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Abstract. Andrews, Dyson, and Hickerson showed that 2 q-hypergeometric series, going back
to Ramanujan, are related to real quadratic fields, which explains interesting properties of their
Fourier coefficients. There is also an interesting relation of such series to automorphic forms.
Here we construct more such examples arising from interesting combinatorial statistics.

1. Introduction and statement of results

Andrews, Dyson and Hickerson [3] intensively studied the function

(1.1) σ(q) := 1 +
∞∑

n=1

q
n(n+1)

2

(−q)n
= 1 + q − q2 + 2q3 + · · ·+ 4q45 + . . .

which first appeared in Ramanujan’s lost notebook [18]. Here we define as usual (a)n = (a; q)n :=∏n−1
j=0

(
1− aqj

)
. In [3], the authors obtain an exact formula for the coefficients of (1.1) by relating

this function to the arithmetic of Q(
√

6). This implies that the coefficients have multiplicative
properties, σ is lacunary, i.e its coefficients are almost always zero, and yet attains every integer
infinitely many times. In subsequent work a few more such examples were found by Lovejoy,
Corson et al and others, building on known Bailey pairs, which led to interesting applications
(see for example [5, 9, 12, 13]). Additional to these properties the function σ has a natural
combinatorial interpretation as the number of partitions into distinct parts with even rank
minus those with odd rank. Recall that Dyson’s rank of a partition [11] is defined as its largest
part minus its number of parts.

The function σ is in several ways related to automorphic forms. Firstly, using Hecke L-series,
Cohen [8] related this function to classical Maass forms. Secondly if instead of partitions into
distinct parts one considers unrestricted partitions one obtains Ramanujan’s mock theta function

f(q) := 1 +
∞∑

n=1

qn2

(−q)2n

which is, due to recent work of Zwegers [19] and Bringmann-Ono [6, 7], known to be the holo-
morphic part of a harmonic Maass form, as are all the rank generating functions. Harmonic
Maass forms are generalizations of modular forms, in that they satisfy the same transformation
law, and (weak) growth conditions at cusps, but instead of being holomorphic, they are anni-
hilated by the weight k hyperbolic Laplacian. To describe a third way in which σ is related to
automorphic forms, we recall from [3] that the main step in relating σ to Q(

√
6) is to prove the
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following representation of σ as Hecke-type sums

σ(q) =
∑
n≥0
|j|≤n

(−1)n+j q
n(3n+1)

2
−j2 (

1− q2n+1
)
.

We note that this representation can be also viewed as a “false mock theta function”. To be
more precise, using work of Zwegers [19], the function∑

n≥0
|j|≤n

(−1)n+j q
n(3n+1)

2
−j2 (

1 + q2n+1
)

can be viewed as the “holomorphic part” of an indefinite theta series and is related to one of
Ramanujan’ s sixth order mock theta functions.

In this paper we find more examples resembling (1.1) which have interesting combinatorial
interpretations and which we relate to the real quadratic fields Q(

√
2) and Q(

√
3). Of particular

interest are Theorems 1.1 and 1.2, since for its proof we find two new Bailey pairs (see Theorem
2.3) which are of independent interest.

We first consider q-hypergeometric series related to K = Q(
√

2) and denote as usual with
N (a) the norm of an ideal a in OK , the ring of integers of K.

Theorem 1.1. The function

f1(q) :=
∞∑

n=0

q
n2+n

2

(−q)n(1− q2n+1)
= 1 + 2q + 3q3 + q5 + 2q6 + 2q7 + 4q10 + · · ·+ 6q52 + . . .

satisfies

(1.2) qf1(q16) =
∑

a⊂OK
N (a)≡1 (mod 16)

qN (a).

Let us next describe how the function f1(q) naturally arises in the theory of partitions. To do
so, consider

f1(x; q) :=
1

1− q
+

∞∑
n=1

q
n2+n

2

(xq)n(1− x2q2n+1)
,

for which we have f1(q) = f1(−1; q). We will now construct a set of partitions P1 and a statistic
r1(λ) for which, as we will show in Subsection 4.1, the coefficient of xrqm in f1(x; q)− q will be
precisely the number of partitions λ ∈ P1 of |λ| = m with r1(λ) = r. Then the m-th coefficient
of f1(q)− q will clearly give the number of partitions λ ∈ P1 of |λ| = m with r1(λ) even minus
the number of those with r1(λ) odd.

Let P1 be the set of partitions with the following properties: One is the only part which may
be repeated, and if it is repeated, say occurring r + 1 times, then the second smallest part (if
it exists) is at least 2r and the third smallest part (if it exists) is at least two more than the
second smallest part. For λ ∈ P1, let r1(λ) denote the rank of λ if λ has no repeated parts of
size 1 and otherwise r1(λ) is the rank of λ without its parts of size 1.

Theorem 1.2. The function

f2(q) :=
∞∑

n=1

q
n2+n

2

(−q)n−1(1− q2n−1)
= q + q2 + 2q3 + 2q5 + 2q6 + · · ·+ 4q14 + · · ·+ 3q77 + . . .
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satisfies

(1.3) q−7f2(q16) =
∑

a⊂OK
N (a)≡9 (mod 16)

qN (a).

The partition theoretic interpretation of f2(q) has striking similarities to that of σ(q). Define
P2 to be the set of partitions into distinct parts restricted by the following conditions: The rank
of λ ∈ P2 is at least 2(s − 1), where s is the smallest part, and the second smallest part is at
least 2s. In Subsection 4.2, we show that f2(q) is the generating function for λ ∈ P2 with r2(λ)
even minus those with r2(λ) odd, where r2(λ) is the rank if there is more than one part and
r2(λ) = 0 otherwise. We develop this similarly to the case of f1 by defining f2(x; q) in Subsection
4.2 and taking x = −1, where x will be used to count the statistic r2(λ). We will suppress such
definitions for the remainder of the introduction.

Theorem 1.3. The function

f3(q) :=
∞∑

n=0

(q)2n

(−q)2n+1
qn = 1− 2q3 + q4 + 2q8 − 2q11 + · · ·+ 3q24 + . . .

satisfies

(1.4) qf3(q2) =
∑

a⊂OK

(
−4
N (a)

)
qN (a),

where
(

c
d

)
denotes the Kronecker symbol.

To relate f3 to partitions, we recall the notion of overpartitions and overpartition pairs. An
overpartition [10] of n is a partition of n in which the first occurrence of a number can be
overlined. An overpartition pair [14] of n is a pair of overpartitions (µ, λ), where the sum of
all the parts is n. Here we consider P3 as the set of overpartitions pairs Λ = (µ, λ) with the
following restrictions on µ and λ: If the largest part of µ is overlined then it must also occur
non-overlined and if µ is the empty partition then no parts of λ may be overlined. Moreover,
if λ has any parts, then its largest part is exactly one greater than the largest part of µ, parts
of λ of size one less than its largest part cannot be overlined, and the number of occurrences of
the largest part in λ is at least half of all parts in λ (with strict inequality if the largest part of
λ is overlined). In Subsection 4.3 we show that f3(q) is the generating function for Λ ∈ P3 with
r3(Λ) odd minus those with r3(Λ) even, where r3(Λ) counts the number of occurrences of the
largest part in λ minus the number of parts in µ.

Theorem 1.4. The function

f4(q) :=
∞∑

n=0

(q)2n+1

(−q)2n+2
qn+1 = q − q2 − q4 + 2q7 − q8 + q9 − 2q14 + · · · − 3q98 + . . .

satisfies

(1.5) f4(q) = −
∑

a⊂OK

(−1)N (a)qN (a).

The combinatorial interpretation of f4 is similar to that of f3. We let P4 be the set of over-
partition pairs Λ = (µ, λ) with the following restrictions on µ and λ: If the largest part of µ is
overlined then it must also occur non-overlined. Moreover, if λ has any parts, then its largest
part equals the largest part of µ, the largest part of λ cannot be overlined, λ has an even num-
ber of parts, and the number of occurrences of the largest part in λ is at least half of the total
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number of its parts. In Subsection 4.4 we show that f4(q) is the generating function for Λ ∈ P4

with r4(λ) odd minus those with r4(λ) even, where r4(λ) is half the number of parts of λ minus
the number of parts of µ.

We next turn to the real quadratic field L := Q(
√

3).

Theorem 1.5. The function

f5(q) :=
∞∑

n=0

(−1)n (q)n

(q; q2)n+1
q

n2+n
2 = 1 + q2 + 2q3 + q6 + 2q8 + · · ·+ 3q42 + . . .

satisfies

(1.6) qf5(q4) =
∑

a⊂OL
N (a)≡1 (mod 4)

qN (a).

To see how f5 can be viewed in the framework of partitions, we require some notation. For
a partition λ = (λ1, . . . , λn) into n distinct parts (in decreasing order), define the sequence
`i := λi − λi+1 (1 ≤ i ≤ n − 1) and `n := λn. Also, define E := Eλ := {2 ≤ r ≤ n : `r is even}
and e := #E. Let P5 be the set of partitions λ into distinct parts with the following properties: If
λ has only a single part, then this part is not congruent to 1 modulo 3, and otherwise `1 ≥ dλ +1
and `1 ≡ dλ +1 (mod 3), where dλ is defined in Subsection 4.5. In Subsection 4.5, we show that
f5(q) is the generating function for partitions λ ∈ P5 with r5(λ) odd minus those with r5(λ)
even, where r5(λ) := λ2, if the partitions contains at least two parts and r5(λ) := 1 otherwise.

Remark. We note that the q-hypergeometric series
∞∑

n=0

(q)n

(q; q2)n+1
q

n2+n
2 = 1 + 2q + q2 + 2q3 + 2q4 + 3q6 + · · ·+ 6q81 + . . . ,

which is obtained from f5(q) by deleting the (−1)n, is the modular form η4(2τ)
η2(τ)

which is related
to Q(i).

Theorem 1.6. The function

f6(q) :=
∞∑

n=1

(−1)n (q2; q2)n−1

(qn)n
qn = −q − 2q3 − 2q6 − q7 − 2q10 − · · · − 4q36 − . . .

satisfies

(1.7) q−1f6(q4) = −
∑

a⊂OL
N (a)≡3 (mod 4)

qN (a).

Let P6 be the set of overpartitions λ with the following properties: the largest part cannot be
overlined, every overlined part must also occur non-overlined, and the number of repetitions of
the largest part plus the number of overlined parts is greater than half of all of the parts. In
Subsection 4.6, we show that f6(q) is the generating function for λ ∈ P6 with r6(λ) even minus
those with r6(λ) odd, where r6(λ) counts the largest part minus the number of overlined parts.

Theorem 1.7. The function

f7(q) :=
∞∑

n=0

(−1)n
qn2+n

(
q2; q2

)
n

(−q)2n+1
= 1− q + 2q4 − q5 − 2q7 + q8 + · · ·+ 3q40 + . . .
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satisfies

(1.8) qf7(q3) = −
∑

a⊂OL
N (a)≡1 (mod 3)

(−1)N (a) qN (a).

To interpret f7, we denote for an overpartition λ by M(λ) the number of times that the largest
part occurs if the largest part is greater than one, and set M(λ) = 0 otherwise. Let P7 be the
set of overpartitions with the following properties: If the largest part is greater than one then
the largest part equals the number of non-overlined parts plus one, the second largest part size
is at most M(λ) + 1, and only parts of size less than or equal to M(λ) may be overlined. In
Subsection 4.7 we show that f7(q) is the generating function for λ ∈ P7 with an even number of
parts minus those with an odd number of parts.

Theorem 1.8. The function

f8(q) :=
∞∑

n=1

(q)n−1

(−qn)n
qn = q + q3 − 2q4 − 2q8 + 2q9 + · · · − 4q48 + · · ·+ 3q81 + . . .

satisfies

(1.9) q−1f8(q3) =
∑

a⊂OL
N (a)≡2 (mod 3)

(−1)N (a)qN (a).

Let P8 be the set of overpartitions with the following properties: The largest part cannot be
overlined and the number of repetitions of the largest part size is greater than half of all non-
overlined parts. We set r8(λ) to be the number of repetitions of the largest part minus the
number of overlined parts. In Subsection 4.8, we show that f8 is the generating function for
overpartitions λ ∈ P8 with an r8(λ) minus those with r8(λ) even.

We next use the arithmetic of K and L to determine properties for the functions fi which
resemble those of σ.

Corollary 1.9. The functions fi are lacunary.

We let

Si := {m ∈ Z, there are infinitely many n such that afi
(n) = m,

where afi
(n) denotes the n th coefficient of fi.}

Corollary 1.10. We have

Si =


N0 if i ∈ {1, 2, 5},
−N0 if i = 6,
Z if i ∈ {4, 7},
N0 ∪ −2N if i ∈ {3, 8}.

It would be interesting to further investigate the functions fi recovered here, for example re-
lating them to harmonic Maass forms as described above for σ. In particular the combinatorics
of f2 resemble those of σ. So the question arises, whether one can construct new mock theta
functions by considering unrestricted partitions instead of partitions into distinct parts. Fur-
thermore σ also occurred in interesting number theoretical identities involving sums of tails of
η-quotients (see for example [5, 16]). It would be interesting to investigate whether our functions
fi play related roles. We plan to address these questions in future research.
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The paper is organized as follows. Section 2 is devoted to establishing two new Bailey pairs
required for the proofs of Theorems 1.1 and 1.2 which are of independent interest. In Section 3
we write the functions fi as Hecke-type sums and establish our main theorems. In Section 4 we
prove the natural connection of the functions fi to the above described partition statistics.

Acknowledgements

The authors thank Jeremy Lovejoy for helpful comments on earlier versions of this paper.

2. Two new Bailey pairs

Here we establish two new Bailey pairs required for the proofs of Theorems 1.1 and 1.2. Let
us first recall the definition of a Bailey pair and Bailey’s Lemma. For details and background
on Bailey pairs, we refer the reader to Chapter 3 of [2].

Definition 2.1. Two sequences {αn} and {βn} form a Bailey pair relative to a if for all
n ≥ 0, we have

βn =
n∑

r=0

αr

(q)n−r(aq)n+r
.

Moreover if only the βn are given, then αn can be determined using Bailey inversion:

(2.1) αn =
(
1− aq2n

) n∑
j=0

(aq)n+j−1(−1)n−jq(
n−j

2 )

(q)n−j
βj .

To establish our main theorems we will use a limiting case of Bailey’s Lemma.

Lemma 2.2. If αn and βn form a Bailey pair relative to a, then we have, providing both sides
converge absolutely,

∞∑
n=0

(ρ1, ρ2)n(
aq
ρ1

, aq
ρ2

)
n

(
aq

ρ1ρ2

)n

αn =

(
aq, aq

ρ1ρ2

)
∞(

aq
ρ1

, aq
ρ2

)
∞

∞∑
n=0

(ρ1, ρ2)n

(
aq

ρ1ρ2

)n

βn,

where (a1, . . . , ar; q)n = (a1, . . . , ar)n :=
∏r

j=1(aj)n.

We show the following.

Theorem 2.3. (1) The sequences an, bn form a Bailey pair relative to a = 1:

b0 = b0(q) := 0,

bn = bn(q) :=
(−1)n(q; q2)n−1

(q)2n−1
,

a2n = a2n(q) := (1− q4n)q2n2−2n
n−1∑

j=−n

q−2j2−2j ,

a2n+1 = a2n+1(q) := −(1− q4n+2)q2n2
∑
|j|≤n

q−2j2
.
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(2) The sequences αn, βn form a Bailey pair relative to a = q:

βn = βn(q) :=
(−1)n

(
q; q2

)
n

(q)2n+1
,

α2n = α2n(q) :=
1

1− q

q2n2+2n
∑

−n≤j≤n−1

q−2j2−2j + q2n2
∑
|j|≤n

q−2j2

 ,

α2n+1 = α2n+1(q) := − 1
1− q

q2n2+4n+2
∑
|j|≤n

q−2j2
+ q2n2+2n

∑
−n−1≤j≤n

q−2j2−2j

 .

To facilitate the proof of the theorem, we first define and then evaluate the sum

(2.2) Un := (−1)n
n∑

j=1

[
n + j − 1
2j − 1

]
q(

n−j
2 )(q; q2)j−1,

where
[
n
j

]
:= (q)n

(q)j(q)n−j
.

Proposition 2.4. We have for n ≥ 0:

U2n = q2n2−2n
n−1∑

j=−n

q−2j2−2j ,

U2n+1 = −q2n2
∑
|j|≤n

q−2j2
.

Proof. It is easy to see that both sides of Proposition 2.4 satisfy U0 = 0 and U1 = −1. To finish
the proof it is enough to show that (2.2) satisfies the recurrence

(2.3) Un+2 = q2nUn + 2(−1)n.

To prove (2.3), we let
Vn := (−1)n

(
Un+2 − q2nUn

)
.

Inserting (2.2) yields

Vn =
n+2∑
j=1

(q)n+1+jq
1
2
(n+2−j)(n+1−j)

(q)2j−1(q)n−j+2
(q; q2)j−1 −

n∑
j=1

(q)n−1+jq
1
2
(n−j)(n−1−j)+2n

(q)2j−1(q)n−j
(q; q2)j−1

= q

n+2∑
j=1

(q)n+j−1(q; q2)j

(q)2j−1(q)n−j+2

(
1− q2n+2

)
q

1
2
(n−j)2+ 3n

2
− 3j

2 .

Using

(q)n+j−1 = (q)n−1 (qn)j ,

(q)n+2−j =
(q)n+2

q(n+2)jq−
j(j−1)

2 (−1)j (q−n−2)j

,

we obtain

Vn =
q1+n2

2
+ 3n

2

(
1 + qn+1

)
(1− qn) (1− qn+2)

∞∑
j=1

(−1)j
(
qn, q−n−2

)
j
qj

(−q, q)j−1
.



8 KATHRIN BRINGMANN AND BEN KANE

We next recall the following transformation which is due to Heine (see (2.6) of [2])

(2.4)
∞∑

n=0

(a, b)n

(q, c)n

( c

ab

)n
=

(
c
a , c

b

)
∞(

c, c
ab

)
∞

.

We use (2.4) with a = qn+1, b = q−n−1, and c = −q, yielding

Vn =
q

n2

2
+n

2

(
−q−n,−qn+2

)
∞
(
1 + qn+1

)
(−q,−q)∞

.

Then Vn = 2 follows from the identities(
−q−n

)
∞ = 2q−

n(n+1)
2 (−q)n(−q)∞,(

−qn+2
)
∞ =

(−q)∞
(−q)n+1

.

This proves (2.3) and thus Proposition 2.4. �

Proof of Theorem 2.3. We now show Theorem 2.3 (1). Using the Bailey inversion (2.1) with
a = 1, we have

an = (1− q2n)
n∑

j=0

(q)n+j−1

(q)n−j
(−1)n−jq(

n−j
2 )bj(2.5)

= (1− q2n)
n∑

j=1

(q)n+j−1

(q)n−j(q)2j−1
(q; q2)j−1(−1)nq(

n−j
2 )

= (1− q2n)(−1)n
n∑

j=1

[
n + j − 1
2j − 1

]
(q; q2)j−1q

(n−j
2 )

= (1− q2n)Un.

This directly gives (1) using Proposition 2.4.
We next turn to the proof of Theorem 2.3 (2) and use (2.1) with a = q to obtain

αn =
1− q2n+1

1− q

n∑
j=0

(q)n+j

(q)n−j
(−1)n+j q(

n−j
2 )βj

=
1− q2n+1

1− q
(−1)n

n∑
j=0

(q)n+j(q; q2)j

(q)n−j(q)2j+1
q(

n−j
2 )

=
1

1− q
(−1)n

n∑
j=0

[
n + j + 1

n− j

]
1− q2n+1

1− qn+j+1
q(

n−j
2 )(q; q2)j .

Writing
1− q2n+1 = 1− qn+j+1 + qn+j+1

(
1− qn−j

)
yields

αn =
1

1− q
(−1)n

 n∑
j=0

[
n + j + 1

n− j

]
q(

n−j
2 )(q; q2)j +

n−1∑
j=0

[
n + j

n− j − 1

]
q(

n−j
2 )qn+j+1(q; q2)j


=

1
1− q

(
−Un+1 + q2nUn

)
.
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Substituting Un from Proposition 2.4 gives the desired equality for αn. �

3. Proofs of the Main Theorems

The main step in the proof of Theorem 1.1 is to rewrite f1 as a Hecke-type sum, which relies
on the Bailey pair obtained in Theorem 2.3 (2).

Proposition 3.1. We have

f1(q) =
∑
n≥0

−n−1≤j≤n

q4n2+5n+1−2j2−2j
(
1 + q6n+6

)
+

∑
n≥0

−n≤j≤n

q4n2+n−2j2 (
1 + q6n+3

)
.

Proof. We use the Bailey pair from Theorem 2.3 (2) in Bailey’s Lemma with with ρ1 →∞ and
ρ2 = q. Using the fact that

lim
ρ→∞

(ρ)n

ρn
= (−1)n q

n(n−1)
2 ,

the “β-side” of Bailey’s Lemma equals

1
1− q

∞∑
n=0

(q; q2)n(q)nq
n(n+1)

2

(q)2n+1
=

1
1− q

∞∑
n=0

q
n(n+1)

2

(−q)n(1− q2n+1)
=

1
1− q

f1(q).

The “α-side” equals
∞∑

n=0

qn(2n+1)α2n −
∞∑

n=0

q(2n+1)(n+1)α2n+1.

Plugging in αn from Theorem 2.3 (2) and multiplying by 1− q yields Proposition 3.1. �

We have now developed the necessary pieces to show Theorem 1.1.

Proof of Theorem 1.1. To finish the proof of Theorem 1.1, we first observe that Propositon 3.1
yields

(3.1) qf1(q16) =
∑
n≥0

−n−1≤j≤n

(
q(8n+5)2−2(4j+2)2 + q(8n+11)2−2(4j+2)2

)

+
∑
n≥0
|j|≤n

(
q(8n+1)2−2(4j)2 + q(8n+7)2−2(4j)2

)
.

We next use Lemma 3 of [3] and unique factorization in OK to rewrite each ideal a occurring
in equation (1.2) uniquely as a = (u + v

√
2) with u > 0 and −1

2u < v ≤ 1
2u. The congruence

condition N (a) = u2 − 2v2 ≡ 1 (mod 16) corresponds to the four summands occurring in
equation (3.1). This completes the proof of Theorem 1.1. �

As in the case of f1, the main step in the proof of each of our main theorems will be to use
Bailey’s Lemma to first rewrite the function as a Hecke-type sum. The proposition below gives
the desired Hecke-type sum for f2.

Proposition 3.2. We have

f2(q) =
∑
n≥1

−n≤j≤n−1

(
1 + q2n

)
q4n2−n−2j2−2j +

∑
n≥0
|j|≤n

q4n2+3n+1−2j2 (
1 + q2n+1

)
.
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Proof. We use the Bailey pair from Theorem 2.3 (1) in Bailey’s Lemma with ρ1 →∞. We divide
both sides by 1− ρ2, and then let ρ2 → 1. After this the “β-side” equals∑

n≥1

(q)n−1(q; q2)n−1

(q)2n−1
q

n2+n
2 =

∑
n≥1

(q)2n−2

(−q)n−1(q)2n−1
q

n2+n
2 = f2(q).

On the “α-side”, we use equation (2.5) to obtain
∞∑

n=1

(−1)nq
n2+n

2

1− qn
an =

∞∑
n=1

q2n2+n(1 + q2n)U2n −
∞∑

n=0

q2n2+3n+1(1 + q2n+1)U2n+1.

Inserting Proposition 2.4 proves Proposition 3.2. �

Proof of Theorem 1.2. Proposition 3.2 gives

(3.2) q−7f2

(
q16
)

=
∑
n≥1

−n≤j≤n−1

(
q(8n−1)2−2(4j+2)2 + q(8n+1)2−2(4j+2)2

)

+
∑
n≥0
|j|≤n

(
q(8n+3)2−2(4j)2 + q(8n+5)2−2(4j)2

)
.

We write a in (1.3) as in the proof of Theorem 1.1. The condition N (a) ≡ 9 (mod 16) translates
into the four summands of (3.2), proving Theorem 1.2.

�

We recall the following Bailey pair from Theorem 2.3 of [4] which will play a pivotal role in
the proof of Theorem 1.3.

Theorem 3.3. The following A′n and B′
n form a Bailey pair relative to a:

A′n = A′n(q) :=
qn2

(bc)n
(
1− aq2n

)
(a/b, a/c)n

(1− a)(bq, cq)n

n∑
j=0

(−1)j
(
1− aq2j−1

)
(a)j−1(b, c)j

qj(j−1)/2(bc)j(q, a/b, a/c)j

and
B′

n = B′
n(q) :=

1
(bq, cq)n

.

The main step of the proof of Theorem 1.3 is given in the following proposition.

Proposition 3.4. We have

(3.3) f3(q) =
∑
n≥0
|j|≤n

(−1)jq2n2+2n−j2
.

Proof. We use the Bailey pair from Theorem 3.3 with q → q2, b = −q, c = −1, and a = q2 in
Bailey’s Lemma with ρ1 = q and ρ2 = q2. The “β-side” equals

1
1 + q

∞∑
n=0

(q, q2; q2)nqn

(−q3,−q2; q2)n
=

∞∑
n=0

(q)2n

(−q)2n+1
qn = f3(q).

The “α-side” is
∞∑

n=0

q2n2+2n

1 + 2
n∑

j=1

(−1)jq−j2

 ,

which is the right-hand side of (3.3). �
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Proof of Theorem 1.3. Using Proposition 3.3, we get

qf3(q2) =
∑
n≥0
|j|≤n

(−1)jq(2n+1)2−2j2
.

We write each ideal a as a = (u+v
√

2) as in the proof of Theorem 1.1. Note that the Kronecker
symbol implies that only elements with u odd survive and that (−1)v =

( −4
N (a)

)
. This finishes

the proof of Theorem 1.3. �

We now write f4(q) as a Hecke-type sum.

Proposition 3.5. We have

f4(q) = −
∑
n≥0

−n−1≤j≤n

(−1)jq2n2+4n+2−j2
.

Proof. We use the Bailey pair from Theorem 3.3 with q → q2, b = −q, c = −q2, and a = q4 in
Bailey’s Lemma with ρ1 = q2 and ρ2 = q3. The “β-side” then equals

1− q

1− q4

∞∑
n=0

(q2, q3; q2)n

(−q3,−q4; q2)n
qn =

1
1− q

∞∑
n=0

(q)2n+1

(−q)2n+2
qn =

q−1

1− q
f4(q).

The “α-side” equals

∞∑
n=0

q2n2+4n

1 +
q

1− q

n∑
j=1

(−1)j(q−j2−2j−1 − q−j2
)

 = − q

1− q

∞∑
n=0

q2n2+4n
n∑

j=−n−1

(−1)jq−j2
.

Multiplying with q(1− q) gives Proposition 3.5. �

Proof of Theorem 1.4. By Proposition 3.5, we have

−f4(q2) =
∑
n≥0

−n−1≤j≤n

(−1)jq(2n+2)2−2j2
.

Using Lemma 3 of [3], we write each ideal as a = (u +
√

2v) with N (a) = 2v2 − u2 with v > 0
and −v < u ≤ v . As before this yields

f4(q2) = −
∑

a⊂OK
2|N (a)

(−1)
N (a)

2 qN (a).

To finish the proof, we note that there is a unique ideal of norm 2, namely (
√

2) of OK which
gives Theorem 1.4. �

As before, the main step will be to rewrite f5 using Bailey’s Lemma.

Proposition 3.6. We have

f5(q) =
∑
n≥0
|j|≤n

q
3(n2+n)

2
− j2+j

2 .
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Proof. We use Theorem 3.3 with b = q1/2, c = −q1/2, and a = q in Bailey’s Lemma with ρ1 = q
and ρ2 →∞. The “β-side” becomes

1
1− q

∞∑
n=0

(−1)n (q)n

(q3; q2)n
q

n2+n
2 = f5(q).

The “α-side” equals
∞∑

n=0

q
3(n2+n)

2

1 +
n∑

j=1

q−
j2+j

2 (1 + qj)

 ,

which is the right-hand side of Proposition 3.6. �

Proof of Theorem 1.5. It follows easily by Proposition 3.6 that

q2f5(q8) =
∑
n≥0
|j|≤n

q3(2n+1)2−(2j+1)2 .

Using Lemma 3 of [3], we write a = (u +
√

3v) with N (a) = 3v2 − u2, v > 0, and −v < u ≤ v.
This yields as before

q2f5(q8) =
∑

a⊂OL
N (a)≡2 (mod 8)

qN (a).

The theorem then follows after dividing by the unique ideal (1 +
√

3) of OL of norm 2. �

Proposition 3.7. We have

f6(q) = −
∑
n≥0
|j|≤n

q3n2+3n+1−j2 −
∑
n≥0

−n≤j≤n−1

q3n2−j2−j .

Proof. We take the Bailey pair from Lemma 12 of [1] with respect to a = 1 with

B0 = B0(q) := 0,

Bn = Bn(q) :=
1

(qn)n
=

(q)n−1

(q)2n−1
,

and

A2n = A2n(q) := −q3n2−2n(1− q4n)
n−1∑

j=−n

q−j2−j ,(3.4)

A2n+1 = A2n+1(q) := q3n2+n(1− q4n+2)
∑
|j|≤n

q−j2
.(3.5)

We take in Bailey’s Lemma ρ1 = −1, divide on both sides by 2(1 − ρ2), and then let ρ2 → 1.
On the “β-side” we then have

∞∑
n=1

(−1)n (−q)n−1(q)2n−1

(q)2n−1
= f6(q).

The “α-side” equals
∞∑

n=1

q2n

1− q4n
A2n −

∑
n≥0

q2n+1

1− q4n+2
A2n+1.

Inserting (3.4) and (3.5) gives Proposition 3.7. �
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Proof of Theorem 1.6. From Proposition 3.7 we have

q−1f6(q4) = −
∑
n≥0
|j|≤n

q3(2n+1)2−(2j)2 −
∑
n≥0

−n≤j≤n−1

q3(2n)2−(2j+1)2 .

From this we immediately conclude the theorem as before. �

We move on to the corresponding proposition for f7.

Proposition 3.8. We have

f7(q) =
∑
n≥0
|j|≤n

(−1)n+jq3n2+2n−j2 (
1− q2n+1

)
.

Proof. We use Theorem 3.3 with q 7→ q2, b = −1, c = −q, and a = q2 in Bailey’s Lemma with
ρ1 = q2 and ρ2 →∞. The “β-side” is

1
1− q2

∞∑
n=0

(
q2; q2

)
n

(−1)nqn(n+1)

(−q2,−q3; q2)n

=
1

1− q

∞∑
n=0

(
q2; q2

)
n

(−1)nqn(n+1)

(−q)2n+1
=

f7(q)
1− q

.

The “α-side” equals the right hand side of Proposition 3.8 divided by 1− q, giving Proposition
3.8. �

Proof of Theorem 1.7. From Proposition 3.8 we immediately obtain

(3.6) qf7(q3) =
∑
n≥0
|j|≤n

(−1)n+j
(
q(3n+1)2−3j2 − q(3n+2)2−3j2

)
.

We use Lemma 3 of [3] to write a = (u +
√

3v) with N (a) = u2 − 3v2, u > 0, −u
3 < v ≤ u

3 . The
condition N (a) ≡ 1 (mod 3) translates into the two summands of (3.6), noting that

(−1)n+j = −(−1)(3n+1)2−3j2
= (−1)(3n+2)2−3j2

.

�

Finally, we show that f8 may be written as a Hecke-type sum.

Proposition 3.9. We have

f8(q) = −
∑
n≥1

−n≤j≤n−1

q6n2−2n−2j2−2j(1 + q4n) +
∑
n≥0
|j|≤n

q6n2+4n+1−2j2
(1 + q4n+2).

Proof. We use the Bailey pair Bn

(
q2
)

and An

(
q2
)

from the proof of Theorem 1.6. We then let
in Bailey’s Lemma ρ1 = q, divide both sides by 1− ρ2 and take ρ2 → 1. The “β-side” gives

∞∑
n=1

(q2; q2)n−1(q; q2)n

(q2n; q2)n
qn =

∞∑
n=1

(q)2n−1

(q2n; q2)n
qn =

∞∑
n=1

(q)n−1(qn)n

(−qn)n(qn)n
qn = f8(q).

On the “α-side” we have ∑
n≥1

qn

1− q2n
An(q2).

Proposition 3.9 then follows after using (3.4) and (3.5) to evaluate An(q2).
�
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Proof of Theorem 1.8. By Proposition 3.9, q−2f8(q6) equals

−
∑
n≥0

−n−1≤j≤n

(
q(6n+7)2−3(2j+1)2 + q(6n+5)2−3(2j+1)2

)
+
∑
n≥0
|j|≤n

(
q(6n+2)2−3(2j)2 + q(6n+4)2−3(2j)2

)
.

As before we see that

(3.7) q−2f8(q6) =
∑

a⊂OL
N (a)≡−2 (mod 6)

(−1)
N (a)

2 qN (a).

Theorem 1.8 then follows by dividing by the unique ideal (1 +
√

3) of OL of norm 2. �

3.1. Proof of the Corollories. Corollary 1.9 follows immediately from the Hecke-type sums
obtained in Section 3, using Theorem 1 of [17].

To prove Corollary 1.10, we note that in all cases the weightings only depended on the norm
of a, and hence the n-th coefficient in each case equals the number of ideals of norm n times a
weighting depending only on n. We next recall that unique factorization gives the number of
ideals of OK and OL of norm p` as follows:

#{a ⊂ OK : N (a) = p`} =


` + 1 if p ≡ ±1 (mod 8),
1 if p ≡ ±3 (mod 8) and ` is even ,
1 if p = 2,
0 if p ≡ ±3 (mod 8) and ` is odd ,

#{a ⊂ OL : N (a) = p`} =


` + 1 if p ≡ ±1 (mod 12),
1 if p ≡ ±5 (mod 12) and ` is even ,
1 if p = 2, 3,
0 if p ≡ ±5 (mod 12) and ` is odd .

Multiplicativity then gives an exact formula for the number of elements of norm n, based on
the factorization. The proof of Corollary 1.10 now follows easily using the explicit form of the
weighting.

4. Combinatorial Interpretations

4.1. Theorem 1.1. Recalling the definition

f1(x; q) =
1

1− q
+

∞∑
n=1

q
n2+n

2

(xq)n(1− x2q2n+1)
,

we have f1(q) = f1(−1; q). We can hence give the combinatorial interpretation for f1(x; q) and
then plug in x = −1 to obtain the desired combinatorics for f1(q). We will see that the coefficient
of xrqm in f1(x; q)− q is the number of partitions of m with r1(λ) = r.

For the term 1
1−q we take the partition λ having only parts of size 1. It is clear in this case

that r1(λ) = 0 in all cases. For n ≥ 1, we form a triangle with sides of length n in the upper
left hand corner of the Ferrer’s diagram (with rank 0). For the power x2kqk(2n+1) arising from

1
1−x2q2n+1 , we then add 2k to the first n − 1 parts, add a part of size 2k, and k parts of size 1.
If k ≥ 1, then the resulting partition has repeated parts of size 1. Since the partition without
the parts of size 1 still has precisely n parts and the largest part is increased by 2k, the rank is
increased by precisely 2k. Finally, 1

(xq)n
adds parts of size at most n, which we place along the

“diagonal”, each such part adding exactly one to r1(λ). The only repeated partition from our
construction is the single part of size 1, which we have subtracted.
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4.2. Theorem 1.2. Let

f2(x; q) :=
q

1− q
+
∑
n≥2

q
n2+n

2

(xq)n−1(1− x2q2n−1)
.

We will see that the coefficient of xrqm in f2(x; q) is the number of partitions of m with r2(λ) = r.
Then taking x = −1 gives the desired interpretation for f2(q) = f2(−1; q).

We begin by forming a triangle with sides of length n. We then append 2k to the largest
n − 1 parts and append k to the smallest part, where k is the power of x2q2n−1 coming from

1
1−x2q2n−1 . The smallest part is now k + 1, and if n 6= 1 then the rank is 2k and the second
smallest part is 2k + 2. Finally, 1

(xq)n−1
adds parts of size at most n − 1, which we place along

the diagonal, adding one to r2(λ) for each part. The size of the smallest part is not changed in
the final step, so our construction yields a bijection to λ ∈ P2 with n parts and smallest part
k + 1, having the desired rank if n 6= 1, while clearly if n = 1, then r2(λ) = 0 by definition.

4.3. Theorem 1.3. We first define

f3(x; q) :=
∞∑

n=0

(−x−1q)n

(x−1q)n
x−1qn · (−xqn+1)n

(xqn+1)n+1

For Λ = (µ, λ) ∈ P3, the power of x will be used to count r3(Λ), the size of the largest part of λ
minus the number of parts in µ.

It is clear that the coefficient of x−r1qm1 in (−x−1q)n

(x−1q)n
x−1qn is the number of overpartitions of

m1 with exactly r1 parts and largest part n (which is not overlined). We thus write Λ ∈ P3 by
Λ = (µ, λ), and the first component µ will be determined by this factor.

We next consider the second component λ of the overpartition pair. For xkqk(n+1+r) chosen
from (−xqn+1)n

(xqn+1)n+1
, we add k parts of size n + 1 and k parts of size r (when r > 0). When choosing

from the numerator, we underline the first occurrence of the part r if r > 0 and if r = 0 then
we underline the first occurrence of the part n + 1. Thus the coefficient of xr2qm2 in (−xqn+1)n

(xqn+1)n+1

counts the number of overpartitions of m2 with largest part n + 1, where each occurrence of a
part of size at most n is paired with a part of size n + 1, and the number of occurrences of the
part size n + 1 equals r2.

Combining these implies that the coefficient of xrqm in f3(x; q) is the number of overpartition
pairs Λ ∈ P3 with |Λ| = m and r3(λ) = r. We have f3(q) = −f3(−1; q), so that plugging in
x = −1 gives us the generating function for those with r3(Λ) odd minus those with r3(Λ) even.

4.4. Theorem 1.4. To see that f4(q) generates the desired partitions, we proceed similarly as
for f3 and write

f4(x; q) :=
∞∑

n=1

(−xq)n

(xq)n
xqn · (−xqn+1)n−1

(xqn+1)n
.

We interpret (−x−1q)n

(x−1q)n
x−1qn as in the case for f3. The factor (−xqn+1)n−1

(xqn+1)n
gives the generating

function (in xr2qm2) for overpartitions of m2 with largest part n occuring r2 times, where parts
appear in pairs (n, r) for some 1 ≤ r ≤ n. Terms from the numerator have 1 ≤ r < n, and we
overline the first occurrence of r. From this one easily sees that f4(x; q) enumerates the claimed
partitions.
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4.5. Theorem 1.5. Recall that `i = λi − λi+1 (1 ≤ i ≤ n − 1) and `n = λn, E := Eλ := {2 ≤
r ≤ n : `r is even} and e := #E. The second largest part of λ (if it exists) must be at least
n−1+e because the size of the second largest part is λ2 =

∑n
i=2 `i. Thus, it is natural to define

dλ,1 := λ2 − ((n− 1) + e) .

Since

dλ,1 =

(
n∑

i=2

`i

)
− (n− 1 + e) =

∑
i∈E

(`i − 2) +
∑

i/∈E,i>1

(`i − 1)

is even, we may furthermore define the integral metric dλ := dλ,1

2 alluded to in the introduction.
We now rewrite

f5(q) =
1 + q2

1− q3
+

∞∑
n=2

(−1)n (q2)n−1

(q3; q2)n
q

n2+n
2 .

The term
1 + q2

1− q3
=

∞∑
j=0

(
q3j + q3j+2

)
corresponds to partitions in P5 with exactly one part which is not congruent to 1 modulo 3.

For n ≥ 2, we first form a triangle with sides of length n weighted by the largest part. We
adjoin 3kr to the largest part and 2kr to the next r − 1 parts, where kr is the power of q2r+1

coming from 1
(q3;q2)n

. At this stage of the construction we have added an even number to each
part other than the largest, so `i is odd for i > 1 and hence E = ∅. Notice that dλ =

∑n
r=2 kr

and `1 = 3k1 + dλ + 1. Hence we have thusfar constructed all λ ∈ P5 with E = ∅, n parts, and
the desired weighting.

Finally we add 1 to the first r parts if qr is chosen from (q2)n−1. Notice that n represents
the number of parts and r ∈ E if and only if we chose qr in the final step. Moreover the overall
weighting is

(−1)n+e = (−1)n+e+2dλ = −(−1)λ2 .

4.6. Theorem 1.6. Define

f6(x; q) :=
∞∑

n=1

(−x−1q2; q2)n−1

(qn)n
xnqn.

In this case the power of x will count the largest part minus the number of overlined parts.
We begin with a part of size n from the factor xnqn. We next add k parts of size n and k

parts of size r (if r > 0), where k is the power of qn+r coming from 1
(qn)n

. We finally add two
parts of size r and overline the first occurrence of r if q2r is chosen from (−x−1q2; q2)n−1. Since
all of the parts other than the ones coming from 1

1−qn occur in pairs with one of the parts either
overlined or equal to n we obtain an overpartition in P6 with the correct power of x.

4.7. Theorem 1.7. First define

f7(x; q) :=
1

1− xq
+

∞∑
n=1

xnqn2+n(−xq)n

(xqn+1)n+1
.

Here x will count the statistic of the number of parts.
The term xrqr in 1

1−xq corresponds to partitions with r parts all equal to one.
For n ≥ 1 we first place n parts of size n + 1. We then append k to the first n parts and

add k parts of size r, where k is the power of xqn+r chosen from 1
(−qn+1)n+1

(note that we have
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added k parts). Finally, (−xq)n corresponds to overlined parts of size at most n. Notice that
n = M(λ). Moreover, since the largest part is at least 2 we have no overlap with the partitions
coming from 1

1−xq . This easily yields the desired bijection to P7 with the power of x counting
the number of parts. Clearly f7(−1; q) = f7(q), and we have the desired interpretation for f7.

4.8. Theorem 1.8. Similarly to the above cases, we define

f8(x; q) := x

∞∑
n=1

(−x−1q)n−1

(xqn)n
qn.

We start with a part of size n. For xqr chosen from (−xq)n−1 we add an overlined part of size
r. We finally add k parts of size n and k parts of size r (when r > 0), where k is the power of
xqn+r occurring from 1

(xqn)n
. Thus, the power of xrqm is the number of partitions λ ∈ P8 of m

with r8(λ) = r, and f8(q) = −f8(−1; q) gives the desired result.
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