i

z

))
η
(
1
k

(
[−h]k + i

z

))
ϑ
(
iu
z ; 1

3k

(
[−h]k + i

z

)) .
Remark. The key feature of this result is that the error terms in the transformations only involve
the Mordell integrals H; there are no non-holomorphic S-terms.

Remark. The shape of the initial multiplicative factor in the formulas of Proposition 2.6 means that
the (completed) rank generating function satisfies Jacobi transformations of weight 1

2 and index −3
2 .

To prove Proposition 2.6, we use the identity (see, for instance, [27])

(2.8) R(x; q) = −i(1− x)x−
1
2 q−

1
8

(
−x−1µ(3u,−iz; 3iz) + xµ(3u, iz; 3iz) + q

1
6

η3(3iz)

η(iz)ϑ(3u; 3iz)

)
and determine the transformation law of the individual components. We begin with a related
transformation law for µ

(
u, 13 iz; iz

)
.

Proposition 2.7. Using the notation above, we have

µ

(
u,± 1

3k
(h+ iz);

1

k
(h+ iz)

)
=

1√
z
e
−πz

9k
+πk

z

(
u∓ h̃

3k

)2
∓ 2πiu

3

×

[
ξ(h, k)µ

(
iu

z
,± h̃

3k

(
[−h]k +

i

z

)
∓ 1

3k

(
1 + h[−h]k

)
;

1

k

(
[−h]k +

i

z

))

+
i

2
√
k

k−1∑
`=0

ξ`(h, k)H

(
iu

z
∓ h̃i

3kz
+ α±(`, k);

i

kz

)]
.

Proof. We decompose µ into µ̂ and S-terms and use transformation laws for these components.
We start with the function S. Note that to return to the desired identity we must multiply all
occurrences of S by − i

2 . Using Proposition 2.4 we have

S

(
u∓ 1

3k
(h+ iz);

1

k
(h+ iz)

)
=

k−1∑
`=0

e−
πi
k (`− k−1

2 )
2
(h+iz)−2πi(u∓ 1

3k
(h+iz)+ 1

2)(`− k−1
2 )(2.9)

× S
(
ku∓ 1

3
(h+ iz) +

(
`− k − 1

2

)
(h+ iz) +

k − 1

2
; k(h+ iz)

)
.

We first use Proposition 2.3 parts (i) and (ii) to shift the arguments of the S functions, and then
use Proposition 2.3 (iii) to invert the z argument. In all, we rewrite the S-terms from (2.9) as

(−1)1+
h̃−h
3

+`h+
(1−h)(k−1)

2 e−
πihk

4
1√
kz
e
π
kz

(
ku∓ h̃

3
+iz(∓ 1

3
+(`− k−1

2 ))
)2

×

(
S

(
iu

z
∓ h̃i

3kz
+ α±(`, k);

i

kz

)
−H

(
iu

z
∓ h̃i

3kz
+ α±(`, k);

i

kz

))
.
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Inserting this into (2.9) gives after a lengthy but straightforward calculation that (2.9) equals

e
−πz

9k
+ π
kz

(
∓ h̃

3
+ku

)2
∓ 2πiu

3
1√
kz

k−1∑
`=0

ξ`(h, k)

(
S

(
iu

z
∓ h̃i

3kz
+ α±(`, k);

i

kz

)

−H

(
iu

z
∓ h̃i

3kz
+ α±(`, k);

i

kz

))
.

We next turn to µ̂. Using Proposition 2.5 (ii), we obtain

(2.10) µ̂

(
u,± 1

3k
(h+ iz);

1

k
(h+ iz)

)
= χ−3

(
h, [−h]k, k

)√ i

z
e−πkz(

iu
z
∓ ih

3kz
± 1

3k )
2

µ̂

(
iu

z
,± hi

3kz
∓ 1

3k
;

1

k

(
[−h]k +

i

z

))
.

Applying Proposition 2.5 (i) and simplifying the exponential terms implies that (2.10) equals

e
−πz

9k
+πk

z

(
u∓ h̃

3k

)2
∓ 2πiu

3
1√
z
ξ(h, k)µ̂

(
iu

z
,± h̃

3k

(
[−h]k +

i

z

)
∓ 1

3k

(
1 + h[−h]k

)
;

1

k

(
[−h]k +

i

z

))
.

The proof of Proposition 2.7 is then complete upon applying the identity

e
πh̃2

9kz

√
k

k−1∑
`=0

ξ`(h, k)S

(
iu

z
∓ h̃i

3kz
+ α±(`, k);

i

kz

)
(2.11)

= ξ(h, k)e
πh̃2

9kz S

(
iu

z
∓ h̃

3k

(
[−h]k +

i

z

)
± 1

3k

(
1 + h[−h]k

)
;

1

k

(
[−h]k +

i

z

))
.

Instead of arguing directly from the definition of S in (2.7), we prove (2.11) using an argument
first employed by the first two authors in [11]. The key component of this argument is the fact
that Fourier-Whittaker expansions are unique. In order to simplify the following development, we
write τ := i

kz , v := iu
z , y := Im (τ). Since all the remaining terms in the transformation law (2.10)

are meromorphic functions of τ and v, it is enough to show that each term in (2.11) has a Fourier
expansion equal to ∑

n∈Q\{0}

a(n)Γ

(
1

2
; 4π|n|y

)
q−n

with Γ(a;x) :=
∫∞
x e−tta−1dt the incomplete gamma function. To show this, we assume that v ∈ R

and conclude the remaining cases using analytic continuation. By (2.7) each S-term occurring in
(2.11) has a Fourier expansion equal to

e−
πih̃2τ

9 S

(
v ∓ h̃τ

3
+ α; τ + β

)
.

(2.12)

=
∑

ν∈Z+ 1
2

(
sgn (ν)− E

((
ν ∓ h̃

3

)√
2y

))
(−1)ν−

1
2 e
−πiν2(τ+β)−2πiν

(
v∓ h̃τ

3
+α
)
−πih̃

2τ
9 .
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for some real α and β. Using that −1
2 <

h̃
3 <

1
2 we have

sgn(ν)− E

((
ν ∓ h̃

3

)√
2y

)
=

sgn(ν)√
π

Γ

1

2
, 2π

(
ν ∓ h̃

3

)2

y

 .

Thus (2.12) is equal to

1√
π

∑
ν∈Z+ 1

2

sgn(ν)(−1)ν−
1
2 Γ

1

2
; 2π

(
ν ∓ h̃

3

)2

y

 e
−πiτ

(
ν∓ h̃

3

)2
−πiν2β−2πiν(v+α)

.

Combining the above gives the statement of the theorem. �

Having established Proposition 2.7 we return to the proof of Proposition 2.6.

Proof of Proposition 2.6. For notational simplicity we distinguish between the cases 3|k and 3 - k.
We start with the case 3|k and use that in this case, we have that h̃2 = 1. Recall that we choose

[−h]k for [−h] k
3
. Using (2.3) and (2.5) the last summand in (2.8) transforms directly into the last

summand of part (i). For the µ-functions, we send u→ 3u, k → k
3 in Proposition 2.7. Thus, shifting

by 1
k (1 + h[−h]k) ∈ Z in the second argument in µ, and noting that (−1)

1
k
(1+h[−h]k) = (−1)k gives

the claim for 3 | k.
Similarly, if 3 - k the last summand in (2.8) transforms to

−2

3

√
i

z
e

3πku2

z χ−1
(
h, [−h]k, k

) sin(πu)e
πi
12k

(h+iz)η3
(
1
k

(
[−3h]k + i

3z

))
ϑ
(
iu
z ; 1

k

(
[−3h]k + i

3z

))
η
(
1
k

(
[−h]k + i

z

)) .
This can be rewritten in the form claimed in the Proposition statement by recalling the assumptions
that 3 | [−h]k and using [3]8k instead of [3]k.

We next turn to the terms µ(3u,±iz; 3iz). We send u 7→ 3u, h 7→ 3h, and z 7→ 3z in Proposition
2.7. Hence 3̃h = 0, resulting in

1√
3z
e−

πz
3k

+ 3πku2

z
∓2πiu

(
ξ(3h, k)µ

(
iu

z
,∓ 1

3k
(1 + 3h[−3h]k) ;

1

k

(
[−3h]k +

i

3z

))
+

i

2
√
k

k−1∑
`=0

ξ`(3h, k)H

(
iu

z
+ α±(`, k);

i

3kz

))
.

Using that 2 | [−h]k for k odd and [−3h]2k instead of [−3h]k for k even gives

∓ 1

3k

(
1− k2 + 3h[−3h]k

)
∈ 2Z.

The claim now follows by using Proposition 2.3 (i) and Proposition 2.5 (i). �

2.4. Some Multiplier Identities. We give a pair of identities for the multipliers appearing in
Proposition 2.6.

Lemma 2.8. (i) If 3 | k, then

ξ′
(
h,
k

3

)
=

(
h

3

)
χ−1 (h, [−h]3k, k) i

1
2 e

πi
3k

(h−[−h]3k).
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(ii) If 3 - k, then

ξ(3h, k) = i
3
2 (−1)k+1

(
k

3

)
e
πih
3k χ−1 (h, [−h]k, k) .

Proof. We begin with the case 3 | k. Recall we take [−h]3k instead of [−h] k
3
. Thus

ξ′
(
h,
k

3

)
= (−1)ke

πi
4 χ−3

(
h, [−h]3k,

k

3

)
(−1)h+1e−

πi[−h]3k
3k (1+h2).

Note if −h[−h]3k − βk = 1, then 3 | β. Additionally, if −h[−h]3k − β′ k3 = 1, then β′ = 3β. We
distinguish two cases, depending on whether k is odd or even.

In the case of k odd we obtain, using that 2 | [−h]3k,

χ(h, [−h]3k, k)

χ3
(
h, [−h]3k,

k
3

) =

(
h

3

)
.

From this we conclude (i) for odd k.
In the case 3 | k and k is even we have [−h]24k instead of [−h]k. Thus

χ(h, [−h]24k, k)

χ3
(
h, [−h]24k,

k
3

) = i

(
3

h

)
e−

πih
2 =

(
h

3

)
.

Noting that e−
πih
3k

(1+h[−h]24k) = 1 completes the proof of (i).
We next turn to the case 3 - k. We obtain

ξ(3h, k) = i
1
2 (−1)hχ−3 (3h, [−3h]k, k) e−

πih2[−3h]k
k .

We again consider the two cases k odd and k even separately. In the k odd case 24 | [−h]k yielding

χ (h, [−h]k, k)

χ3 (3h, [−3h]k, k)
=

(
3

k

)
ike−

2πihk
3 .

Hence

ξ(3h, k) = −i−
1
2

(
k

3

)
(−1)hχ−1(h, [−h]k, k)e−

2πihk
3
−πih

2[−3h]k
k ,

which leads to (ii) for k odd using that e−
2πihk

3
−πih

2[−3h]k
k = (−1)he

πih
3k .

In the case 3 - k and 2 | k we have [−3h]8k instead of [−3h]k. Noting 1+3h[−3h]8k ≡ 0 (mod 2k)

gives that e−
πih
3k

(1+3h[−3h]8k) = e−
πihk

3 . From this we conclude that

χ(h, [−h]8k, k)

χ3(3h, [−3h]8k, k)
= i

(
k

3

)
e−

2πihk
3 .

Thus we obtain (ii) for 3 - k and k even. �

3. Asymptotics of Taylor Expansions

3.1. A General Lemma. For ν ∈ R define

fν(u; z) := e
νπu2

z
sin(πu)

sinh(πuz )
.

We show the following Taylor expansion of fν as a function of u.
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Lemma 3.1. We have

fν(u; z) =

∞∑
r=0

(2πiu)2r

(2r)!

∑
a+b+c=r

νaκ(a, b, c)z1−a−2c,

where κ(a, b, c) was defined in (1.7).

Proof. The lemma follows easily from the following Laurent series expansions:

ex =

∞∑
k=0

xk

k!
, sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
, and

1

sinh(x)
= x−1

∞∑
n=0

B2n

(
1

2

)
(2x)2n

(2n)!
.

The last of these expansions follows from the generating function for the Bernoulli polynomials

(3.1)
tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
,

using that B`
(
1
2

)
= 0 for ` odd. �

3.2. Cranks. We recall (1.6). We will use Proposition 2.2 to determine an “asymptotic” Taylor
expansion as z → 0. Using the product expansion in (2.2), we have

ϑ

(
iu

z
;

1

k

(
[−h]k +

i

z

))−1
= i

e−
πi
4k ([−h]k+ i

z )

2 sinh(πuz )
+ u−1

∑
r≥0

ar(z)
(2πiu)r

r!

with |ar(z)| �r |z|1−re−
7π
4k
Re( 1

z ). In an abuse of notation, we will repeatedly write ar(z) for the
Taylor coefficients of various error terms that are polynomially or exponentially decaying as z → 0.

Combining this with the asymptotic expansion of η, we obtain

C(u; q) = −i
3
2 e

πi
12k

(h−[−h]k)χ−1
(
h, [−h]k, k

)
e
π

12k ( 1
z
−z)z−

1
2 fk(u; z) +

∞∑
r=0

ar(z)
(2πiu)r

r!
,

where now |ar(z)| � |z|
1
2
−re−

α
k
Re( 1

z ) for some α > 0 independent of k (the exact value of α is
unimportant here and elsewhere, and the key feature is simply that it is positive; we further abuse
notation and let α denote all such exponents of error terms).

Using Lemma 3.1, we obtain an explicit asymptotic for the crank generating function.

Proposition 3.2. In the notation above

C
(
u; e

2πi
k

(h+iz)
)

= −i
3
2 e

πi
12k

(h−[−h]k)χ−1
(
h, [−h]k, k

)
e
π

12k ( 1
z
−z)

∞∑
r=0

(2πiu)2r

(2r)!

×
∑

a+b+c=r

kaκ(a, b, c)z
1
2
−a−2c +

∞∑
r=0

ar(z)
(2πiu)r

r!
,

where the coefficients ar(z) satisfy the asymptotic bounds ar(z)�r |z|
1
2
−re−

α
k
Re( 1

z ) for some α > 0
independent of k.

Proposition 3.2 allows us to determine the asymptotic behavior of the crank moments.

Corollary 3.3. We have

C2`

(
e

2πi
k

(h+iz)
)

= −i
3
2 e

πi
12k

(h−[−h]k)χ−1
(
h, [−h]k, k

)
e
π

12k ( 1
z
−z)

∑
a+b+c=`

kaκ(a, b, c)z
1
2
−a−2c + a2`(z),
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where the coefficients a2`(z) satisfy the asymptotic bounds a2`(z)�` z
1
2
−2`e−

α
k
Re( 1

z
) for some α > 0

independent of k.

3.3. Mordell Integrals. In this section we provide an estimate for the H-integrals appearing
in Proposition 2.6. We assume throughout the rest of the paper that Re

(
1
z

)
> k

2 . Define for
−1

2 < α < 1
2 the function

Hk,h,α(u; z) := H

(
iu

z
+ α∓ h̃i

3kz
;
i

kz

)
=

∫
R

e
−πx

2

kz
−2πx

(
iu
z
+α∓ h̃i

3kz

)
cosh(πx)

dx.

In this section we establish bounds for the Taylor coefficients of Hk,h,α.

Lemma 3.4. With H(`)
k,h,α(u; z) :=

(
∂
∂u

)`
H(u; z) we have∣∣∣H(`)

k,h,α(0; z)
∣∣∣�` |z|−` e−

πh̃2

9k
Re( 1

z ).

Proof. We rewrite

Hk,h,α(u; z) = e−
πh̃2

9kz
∓ 2πih̃α

3

∫
R∓ h̃i

3

e
−πx

2

kz
−2πxα− 2πiu

z

(
x± h̃i

3

)
cosh

(
π
(
x± h̃i

3

)) dx

= e−
πh̃2

9kz
∓ 2πih̃α

3

∫
R

e
−πx

2

kz
−2πxα− 2πiu

z

(
x± h̃i

3

)
cosh

(
π
(
x± h̃i

3

)) dx,

where for the last equality we used the Residue Theorem to shift the path back to R (noting that
there are no poles in the shifted region). Differentiating then gives

H
(`)
k,h,α(0; z) = e−

πh̃2

9kz
∓ 2πih̃α

3

(
−2πi

z

)` ∫
R

(
x± ih̃

3

)`
e−

πx2

kz
−2πxα

cosh
(
π
(
x± h̃i

3

))dx.
Since −1

2 < α < 1
2 , we may bound

e−2πxα

cosh
(
π
(
x± h̃i

3

)) � 1.

Thus ∣∣∣H(`)
k,h,α(0; z)

∣∣∣�` |z|−` e−
πh̃2

9k
Re( 1

z )
∫ ∞
0

x`e−
πx2

k
Re( 1

z )dx.

A change of variables gives the bound stated in the lemma. �

3.4. Ranks. In this section we prove an asymptotic result for the rank generating function. Recall
(1.6).

Proposition 3.5. Assuming the notation above, we have

R(u; q) = −i
3
2 e

πi
12k

(h−[−h]k)χ−1
(
h, [−h]k, k

)
e
π

12k ( 1
z
−z)

∞∑
r=0

(2πiu)2r

(2r)!

×
∑

a+b+c=r

(3k)aκ(a, b, c)z
1
2
−a−2c +

∞∑
`=0

a`(z)
(2πiu)`

`!
.
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where the coefficients a`(z) satisfy the asymptotic bounds a`(z)�` k
1
2 |z|

1
2
−` .

In the following corollary we give the asymptotic expansion for each of the Taylor coefficients.

Corollary 3.6. With the notation from above we have

R2`

(
e

2πi
k

(h+iz)
)

= −i
3
2 e

πi
12k

(h−[−h]k)χ−1
(
h, [−h]k, k

)
e
π

12k ( 1
z
−z)

∑
a+b+c=`

(3k)aκ(a, b, c)z
1
2
−a−2c+a2`(z),

where the coefficients a2`(z) satisfy the asymptotic bounds a2`(z)�` k
1
2 |z|

1
2
−2` .

Proof of Proposition 3.5. We consider first the case 3 - k. As in the case for the crank, we deduce
the asymptotic behavior of ϑ and η from (2.5) and (2.3), yielding that the asymptotic of the modular
term appearing in part (ii) of Proposition 2.6 is given by

(3.2) −1

3
i
3
2χ−1 (h, [−h]k, k) e

πi
12k

(h−[−h]k) 1√
z
e
π

12k ( 1
z
−z)f3k(u; z) +

∑
`≥0

a`(z)
(2πiu)`

`!
,

with a`(z)�` |z|
1
2
−` e−

α
k
Re( 1

z ) for some α > 0 independent of k.
Using the asymptotic behavior of ϑ and observing that in the sum defining µ only the term n = 0

contributes to the asymptotic main term, we obtain that

µ

(
iu

z
,∓k

3
;

1

3k

(
[−h]k +

i

z

))
=

e−
πu
z

ϑ
(
∓k

3 ; 1
3k

(
[−h]k + i

z

)) ∑
n∈Z

(−1)ne
πi
3k (n2+n)([−h]k+ i

z )e∓
2πink

3

1− e−
2πu
z e

2πin
3k ([−h]k+ i

z )

= ±
(−1)k+1

(
k
3

)
e−

πi
12k ([−h]k+ i

z )

2
√

3 sinh
(
πu
z

) + u−1
∞∑
`=0

a`(z)
(2πiu)`

`!
,

with a`(z)�` |z|1−` e−
α
k
Re( 1

z ) for some α independent of k. Therefore,

∓2 sin(πu)√
3z

e−
πz
12k
−πih

4k
+ 3πku2

z ξ(3h, k)µ

(
iu

z
,∓k

3
;

1

3k

(
[−h]k +

i

z

))
=

1

3
(−1)k

(
k

3

)
ξ(3h, k)e−

πih
4k
− πi

12k
[−h]k 1√

z
e
π

12k ( 1
z
−z)f3k(u; z) +

∑
`≥0

α`(z)
(2πiu)`

`!
,(3.3)

where α`(z)�` |z|
1
2
−` e−

α
k
Re( 1

z ) for some α > 0 independent of k.
To give an asymptotic for the rank generating function it remains to consider the terms with the

Mordell integrals H. We use Lemma 3.4 with α = α±(`, k). This implies that

sin(πu)√
z

e−
πz
12k

+ 3πku2

z H

(
iu

z
+ α±(`, k);

i

3kz

)
=
∑
`≥0

a`(z)
(2πiu)`

`!
,(3.4)

with a`(z)�` |z|
1
2
−`.
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Using (3.2), (3.3), and (3.4) with Proposition 2.6 we thus have

R
(
e2πiu; e

2πi
k

(h+iz)
)

=− i
3
2

3
e
πi
12k

(h−[−h]k) f3k(u; z)√
z

e
π

12k ( 1
z
−z)χ−1 (h, [−h]k, k)

×
(

1− 2(−1)k
(
k

3

)
i−

3
2 ξ(3h, k)χ (h, [−h]k, k) e−

πih
3k

)
+
∑
`≥0

a`(z)
(2πiu)`

`!
,

with a`(z)�` k
1
2 |z|

1
2
−`. Applying Lemma 2.8 we obtain

R
(
e2πiu; e

2πi
k

(h+iz)
)

=− i
3
2χ−1 (h, [−h]k, k) e

πi
12k

(h−[−h]k)e
π

12k ( 1
z
−z) f3k(u; z)√

z
+
∑
`≥0

a`(z)
(2πiu)`

`!
,

(3.5)

with a`(z)�` k
1
2 |z|

1
2
−`. Using Lemma 3.1 gives the claimed expansion for 3 - k.

Next we consider the case 3 | k. Similarly as before we obtain that the contribution from the
modular term of Proposition 2.6 is

−i
3
2 z−

1
2 e

3πku2

z
sin(πu)

sinh
(
3πu
z

)χ−1(h, [−h]3k, k)e
πi
12k

(h−[−h]3k)e
π

12k ( 1
z
−z) +

∑
`≥0

α`(z)
(2πiu)`

`!
,

with a`(z)�` |z|
1
2
−` e−

α
k
Re( 1

z ) for some α > 0 independent of k.
Next we turn to the asymptotics of the µ-terms from Proposition 2.6. Using that

µ

(
3iu

z
,±h̃τ ; 3τ

)
=

e−
3πu
z

ϑ
(
±h̃τ ; 3τ

)∑
n∈Z

(−1)ne3πi(n
2+n)τ±2πinh̃τ

1− e−
6πu
z e6πinτ

gives that

µ

(
3iu

z
,± h̃

k

(
[−h]3k +

i

z

)
;

1

k

(
[−h]3k +

i

z

))
=

(
±h̃
3

)
ie−

π
4kz

+
πi[−h]3k

4k

2 sinh
(
3πu
z

) +
∑
`≥0

a`(z)
(2πiu)`

`!
,

with c`(z)�` |z|1−` e−
25π
4k

Re( 1
z ).

Additionally we must consider the asymptotics of H
(
3iu
z + h̃i

kz + α; 3i
kz

)
, with

α = α±
(
`, k3
)
. We apply Lemma 3.4 to obtain

sin(πu)√
z

e−
πz
12k

+ 3πku2

z
+ π

3kzH

(
3iu

z
+
h̃i

kz
+ α±

(
`,
k

3

)
;

3i

kz

)
=
∞∑
`=0

a`(z)
(2πiu)`

`!
,

with a`(z)�` |z|
1
2
−`.
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In total the asymptotic Taylor expansion for R
(
e2πiu; e

2πi
k

(h+iz)
)
may be written as

− 1√
z
e
π

12k ( 1
z
−z)e

3πku2

z
sin(πu)

sinh
(
3πu
z

) i 32 e πi
12k

(h−[−h]3k)χ−1 (h, [−h]3k, k)

×

(
1 +

∑
±
±

(
±h̃
3

)
e∓

2πh̃u
z ξ′

(
h,
k

3

)
χ (h, [−h]3k, k) i−

1
2 e−

πi
3k

(h−[−h]k)

)
+
∑
`≥0

a`(z)
(2πiu)`

`!
,

with a`(z) �` |z|
1
2
−` Applying Lemma 2.8 when 3 | k we obtain that the asymptotic Taylor

expansion for R
(
e2πiu; e

2πi
k

(h+iz)
)
can be written as

− 1√
z
e
π

12k ( 1
z
−z)f3k(u; z)i

3
2 e

πi
12k

(h−[−h]3k)χ−1 (h, [−h]3k, k) +
∑
`≥0

a`(z)
(2πiu)`

`!
,

with a`(z)�` |z|
1
2
−` . Here we used that(

1 + e−
2πu
z + e

2πu
z

) 1

1
2

(
e

3πu
z − e−

3πu
z

) =
1

sinh(πuz )
.

Therefore, in all cases we have established the asymptotic stated in Proposition 3.5. We note that
all the occurring multipliers in the proposition are invariant under the choice of the inverse of h
modulo k. �

4. Application of the Circle Method

Here we present a general Circle Method result that is applicable to both the rank and crank
moment generating functions. Assume that

Fr,`

(
e

2πi
k

(h+iz)
)

=
∑
n

cr,`(n)e
2πin
k

(h+iz)

is a holomorphic function of z satisfying
(4.1)
Fr,`

(
e

2πi
k

(h+iz)
)

= −i
3
2 e

πi
12k

(h−[−h]k)χ−1 (h, [−h]k, k) e
π

12k ( 1
z
−z)

∑
a+b+c=`

(kr)aκ(a, b, c)z
1
2
−a−2c+Er,`,k(z)

with Er,`,k(z)�r,` k
1
2 |z|

1
2
−2` and κ(a, b, c) defined as in (1.7).

Theorem 4.1. With Fr,` and cr,` as above we have

cr,`(n) = 2π
∑
k≤
√
n

Kk(n)

k

∑
a+b+c=`

(kr)aκ(a, b, c)(24n−1)c+
a
2
− 3

4 I 3
2
−2c−a

(
π
√

24n− 1

6k

)
+O

(
n2`−1+ε

)
,

where Kk(n) is the Kloosterman sum defined in (1.8) and ε > 0.

Proof. By Cauchy’s Theorem for n > 0 we have

cr,`(n) =
1

2πi

∫
C

Fr,`(q)

qn+1
dq,
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with C an arbitrary path inside the unit circle that encloses 0 with a counterclockwise orientation.
Choosing the circle with radius e−

2π
n and parameterized by q = e−

2π
n
+2πit with 0 ≤ t ≤ 1 yields

cr,`(n) =

∫ 1

0
Fr,`

(
e−

2π
n
+2πit

)
e2π−2πintdt.

Define
ϑ′h,k :=

1

k(k1 + k)
and ϑ′′h,k :=

1

k(k2 + k)
,

where h1
k1
< h

k <
h2
k2

are adjacent Farey fractions in the Farey sequence of order N := bn
1
2 c. Recall

that 1
k+kj

≤ 1
N+1 for j = 1, 2. Next, decompose the path of integration into paths along the Farey

arcs −ϑ′h,k ≤ Φ ≤ ϑ′′h,k, where Φ := t− h
k and 0 ≤ h ≤ k ≤ N with (h, k) = 1. Hence

cr,`(n) =
∑
h,k

e−
2πihn
k

∫ ϑ′′h,k

−ϑ′h,k
Fr,`

(
e

2πi
k

(h+iz)
)
e

2πnz
k dΦ,

where z = k
n−kΦi. We apply (4.1) and estimate the error as follows. Using Re

(
1
z

)
> k

2 , Re (z) = k
n ,

|z| ≥ k
n and ϑh,k, ϑ′′h,k <

1
k(N+1) , we can bound the terms arising from Er,`,k by

∑
h,k

∫ ϑ′′h,k

−ϑh,k
|Er,`,k(z)| dΦ� 1√

n

∑
k≤N

k
1
2

(
k

n

) 1
2
−2`
� n2`−1.

Thus we obtain

cr,`(n) = −i
3
2

∑
h,k

e−
2πihn
k e

πi
12k

(h−[−h]k)χ−1
(
h, [−h]k, k

) ∑
a+b+c=`

(kr)aκ(a, b, c)

×
∫ ϑ′′h,k

−ϑ′h,k
e
π

12k ((24n−1)z+ 1
z )z

1
2
−a−2`dΦ +O

(
n2`−1

)
.

The theorem now follows from the following integral evaluation (see [23] for details)∫ ϑ′′h,k

−ϑ′h,k
e
π

12k ((24n−1)z+ 1
z )z

1
2
−jdΦ =

2π

k
(24n− 1)

j
2
− 3

4 I 3
2
−j

(
π
√

24n− 1

6k

)
+O

(
n2`−1

)
and the remark after (2.4). �

The proofs of Theorem 1.1 and Corollary 1.2 follow easily.

Proof of Theorem 1.1. Corollaries 3.3 and 3.6 imply that the rank and crank moment generating
functions satisfy the assumptions necessary to apply Theorem 4.1. Therefore, Theorem 4.1 implies
the desired result. �

The symmetrized crank and rank moments studied by Garvan [22] and Andrews [1] are defined
by

ηk(n) :=

n∑
m=−n

(
m+ bk−12 c

k

)
M(m,n),(4.2)

νk(n) :=
n∑

m=−n

(
m+ bk−12 c

k

)
N (m,n).(4.3)
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Proof of Corollary 1.2. The proof of the first formula follows from (4.2) of [22] which gives

η2`(n) =
1

(2`)!

n∑
m=−n

g`(m)N (m,n)

where g`(x) =
∏`−1
j=0(x

2 − j2) and from Theorem 1.1. The second formula is analogous. �
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