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A RADEMACHER-TYPE EXACT FORMULA FOR PARTITIONS

WITHOUT SEQUENCES

WALTER BRIDGES AND KATHRIN BRINGMANN

Abstract. In this paper we prove an exact formula for the number of partitions without
sequences. By work of Andrews, the corresponding generating function is a product of a
modular form and a mock theta function, giving an overall weight of 0. The proof requires
evaluating and bounding Kloosterman sums and the Circle Method.

1. Introduction and statement of results

A partition of a non-negative integer n is a decomposition into the sum of non-increasing
non-negative integers. Denote the number of partitions of n by p(n). The corresponding
generating function is

P (q) :=

∞
∑

n=0

p(n)qn =

∞
∏

n=0

1

1− qn
=

1

(q; q)∞
, (1.1)

where, for a ∈ C and n ∈ N0 ∪ {∞}, we define (a)n = (a; q)n :=
∏n−1

j=0 (1− aqj).
An important question in the theory of partitions is to determine exact formulas or asymp-

totics for functions such as p(n). Note that the generating function in (1.1) is (essentially) a
modular form. A Tauberian Theorem [11] shows that the following asymptotic holds

p(n) ∼ 1

4n
√
3
e
π
√

2n
3 (n → ∞). (1.2)

Building on Hardy and Ramanujan’s earlier developments, Rademacher and Zuckerman
later proved exact asymptotic series expansions for functions like p(n) using the Circle Method
[15]. To state this, define the Kloostermann sums1, with ωh,k given in (2.1),

Ak(n) :=
∑

h (mod k)∗

ωh,ke
− 2πinh

k .

The ∗ indicates that h only runs over those elements (mod k) that are coprime to k. Then

p(n) =
2π

(24n − 1)
3
4

∑

k≥1

Ak(n)

k
I 3

2

(

π
√
24n − 1

6k

)

, (1.3)

where Iκ denotes the Bessel function of order κ. Using that Iκ(x) ∼ ex√
2πx

(as x → ∞), one

recovers (1.2).

2020 Mathematics Subject Classification. 11B57, 11F03, 11F20, 11F30, 11F37, 11P82.
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1Note that in particular ωh,k only depends on h (mod k).
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Another important example in the study of coefficients of hypergeometric series and auto-
morphic forms is Ramanujan’s third order mock theta function

f(q) =

∞
∑

n=0

α(n)qn := 1 +

∞
∑

n=1

qn
2

(−q; q)2n
. (1.4)

The mock theta functions were introduced by Ramanujan in his last letter to Hardy [16].
By work of Zwegers [18], f(q) is “the holomorphic part of a harmonic Maass form”. This
in particular implies that f is not quite modular, but its modular transformations involve
“Mordell-type integrals”. These integrals were absorbed into the error terms of the asymptotic
series expansion for α(n) obtained by Dragonette [10] and Andrews [1]. They then conjectured
an exact formula for α(n). Work of the second author and Ono used so-called Maass–Poincaré
series to solve this conjecture [8]. The exact formula closely resembles (1.3) meaning that the
non-modularity of f(q) does not influence the shape of the exact formula.

The situation drastically changes if one multiplies mock theta functions with modular forms.
These functions arise in many settings, for example in the study of probability, mathematical
physics, and partition theory. One particular example gives partitions that do not contain
any consecutive integers as parts. Such partitions were first explored by MacMahon [13] and
arise in connection with certain probability models as well as in the study of threshold growth
in cellular automata [12] (also see [4]). Let p2(n) denote the number of such partitions of size
n. Andrews [3] proved that we have the generating function

G2(q) :=
∞
∑

n=0

p2(n)q
n =

(

−q3; q3
)

∞
(q2; q2)∞

χ(q),

with the third order mock theta function

χ(q) :=

∞
∑

n=0

(−q; q)nq
n2

(−q3; q3)n
.

The combinatorics of the generating function was further explored in [5]. From work of
Holroyd, Liggett, and Romik [12] it follows that

1

n
e

2π
3

√
n ≪ p2(n) ≪

1√
n
e

2π
3

√
n.

The second author and Mahlburg [6] strongly improved upon this to find an asymptotic series
for p2(n) with an error term of size log(n). In this paper we strengthen this result and prove
an exact formula. For this, we require some notation. For b ∈ R, k ∈ N, and ν ∈ Z define

Ib,k,ν(n) :=
∫ 1

−1

√
1− x2I1

(

2π
k

√

2bn (1− x2)
)

cosh

(

πi
k

(

ν − 1
6

)

− π
k

√

b
3x

) dx.

Moreover, let the Kloosterman sums K
[4]
k , K

[6]
k , K

[8]
k , and Kk be given in (3.1), (3.2), (3.3),

and (3.4), respectively.2

2Note that these Kloosterman sums may also be written in terms of classical Kloosterman sums – see
Section 3 for details.
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Theorem 1.1. We have, for n ∈ N,

p2(n) =
5π

36
√
6n

∑

k≥1
gcd(k,6)=2

1

k2

∑

ν (mod k)

(−1)νK
[4]
k (ν;n)I 5

36
,k,ν(n)

+
π

6
√
6n

∑

k≥1
gcd(k,6)=3

1

k2

∑

ν (mod k)

(−1)νK
[6]
k (ν;n)I 1

6
,k,ν(n) +

π

6
√
n

∑

k≥1
gcd(k,6)=1

Kk(n)

k2
I1

(

2π
√
n

3k

)

+
π

18
√
6n

∑

k≥1
gcd(k,6)=1

1

k2

∑

ν (mod k)

(−1)νK
[8]
k (ν;n)I 1

18
,k,ν(n).

Remarks.

(1) Theorem 1.1 is the first case of an exact formula for a mixed mock modular form of weight
0. In [7] the much simpler case of a mixed modular form of weight −3

2 was considered. It

would be interesting to develop methods to prove exact formulas in the case of weight 1
2 , for

example Rhoades proved an asymptotic series for the number of strongly unimodal sequences
of size n [17]. This is likely a difficult problem, as unlike for f(q) there is no theory of Poincaré
series for mixed mock modular forms.
(2) As in [6], one can use Theorem 1.1 to determine the first term in the asymptotic expansion
of p2(n).
(3) The unrestricted partition function is log-concave (see [9]), and we conjecture that p2(n)

2−
p2(n+ 1)p2(n− 1) ≥ 0 for n ≥ 482 and all even n ≥ 2.

The paper is organized as follows. In Section 2 we recall some basic facts on multipliers,
transformation laws, and bounds for Mordell-type integrals. Section 3 is devoted to Kloost-
erman sums (rewriting and bounding). In Section 4 we apply the Circle Method to prove
Theorem 1.1.
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2. Preliminaries

2.1. Modularity of the partition function. We require the modularity of the partition

function P (q). We state these in terms of the Circle Method notation. Let q := e
2πi
k

(h+iz),

q1 := e
2πi
k

(h′+ i
z
) with z ∈ C with Re(z) > 0, h, k ∈ N,3 hh′ ≡ −1 (mod k). Moreover let ωh,k

be defined through

P (q) = ωh,kz
1
2 e

π
12k (z

−1−z)P (q1).

Then we have (see [2, equation (5.2.4)])

ωh,k :=

{

(−k
h

)

e−πi( 1
4
(2−hk−h)+ 1

12(k−
1
k)(2h−h′+h2h′)) if h is odd,

(−h
k

)

e−πi( 1
4
(k−1)+ 1

12(k−
1
k )(2h−h′+h2h′)) if k is odd.

(2.1)

Here ( ··) denotes the Kronecker symbol.

3We often impose extra conditions on h′; whenever we do so, we mention these.
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2.2. A splitting of G2(q). Employing a mock theta-function identity of Ramanujan, An-
drews [3] showed the following decomposition

G2(q) =

(

q6; q6
)

∞
4 (q2; q2)∞ (q3; q3)∞

f(q) +
3
(

q3; q3
)3

∞
4(q; q)∞ (q2; q2)∞ (q6; q6)∞

, (2.2)

where f(q) is defined in (1.4). We denote the two terms on the right-side of equation (2.2) by

g1(q) :=

(

q6; q6
)

∞
4 (q2; q2)∞ (q3; q3)∞

f(q) =:

∞
∑

n=0

a(n)qn, g2(q) :=
3
(

q3; q3
)3

∞
4(q; q)∞ (q2; q2)∞ (q6; q6)∞

.

Moreover we require

ξ(q) :=

(

−q3; q3
)

∞
(q2; q2)∞

=:
∞
∑

n=0

r(n)qn.

2.3. Mordell integrals. Throughout, we let 0 ≤ h < k ≤ N with gcd(h, k) = 1, and
z = k(N−2 − iΦ) with −ϑ′

h,k ≤ Φ ≤ ϑ′′
h,k. Here

ϑ′
h,k :=

1

k(k1 + k)
, ϑ′′

h,k :=
1

k(k2 + k)
,

where h1
k1

< h
k
< h2

k2
are adjacent Farey fractions in the Farey sequence of order N ∈ N. Below,

we let N → ∞.
The following Mordell-type integral occurs in the modular transformation laws of the mock

theta function f(q)

Ik,ν(z) :=

∫

R

e−
3πzx2

k

cosh
(

πi
k

(

ν − 1
6

)

− πzx
k

)dx.

In Lemma 3.1 of [6] these integrals were approximated. To state this result, let Jb,k,ν(z) :=

ze
πb
kz Ik,ν(z), and define the principal part truncation of Jb,k,ν as

J ∗
b,k,ν(z) :=

√

b

3

∫ 1

−1

e
πb
kz (1−x2)

cosh

(

πi
k

(

ν − 1
6

)

− π
k

√

b
3x

)dx.

Lemma 2.1. If b ∈ R and ν ∈ Z with 0 < ν ≤ k, then we have the following, as z → 0:

(1) If b ≤ 0, then we have

|Jb,k,ν(z)| ≪
1

∣

∣

π
2 − π

k

(

ν − 1
6

)∣

∣

.

(2) If b > 0, then Jb,k,ν(z) = J ∗
b,k,ν(z)+Eb,k,ν(z), where the error term satisfies for 0 < ν ≤ k

|Eb,k,ν(z)| ≪
1

∣

∣

π
2 − π

k

(

ν − 1
6

)∣

∣

.
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3. Kloosterman sums

3.1. Rademacher’s Kloosterman sums. Recall that k1 = k1(h, k) is the denominator of
the fraction preceeding h

k
in the Farey sequence of order N ∈ N. By [14] we have the following

bounds for Kloosterman sums.

Lemma 3.1. We have, for k ∈ N, n,m, ℓ ∈ Z, n 6= 0 with N +1 ≤ ℓ ≤ N + k+1, for ε > 0,

Kk(n,m) :=
∑

h (mod k)∗

e−
2πi
k

(nh−mh′) = Oε

(

k
2
3
+ε gcd(|n|, k) 1

3

)

,

Kk,ℓ(n,m) :=
∑

h (mod k)∗

N<k+k1≤ℓ

e−
2πi
k

(nh−mh′) = Oε

(

k
2
3
+ε gcd(|n|, k) 1

3

)

.

We now investigate certain Kloosterman sums that occur when using the Circle Method
for g1(q). For this, we distinguish cases based on gcd(k, 6).

3.2. 6 | k. Define the following Kloosterman sums (n,m ∈ N0)

K
[1]
k (n,m) :=

∑

0≤h<k
gcd(h,k)=1

ωh,kωh, k
2
ω
h, k

3

ωh, k
6

e
πi
2 (1−

3k
2 )h

′

e
2πi
k

(−nh+mh′),

K
[2]
k (ν;n,m) :=

∑

0≤h<k
gcd(h,k)=1

ωh,kωh, k
2
ωh, k

3

ωh, k
6

e
πi
k (−3ν2+ν)h′

e
2πi
k

(−nh+mh′).

Note that these Kloosterman sums only depend on the residue class of h, h′ (mod k). We also
need the incomplete versions, N + 1 ≤ ℓ ≤ N + k − 1,

K
[1]
k,ℓ(n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ

ωh,kωh, k
2
ωh, k

3

ω
h, k

6

e
πi
2 (1−

3k
2 )h

′

e
2πi
k

(−nh+mh′),

K
[2]
k,ℓ(ν;n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ

ωh,kωh, k
2
ω
h, k

3

ωh, k
6

e
πi
k (−3ν2+ν)h′

e
2πi
k

(−nh+mh′).

The following lemma rewrites the multiplier.

Lemma 3.2. We have
ωh,kωh, k

2
ωh, k

3

ω
h, k

6

= −eπi
5k+18

36
h.

Proof. We use (2.1). Since 2 | k, we have that h is odd. A direct calculation gives that
ωh,kωh, k

2
ωh, k

3

ωh, k
6

= −e2πiA,

with

A := −5h2h′k
72

+
5k + 18

72
h+

5h′k
72

=
5k
6

(

1− h2
)

h′

12
+

5k + 18

72
h.

Now gcd(h, 6) = 1. Thus 1−h2

12 ∈ Z. This gives the claim. �

We next bound the Kloosterman sums.
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Lemma 3.3. We have, for ε > 0,

K
[1]
k (n,m), K

[1]
k,ℓ(n,m), K

[2]
k (ν;n,m), K

[2]
k,ℓ(ν;n,m) ≪ε n

1
3 k

2
3
+ε.

Proof. Using Lemma 3.2 and Lemma 3.1, we have

K
[1]
k (n,m) = Kk

(

n− (5k + 18)
k

72
,m+

k

4

(

1− 3k

2

))

≪ε k
2
3
+ε gcd

(∣

∣

∣

∣

n− (5k + 18)
k

72

∣

∣

∣

∣

, k

)
1
3

≪ k
2
3
+εn

1
3 .

The remaining cases may be proved analogously. �

3.3. gcd(k, 6) = 2. Define the Kloosterman sums

K
[3]
k (n,m) :=

∑

0≤h<k
gcd(h,k)=1

3|h′

ωh,kωh, k
2
ω3h,k

ω3h, k
2

e
πi
2 (1−

3k
2 )h

′

e
2πi
k

(

−nh+mh′

3

)

,

K
[4]
k (ν;n,m) :=

∑

0≤h<k
gcd(h,k)=1

3|h′

ωh,kωh, k
2
ω3h,k

ω3h, k
2

e
πi
k (−3ν2+ν)h′

e
2πi
k

(

−nh+mh′

3

)

.

For the range in the sums above, we may again choose any representatives h, h′ (mod k)
satisfying 3 | h′. Note that the condition 3 | h′ enforces that we need to change h′ 7→ h′ + 3k.
We also use the abbreviation

K
[4]
k (ν;n) := K

[4]
k (ν;n, 0). (3.1)

Again, we require the incomplete versions, N + 1 ≤ ℓ ≤ N + k − 1,

K
[3]
k,ℓ(n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ
3|h′

ωh,kωh, k
2
ω3h,k

ω3h, k
2

e
πi
2 (1−

3k
2 )h

′

e
2πi
k

(

−nh+mh′

3

)

,

K
[4]
k,ℓ(ν;n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ
3|h′

ωh,kωh, k
2
ω3h,k

ω3h, k
2

e
πi
k (−3ν2+ν)h′

e
2πi
k

(

−nh+mh′

3

)

.

Again, we evaluate the multiplier.

Lemma 3.4. We have
ωh,kωh, k

2
ω3h,k

ω3h, k
2

= e
2πi
k

(

k(k+2)
8

h− k2+2
18

h′

)

.

Proof. Note that 2 | k implies that h is odd, so we compute, using (2.1),
ωh,kωh, k

2
ω3h,k

ω3h, k
2

= −e2πiB ,

where

B :=
1

72k

((

−9h2h′ + 5h′ + 9h
)

k2 + (18h − 36)k − 8h′
)

.
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As 2 | k, we have 2 ∤ h and thus h2 ≡ 1 (mod 4). Therefore, we obtain

B ≡
(

k

8
+

1

4

)

h+

(

−k

8
+

5k

72
− 1

9k

)

h′ − 1

2
≡ k + 2

8
h+

(

− k

18
− 1

9k

)

h′ +
1

2
(mod 1).

This gives the claim. �

Again, we need bounds for these Kloosterman sums.

Lemma 3.5. We have, for ε > 0,

K
[3]
k (n,m), K

[3]
k,ℓ(n,m), K

[4]
k (ν;n,m), K

[4]
k,ℓ(ν;n,m) ≪ε n

1
3 k

2
3
+ε.

Proof. Note that h′

3 ≡ [3]kh
′ (mod k), where [a]b denotes the inverse of a (mod b). Thus we

have, using Lemma 3.4,

K
[3]
k (n,m) =

∑

h (mod k)∗

3|h′

e
2πi
k

((

k(k+2)
8

−n
)

h+
(

− k2+2
18

+ k
4 (1−

3k
2 )+[3]km

)

h′

)

.

To get rid of the condition 3 | h′, we change h′ 7→ 3h′ and h 7→ [3]kh to obtain that

K
[3]
k (n,m) = Kk

(

[3]k

(

n− k(k + 2)

8

)

,m− k2 + 2

6
+

3k

4

(

1− 3k

2

))

.

Using Lemma 3.1 gives the claim. The remaining cases are treated in the same way. �

3.4. gcd(k, 6) = 3. We require the following Kloosterman sums

K
[5]
k (n,m) :=

∑

0≤h<k
gcd(h,k)=1

8|h′

ωh,kω2h,kωh, k
3

ω2h, k
3

e
3πih′

4k e
2πi
k

(

−nh+mh′

2

)

,

K
[6]
k (ν;n,m) :=

∑

0≤h<k
gcd(h,k)=1

8|h′

ωh,kω2h,kωh, k
3

ω2h, k
3

e
πi
k (−3ν2+ν)h′

e
2πi
k

(

−nh+mh′

2

)

.

For the range in the sums above, we may again choose any representatives h, h′ (mod k)
satisfying 8 | h′. Note that the condition 8 | h′ enforces that we need to change h′ 7→ h′ + 8k.
We also use the abbreviation

K
[6]
k (ν;n) := K

[6]
k (ν;n, 0). (3.2)

We also need the incomplete versions, N + 1 ≤ ℓ ≤ N + k − 1,

K
[5]
k,ℓ(n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ
8|h′

ωh,kω2h,kωh, k
3

ω2h, k
3

e
3πih′

4k e
2πi
k

(

−nh+mh′

2

)

,

K
[6]
k,ℓ(ν;n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ
8|h′

ωh,kω2h,kωh, k
3

ω2h, k
3

e
πi
k (−3ν2+ν)h′

e
2πi
k

(

−nh+mh′

2

)

.

Next we evaluate the multiplier.
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Lemma 3.6. We have
ωh,kω2h,kωh, k

3

ω2h, k
3

= (−1)
k+1
2 e

4πikh
9

− 2πi
24k (k

2−3)h′

.

Proof. Now we use (2.1) for k odd to give
ωh,kω2h,kωh, k

3

ω2h, k
3

= −e2πiC ,

where

C :=
1

72k

((

−8h2h′ + 5h′ − 16h− 18
)

k2 + 18k − 9h′
)

.

Since 3 ∤ h, we have h2 ≡ 1 (mod 3). Therefore

−h2h′

3

k

3
≡ −h′k

9
(mod 1).

Thus

C ≡ 1− k

4
+

2k

9
h+

(

−k

9
+

5k

72
− 1

8k

)

h′ (mod 1).

This gives the claim. �

Similar to before, we obtain the following bounds for the Kloosterman sums.

Lemma 3.7. We have, for ε > 0,

K
[5]
k (n,m), K

[5]
k,ℓ(n,m), K

[6]
k (ν;n,m), K

[6]
k,ℓ(ν;n,m) ≪ε n

1
3 k

2
3
+ε.

3.5. gcd(k, 6) = 1. The Kloosterman sums are

K
[7]
k (n,m) :=

∑

0≤h<k
gcd(h,k)=1

24|h′

ωh,kω2h,kω3h,k

ω6h,k
e

3πih′

4k e
2πi
k

(

−nh+h′m
6

)

,

K
[8]
k (ν;n,m) :=

∑

0≤h<k
gcd(h,k)=1

24|h′

ωh,kω2h,kω3h,k

ω6h,k
e

πi
k (−3ν2−ν)h′

e
2πi
k

(

−nh+h′m
6

)

.

For the range in the sums above, we may again choose any representatives h, h′ (mod k)
satisfying 24 | h′. Note that the condition 3 | h′ enforces that we need to change h′ 7→ h′+3k.
We also use the abbreviation

K
[8]
k (ν;n) = Kk(ν;n, 0). (3.3)

We also need the incomplete versions, N + 1 ≤ ℓ ≤ N + k − 1,

K
[7]
k,ℓ(n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ
24|h′

ωh,kω2h,kω3h,k

ω6h,k
e

3πih′

4k e
2πi
k

(

−nh+h′m
6

)

,

K
[8]
k,ℓ(ν;n,m) :=

∑

h (mod k)∗

N<k+k1≤ℓ
24|h′

ωh,kω2h,kω3h,k

ω6h,k
e

πi
k (−3ν2+ν)h′

e
2πi
k

(

−nh+h′m
6

)

.
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Again, we evaluate the multiplier.

Lemma 3.8. We have

ωh,kω2h,kω3h,k

ω6h,k
= (−1)

k+1
2 e

10πi(k2−1)h′
72k .

Proof. We have, again using (2.1) for k odd,

ωh,kω2h,kω3h,k

ω6h,k
= −e2πiD,

where

D :=
1

72k

((

5h′ − 18
)

k2 + 18k − 5h′
)

=
5
(

k2 − 1
)

72k
h′ +

1− k

4
. �

We now bound the Kloosterman sum.

Lemma 3.9. We have, for ε > 0,

K
[7]
k (n,m), K

[7]
k,ℓ(n,m), K

[8]
k (ν;n,m), K

[8]
k,ℓ(ν;n,m) ≪ε n

1
3 k

2
3
+ε.

Proof. By Lemma 3.8, we have

K
[7]
k (n,m) = (−1)

k+1
2

∑

h (mod k)∗

24|h′

e
2πi
k

(

−nh+
(

5k2

12
+ 11

6
+m

)

h′

6

)

= (−1)
k+1
2

∑

h (mod k)∗

e
2πi
k

(

−n[24]kh+
(

5k2

12
+ 11

6
+m

)

4h′

)

.

Now the bound follows as before, using Lemma 3.1. The remaining cases are treated in the
same way. �

For gcd(k, 6) = 1, we also require the following Kloosterman sums

Kk(n) :=
∑

h (mod k)∗

ωh,kω2h,kω6h,k

ω3
3h,k

e−
2πinh

k . (3.4)

4. The Circle Method

We follow Rademacher’s approach [14]. Note that g2 is (up to a q-power) a modular form.
Thus we can use [15] to obtain an exact formula for its coefficients. This yields the third
term in Theorem 1.1 as well a contribution if gcd(k, 6) = 2 which turns out to cancel with
the contribution from g1(q) (see the discussion in Subsubsection 4.2.1).

From (4.1) of [6], we have, for any4 N ∈ N,

a(n) =
∑

0≤h<k≤N
gcd(h,k)=1

e−
2πinh

k

∫ ϑ′′

h,k

−ϑ′

h,k

g1

(

e
2πi
k

(h+iz)
)

e
2πnz

k dΦ,

where we use the notation from Section 2. We split

a(n) =
∑

6
+
∑

3
+
∑

2
+
∑

1
,

4Note that in [6] we choose N = ⌊√n⌋ and in this paper, we let N → ∞.
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where
∑

d denotes the sum over all terms 0 ≤ h < k ≤ N with gcd(h, k) = 1 and gcd(k, 6) = d.
In the following we repeatedly require the splitting

∫ ϑ′′

h,k

−ϑ′

h,k

=

∫ 1
k(k+N)

− 1
k(k+N)

+

∫ − 1
k(k+N)

− 1
k(k+k1)

+

∫ 1
k(k+k2)

1
k(k+N)

. (4.1)

We also use the decomposition

∫ − 1
k(k+N)

− 1
k(k+k1)

=

k+N−1
∑

ℓ=k+k1

∫ − 1
k(ℓ+1)

− 1
kℓ

.

This gives

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=d

∫ − 1
k(k+N)

− 1
k(k+k1)

=
∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=d

k+N−1
∑

ℓ=k+k1

∫ − 1
k(ℓ+1)

− 1
kℓ

=
∑

1≤k≤N
gcd(k,6)=d

k+N−1
∑

ℓ=N+1

∑

0≤h<k
gcd(h,k)=1
N<k+k1≤ℓ

∫ − 1
k(ℓ+1)

− 1
kℓ

. (4.2)

We have a similar splitting for
∫

1
k(k+k2)

1
k(k+N)

. Note that this splitting was not necessary in [6] as

only rougher bounds for the Kloostermann sums were required for the asymptotic expansion.

4.1. 6 | k. We have,5 by (4.2) of [6],
∑

6
= S61 + S62,

where

S61 :=
∑

0≤h<k≤N
gcd(h,k)=1

6|k

ωh,kωh, k
2
ω
h, k

3

ω
h, k

6

(−1)
k
2
+1e

πi
2 (1−

3k
2 )h

′− 2πinh
k

∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k g1(q1)dΦ,

S62 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1

6|k

ωh,kωh, k
2
ωh, k

3

kω
h, k

6

e−
2πinh

k

∑

ν (mod k)

(−1)νe
πi
k (−3ν2+ν)h′

×
∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k e−
π

12kz ξ(q1)Ik,ν(z)dΦ.

4.1.1. S61. We first investigate S61, In order to use bounds for Kloosterman sums, we employ

the splitting (4.1). We denote the corresponding terms S
[1]
61 , S

[2]
61 , and S

[3]
61 , respectively.

4.1.1.1. S
[1]
61 . We have

S
[1]
61 =

∑

1≤k≤N
6|k

(−1)
k
2
+1
∑

m≥0

a(m)K
[1]
k (n,m)

∫ 1
k(k+N)

− 1
k(k+N)

e
2π
k (nz−

m
z )dΦ.

5Note that in [6] S62 is called S63.
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Using Lemma 3.3 and the facts that Re(z) = k
N2 ,Re(

1
z
) ≥ k

2 , we have S
[1]
61 → 0 as N → ∞.

4.1.1.2. S
[2]
61 and S

[3]
61 . The contributions S

[2]
61 and S

[3]
61 are treated in exactly the same way,

thus we only need to consider S
[2]
61 . Using (4.2), we obtain

S
[2]
61 =

∑

1≤k≤N
6|k

(−1)
k
2
+1
∑

m≥0

a(m)

k+N−1
∑

ℓ=N+1

K
[1]
k,ℓ(n,m)

∫ − 1
k(ℓ+1)

− 1
kℓ

e
2π
k (nz−

m
z )dΦ.

Bounding this as before, we obtain that S
[2]
61 → 0 as N → ∞.

4.1.2. S62. We use again the splitting (4.1). We denote the corresponding terms S
[1]
62 , S

[2]
62 ,

and S
[3]
62 , respectively.

4.1.2.1. S
[1]
62 . We have

S
[1]
62 =

1

2

∑

1≤k≤N
6|k

1

k

∑

m≥0

r(m)
∑

ν (mod k)

(−1)νK
[2]
k (ν;n,m)

∫ 1
k(k+N)

− 1
k(k+N)

e
2π
k (nz−

m
z )e−

π
12kz zIk,ν(z)dΦ.

Using Lemma 3.3 and Lemma 2.1 (1), we have, as N → ∞,

S
[1]
62 ≪

∑

1≤k≤N
6|k

1

k
e

2πn
k

k

N2
∑

m≥0

|r(m)|e−πm
k
∑

ν=1

n
1
3k

2
3
+ε

∫ 1
k(k+N)

− 1
k(k+N)

∣

∣

∣
J− 1

12
,k,ν(z)

∣

∣

∣
dΦ

≪ n
1
3

N
∑

k=1

k−
1
3
+ε

k
∑

ν=1

1
∣

∣

π
2 − π

k

(

ν − 1
6

)∣

∣

1

k(k +N)
≪ n

1
3

N

N
∑

k=1

k−
1
3
+ε log(k)

≪ n
1
3N− 1

3
+ε log(N) → 0.

4.1.2.2. S
[2]
62 and S

[3]
62 . The contributions S

[2]
62 and S

[3]
62 are treated in exactly the same way,

thus we only consider S
[2]
62 . We use (4.2) and obtain

S
[2]
62 =

1

2

∑

1≤k≤N
6|k

1

k

∑

ν (mod k)

(−1)ν
∑

m≥0

r(m)

k+N−1
∑

ℓ=N+1

K
[2]
k,ℓ(ν;n,m)

×
∫ − 1

k(ℓ+1)

− 1
kℓ

e
2π
k (nz−

m
z )J− 1

12
,k,ν(z)dΦ.

As before, this vanishes as N → ∞. Combining yields that
∑

6 → 0 as N → ∞.

4.2. gcd(k, 6) = 2. By Subsection 4.3 of [6], we have

∑

2
= S21 + S22,
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where

S21 :=
1

4

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=2

3|h′

ωh,kωh, k
2
ω3h,k

ω3h, k
2

(−1)
k
2
+1e

πi
2 (1−

3k
2 )h

′− 2πinh
k

×
∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k
+ 2π

9kz

P
(

q21
)

P

(

q
1
3
1

)

P

(

q
2
3
1

) f(q1)dΦ,

S22 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=2

3|h′

1

k

ωh,kωh, k
2
ω3h,k

ω3h, k
2

e−
2πinh

k

∑

ν (mod k)

(−1)νe
πih′

k (−3ν2+ν)

×
∫ ϑ′′

h,k

−ϑ′

h,k

ze
2πnz

k e
5π

36kz

P
(

q21
)

P

(

q
1
3
1

)

P

(

q
2
3
1

) Ik,ν(z)dΦ.

4.2.1. S21. In this case we have a principal part. The non-principal part is bounded exactly
as for S61 and vanishes as N → ∞. We are left with

S21 :=
1

4

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=2

3|h′

(−1)
k
2
+1

ωh,kωh, k
2
ω3h,k

ω3h, k
2

e
πi
2 (1−

3k
2 )h

′− 2πinh
k

∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k
+ 2π

9kz dΦ.

As shown in [6], this exactly equals the negative of the modular piece and cancels the contri-
bution of g2 in that cusp. As alluded to above these two terms cancel.

4.2.2. S22. We again have a principal part. The non-principal part is bounded exactly as for
S62 and vanishes as N → ∞. We are left with

S22 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=2

3|h′

1

k

ωh,kωh, k
2
ω3h,k

ω3h, k
2

e−
2πinh

k

∑

ν (mod k)

(−1)νe
πi
k (−3ν2+ν)h′

∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k J 5
36

,k,ν(z)dΦ.

We now use Lemma 2.1 (2). The contribution from J 5
36

,k,ν is bounded as for S62 and

vanishes as N → ∞. Now for J ∗
5
36

,k,ν
, we again use (4.1). We denote the corresponding

contribution by S [1]
22 , S

[2]
22 , and S [3]

22 , respectively.

4.2.2.1. S
[1]
22 . We have

S [1]
22 =

√
5π

6
√
3

∑

1≤k≤N
gcd(k,6)=2

1

k

∑

ν (mod k)

(−1)νK
[4]
k (ν;n)

∫ 1

−1

Lk

(

n, 5
72

(

1− x2
))

cosh
(

πi
k

(

ν − 1
6

)

− π
√
5x

6
√
3k

)dx
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+

√
5i

12
√
3

∑

1≤k≤N
gcd(k,6)=2

1

k

∑

ν (mod k)

(−1)νK
[4]
k (ν;n)

∫ 1

−1

1

cosh
(

πi
k

(

ν − 1
6

)

− π
√
5x

6
√
3k

)

×
(

E [1]
k

(

n,
5

72

(

1− x2
)

)

+ E [2]
k

(

n,
5

72

(

1− x2
)

)

+ E [3]
k

(

n,
5

72

(

1− x2
)

))

dx,

where (w = z
k
), and

Lk(n, y) :=
1

2πi

∫

R

e
2πnw+ 2πy

k2w dw, E [1]
k (n, y) :=

∫ − 1
N2 +

i
k(k+N)

1
N2 +

i
k(k+N)

e
2πnw+ 2πy

k2w dw,

E [2]
k (n, y) :=

∫ − 1
N2 − i

k(k+N)

− 1
N2 +

i
k(k+N)

e
2πnw+ 2πy

k2w dw, E [3]
k (n, y) :=

∫ 1
N2 − i

k(k+N)

− 1
N2 − i

k(k+N)

e
2πnw+ 2πy

k2w dw,

with R the rectangle with edges ± 1
N2 ± i

k(k+N) surrounding 0 counterclockwise. We first

bound E [1]
k and E [3]

k . On these ranges of integration, we have that (see [14])

w = u± i

k(k +N)
, − 1

N2
≤ u ≤ 1

N2
, Re(w) = u ≤ 1

N2
, Re

(

1

w

)

≤ 4k2.

Thus
∣

∣

∣

∣

E [1]
k

(

n,
5

72

(

1− x2
)

)∣

∣

∣

∣

,

∣

∣

∣

∣

E [3]
k

(

n,
5

72

(

1− x2
)

)∣

∣

∣

∣

≤ 2

N2
e

5π
9 (1−x2)+ 2πn

N2 .

For E [2]
k we have, again from [14],

w = − 1

N2
+ iv, − 1

k(k +N)
≤ v ≤ 1

k(k +N)
, Re(w), Re

(

1

w

)

< 0.

Thus

E [2]
k

(

n,
5

144

(

1− x2
)

)

<
2

kN
.

Thus E [1]
k , E [2]

k , and E [3]
k contribute, using Lemma 3.5,

≪ e
2πn

N2

N
∑

k=1

1

k

k
∑

ν=1

k
2
3
+εn

1
3

∫ 1

−1

1
∣

∣

∣
cosh

(

πi
k

(

ν − 1
6

)

− π
√
5x

6
√
3k

)
∣

∣

∣

1

kN
e

5π
9 (1−x2)dx.

We have for α ≥ 0 and 0 < β < π

| cosh(α+ iβ)| ≥
∣

∣

∣
sin
(π

2
− β

)
∣

∣

∣
≫
∣

∣

∣

π

2
− β

∣

∣

∣
. (4.3)

Note that ν − 1
6 ≥ 0. Thus the above is

≪ n
1
3

N

N
∑

k=1

k−
4
3
+ε

k
∑

ν=1

1
∣

∣

π
2 − π

k

(

ν − 1
6

)
∣

∣

∫ 1

−1
e

5π
9 (1−x2)dx ≪ n

1
3

N

N
∑

k=1

k−
4
3
+εk log(k)

≪ n
1
3

N
N

2
3
+ε log(N) = n

1
3N− 1

3
+ε log(N) → 0

as N → ∞. Thus the contributions of E [1]
k , E [2]

k , and E [3]
k vanish as N → ∞.
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Next, using the representation

Iℓ(x) :=
∑

m≥0

1

m!Γ(m+ ℓ+ 1)

(x

2

)2m+ℓ

,

we evaluate

Lk(n, y) =
1

k

√

y

n
I1

(

4π
√
ny

k

)

,

plugging in the series for the exponential function. Thus we obtain overall, letting N → ∞,

S [1]
22 =

5π

36
√
6n

∑

k≥1
gcd(k,6)=2

1

k2

∑

ν (mod k)

(−1)νK
[4]
k (ν;n)

∫ 1

−1

√
1− x2I1

(

π
√

10n(1−x2)

3k

)

cosh
(

πi
k

(

ν − 1
6

)

− π
√
5x

6
√
3k

) dx.

This equals the first term in Theorem 1.1.

4.2.2.2. S
[2]
22 and S

[3]
22 . We next turn to S

[2]
22 ; S

[3]
22 is bounded in exactly the same way. We have

S
[2]
22 =

1

2

∑

1≤k≤N
gcd(k,6)=2

1

k

∑

ν (mod k)

(−1)ν
k+N−1
∑

ℓ=N+1

K
[4]
k,ℓ(ν;n, 0)

√

5

36 · 3

×
∫ 1

−1

1

cosh

(

πi
k

(

ν − 1
6

)

− π
√

5
6
x

√
3k

)

∫ − 1
k(ℓ+1)

− 1
kℓ

e
2πnw+ 5π

36k2w
(1−x2)dΦdx.

We bound, following [14],

Re

(

2πnw +
5π

36k2w

(

1− x2
)

)

≤ 2πn

N2
+

5π

9

(

1− x2
)

.

Thus, using Lemma 3.5 and (4.3), we obtain, for N → ∞,

S
[2]
22 ≪ e

2πn

N2

N
∑

k=1

1

k

k
∑

ν=1

k+N−1
∑

ℓ=N+1

k
2
3
+εn

1
3

∫ 1

−1

e
5π
9 (1−x2)

∣

∣

∣
cosh

(

πi
k

(

ν − 1
6

)

− π
√
5x

6
√
3k

)∣

∣

∣

dx

∫ − 1
k(ℓ+1)

− 1
kℓ

dΦ

≪ n
1
3

N
∑

k=1

k−
1
3
+εk log(k)

1

k(N + k)
≪ n

1
3

N

N
∑

k=1

k−
1
3
+ε log(k) ≪ n

1
3N− 1

3
+ε log(N) → 0.

4.3. gcd(k, 6) = 3. From Subsection 4.4 of [6], we have
∑

3
= S31 + S32,

where

S31 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=3

8|h′

ωh,kω2h,kωh, k
3

ω2h, k
3

(−1)
1
2
(k−1)e

3πih′

4k
− 2πinh

k
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×
∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k
− π

2kz

P

(

q
1
2
1

)

P
(

q31
)

ω

(

q
1
2
1

)

P

(

q
3
2
1

) dΦ,

S32 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=3

8|h′

ωh,kω2h,kωh, k
3

kω2h, k
3

e−
2πinh

k

∑

ν (mod k)

(−1)νe
πi
k (−3ν2+ν)h′

×
∫ ϑ′′

h,k

−ϑ′

h,k

ze
2πnz

k
+ π

6kz

P

(

q
1
2
1

)

P
(

q31
)

P

(

q
3
2
1

) Ik,ν(z)dΦ,

with the third order mock theta function

ω(q) :=
∞
∑

n=0

q2n(n+1)

(q; q2)2n+1

.

4.3.1. S31. In this case, we have no principal part. As for S61 this contribution vanishes as
N → ∞.

4.3.2. S32. Here, we have a principal part. The non-principal part is bounded exactly as for
S62 and vanishes as N → ∞. We are left with

S32 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=3

8|h′

1

k

ωh,kω2h,kωh, k
3

ω2h, k
3

e−
2πinh

k

∑

ν (mod k)

(−1)νe
πi
k (−3ν2+ν)h′

×
∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k J 1
6
,k,ν(z)dΦ.

Again we may change J 1
6
,k,ν(z) into J ∗

1
6
,k,ν

(z), using Lemma 2.1. The error introduced van-

ishes for N → ∞ as before.
Now for J ∗

1
6
,k,ν

, we again use (4.1). We denote the corresponding contributions by S [1]
32 ,

S [2]
32 , and S [3]

32 , respectively. First we have

S [1]
32 =

π

3
√
2

∑

1≤k≤N
gcd(k,6)=3

1

k

∑

ν (mod k)

(−1)νK
[6]
k (ν;n)

∫ 1

−1

Lk

(

n, 1
12

(

1− x2
))

cosh
(

πi
k

(

ν − 1
6

)

− πx

3
√
2k

)dx

+
i

6
√
2

∑

1≤k≤N
gcd(k,6)=3

1

k

∑

ν (mod k)

(−1)νK
[6]
k (ν;n)

∫ 1

−1

1

cosh
(

πi
k

(

ν − 1
6

)

− πx

3
√
2k

)

×
(

E [1]
k

(

n,
1

12

(

1− x2
)

)

+ E [2]
k

(

n,
1

12

(

1− x2
)

)

+ E [3]
k

(

n,
1

12

(

1− x2
)

))

dx.
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As before, we show that the contributions from E [1]
k , E [2]

k , and E [3]
k vanish. Overall, we

obtain, letting N → ∞,

S [1]
32 =

π

6
√
6n

∑

k≥1
gcd(k,6)=3

1

k2

∑

ν (mod k)

(−1)νK
[6]
k (ν;n)

∫ 1

−1

√
1− x2I1

(

2π
√

n(1−x2)√
3k

)

cosh
(

πi
k

(

ν − 1
6

)

− πx

3
√
2k

)dx.

This matches the second term in Theorem 1.1. Also as before, we show that S
[2]
32 and S

[3]
32

vanish, as N → ∞.

4.4. gcd(k, 6) = 1. By Subsection 4.5 of [6],
∑

1
= S11 + S12,

where

S11 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=1

24|h′

ωh,kω2h,kω3h,k

ω6h,k
(−1)

1
2
(k−1)e

3πih′

4k
− 2πinh

k

×
∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k
− 11π

18kz

P

(

q
1
2
1

)

P

(

q
1
3
1

)

ω

(

q
1
2
1

)

P

(

q
1
6
1

) dΦ,

S12 :=
1

2

∑

0≤h<k≤N
gcd(h,k)=1
gcd(k,6)=1

24|h′

ωh,kω2h,kω3h,k

kω6h,k
e−

2πinh
k

∑

ν (mod k)

(−1)νe
πi
k (−3ν2+ν)h′

×
∫ ϑ′′

h,k

−ϑ′

h,k

ze
2πnz

k
+ π

18kz

P

(

q
1
2
1

)

P

(

q
1
3
1

)

P

(

q
1
6
1

) Ik,ν(z)dΦ.

4.4.1. S11. Again, we have no principal part. As for S61 this contribution vanishes as N → ∞.

4.4.2. S12. In this case, we have a principal part. The non-principal part is bounded exactly
as for S62 and vanishes, as N → ∞. We are left with

S12 :=
1

2

∑

0≤h<k≤N
gcd(k,6)=1

24|h′

1

k

ωh,kω2h,kω3h,k

ω6h,k
e−

2πinh
k

∑

ν (mod k)

(−1)νe
πi
k (−3ν2+ν)h′

×
∫ ϑ′′

h,k

−ϑ′

h,k

e
2πnz

k J 1
18

,k,ν(z)dΦ.
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Again we may change J 1
18

,k,ν into J ∗
1
18

,k,ν
(z), using Lemma 2.1. The error introduced

vanishes for N → ∞. For J ∗
1
18

,k,ν
, we again employ (4.1). We denote the corresponding

contributions by S [1]
12 , S

[2]
12 , and S [3]

12 , respectively. First, we have

S [1]
12 =

π

3
√
6

∑

1≤k≤N
gcd(k,6)=1

1

k

∑

ν (mod k)

(−1)νK
[8]
k (ν;n)

∫ 1

−1

Lk

(

n, 1
36

(

1− x2
))

cosh
(

πi
k

(

ν − 1
6

)

− πx

3
√
6k

)dx

+
i

6
√
6

∑

1≤k≤N
gcd(k,6)=1

1

k

∑

ν (mod k)

(−1)νK
[8]
k (ν;n)

∫ 1

−1

1

cosh
(

πi
k

(

ν − 1
6

)

− πx

3
√
6k

)

×
(

E [1]
k

(

n,
1

36

(

1− x2
)

)

+ E [2]
k

(

n,
1

36

(

1− x2
)

)

+ E [3]
k

(

n,
1

36

(

1− x2
)

))

dx.

As before, we show that the contributions from E [1]
k , E [2]

k , and E [3]
k vanish. Thus overall

S [1]
12 =

π

18
√
6n

∑

k≥1
gcd(k,6)=1

1

k2

∑

ν (mod k)

(−1)νK
[8]
k (ν;n)

∫ 1

−1

√
1− x2I1

(

2π
√

n(1−x2)

3k

)

cosh
(

πi
k

(

ν − 1
6

)

− πx

3
√
6k

)dx.

This matches the third term.
Again the contribution from S

[2]
12 and S

[3]
12 vanish. This completes the proof of Theorem 1.1.
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