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The false theta functions of Rodgers and their modularity

Kathrin Bringmann

Abstract

In this survey article, we explain how false theta functions can be embedded into a modular
framework and show some of the applications of this modularity.

1. Introduction and statement of results

As false theta functions are “obstructed” modular forms, we first explain what modular forms
are. The following quote is often attributed to Eichler, and shows the important role that
modular forms play:

“There are five fundamental operations of arithmetic: addition, subtraction,
multiplication, division and modular forms.”

Modular forms generalize the classical trigonometric functions because they are periodic;
however, they have more symmetries. They play a central role in many areas including algebraic
topology, arithmetic geometry, combinatorics, mathematical physics, mirror symmetry, mon-
strous moonshine, number theory, representation theory, and occurred, for example, in progress
toward the Birch and Swinnerton–Dyer conjecture, and in the proof of Fermat’s last theorem.

To formally define modular forms, let H := {τ = τ1 + iτ2 ∈ C : τ2 > 0} be the complex upper
half-plane. A meromorphic function f : H → C is a modular form of weight k ∈ 2Z if, for all
(a b
c d) ∈ SL2(Z)

f
∣∣
k

(
a b

c d

)
(τ) − f(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
− f(τ) = 0. (1.1)

Moreover, f is required to be “meromorphic at the cusps.” The left-hand side of (1.1) is called
the obstruction to modularity of f . Note that there are generalizations of (1.1) to include half-
integral weights (that is, k ∈ Z + 1

2 ) and multipliers. Modular forms have Fourier expansions
of the shape f(τ) =

∑
n�−∞ cf (n)qn (q := e2πiτ throughout). The modularity of f has

applications to its Fourier coefficients, cf (n), for which it can be viewed as a generating function.
As an example, consider the generating function of divisor sums (k � 4 an even integer)

∞∑
n=1

σk−1(n)qn, where σk(n) :=
∑
d|n

dk,
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which is basically (up to a constant term) a modular form of weight k. This can be used to
show identities including

σ7(n) = σ3(n) + 120
∑

1�m�n−1

σ3(m)σ3(n−m).

To give another example,

Θ(τ) :=
∑
n∈Z

qn
2

is a modular form of weight 1
2 . This function and its modularity can be used to prove identities

involving sums of squares and has many applications in the theory of quadratic forms.
There are also important cases in which the obstruction to modularity is not zero but explicit

and “nice.” One such example is given by the weight two Eisenstein series

E2(τ) := 1 − 24
∞∑

n=1

σ1(n)qn.

Its obstruction to modularity is

E2

(
−1
τ

)
− τ2E2(τ) =

6τ
πi

.

Even more important examples are given by Ramanujan’s mock theta functions, a list of q-
series that are reminiscent of modular forms and that were introduced by Ramanujan in his
last letter to Hardy. The letter contained a list of 17 examples, including the q-hypergeometric
series

f(q) :=
∞∑

n=0

qn
2

(−q; q)2n
,

where (a; q)n :=
∏n−1

j=0 (1 − aqj) for n ∈ N0 ∪ {∞}. Sander Zwegers in his PhD thesis [46]
viewed the mock theta functions as pieces of real-analytic modular forms. Ken Ono and
the author then extended these results and embedded these functions into the framework
of harmonic Maass forms [14], which are real-analytic generalizations of modular forms. To be
more precise, one “completes” the functions by adding non-holomorphic integrals of the shape∫ i∞

−τ

θ(w)√−i(w + τ)
dw

to the mock theta functions, where θ is a weight 3
2 (modular) theta function.

False theta functions are similar to theta functions, but with wrong sign-factors that prevent
them from being modular forms. For example,∑

n∈Z

n≡1 (mod 3)

sgn(n)qn
2

is a false theta function; deleting the sign-factor gives a modular form. Here we use the usual
convention that sgn(x) := |x|

x for x �= 0 and sgn(0) := 0. We see in Section 3 how one can
complete false theta functions following the guide of the mock theta functions.

False theta functions also possess some modular transformation properties on the rationals.
Note that (1.1) cannot hold for all τ ∈ Q as SL2(Z) acts transitively on Q and thus f would
be zero if (1.1) would hold for all τ ∈ Q. That is why it is natural to require the obstruction
to modularity to have better properties than the original function. A quantum modular form
[43] is a function f : Q → C whose obstruction to modularity is “nice.” In our setting “nice”
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means that it extends to a real-analytic function on the reals except for a finite set of points.
An interesting and important source of examples is given via quantum invariants of knots and
3-manifolds [33]. Further examples are given by (many) false theta functions (taking vertical
limits in the upper half-plane to rational numbers).

The paper is organized as follows. In Section 2 we recall some basic facts on modular
forms and Jacobi forms. In Section 3 we complete false theta functions and prove modularity
properties for these completions. As a first application of our completion, we explain in Section 4
how to determine the asymptotic behavior of coefficients of functions involving false theta
functions. As a second application, quantum modularity of certain false theta functions is
discussed in Section 5. In Section 6 we then explain how coefficients of meromorphic Jacobi
forms relate to false theta functions. Finally, in Section 7 we treat higher dimensional false
theta functions.

2. Preliminaries

2.1. Modular forms and theta functions

We start by recalling classical modular forms. In the simplest case a holomorphic function
f : H → C is called a modular form of weight k ∈ 1

2Z if for γ = (a b
c d) ∈ SL2(Z) (if k ∈ Z + 1

2 ,
then we require that γ ∈ Γ0(4), where Γ0(N) := {(a b

c d) ∈ SL2(Z) : c ≡ 0 (modN)})

f

(
aτ + b

cτ + d

)
=

( c

d

)2k

ε−2k
d (cτ + d)kf(τ),

where ( ·· ) is the extended Legendre symbol and εd := 1 if d ≡ 1 (mod 4) and εd := i if d ≡
3 (mod 4). Moreover f is required to be “holomorphic at the cusps.” We now explain the
meaning of this in the integral-weight case. Since f is holomorphic and (1 1

0 1) ∈ SL2(Z), f has a
Fourier expansion of the shape

f(τ) =
∑
n∈Z

cf (n)qn.

The condition that f is “holomorphic at i∞” means that cf (n) = 0 for n < 0. We call f a cusp
form if it is a holomorphic modular form that vanishes at i∞ (that is, cf (0) = 0). If f is allowed
to have a finite number of Fourier coefficients that are supported on negative q-exponents, then
f is called weakly holomorphic. We denote the space of weakly holomorphic modular forms of
weight k by M !

k. For a weakly holomorphic modular form f , we call

Pf (q) :=
∑
n<0

cf (n)qn

the principal part of f (at i∞).
A specific example of a modular form of weight 1

2 is given by the Dedekind’s eta-function

η(τ) := q
1
24

∞∏
n=1

(1 − qn).

To be more precise we have

η(τ + 1) = e
πi
12 η(τ), η

(
−1
τ

)
=

√−iτη(τ).

Throughout we define the square root using the principal branch of the logarithm.
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We also require certain theta functions and their transformation properties. These were
studied, for example, by Shimura [39]. For ν ∈ {0, 1}, h ∈ Z, N,A ∈ N, with A|N , N |hA, define

Θν(A, h,N ; τ) :=
∑
m∈Z

m≡h (modN)

mνq
Am2

2N2 .

We have the transformations

Θν

(
A, h,N ;−1

τ

)
= (−i)νA− 1

2 (−iτ)ν+ 1
2

∑
k (modN)

Ak≡0 (modN)

e

(
Ahk

N2

)
Θν(A, k,N ; τ), (2.1)

Θν(A, h,N ; τ + 2) = e

(
Ah2

N2

)
Θν(A, h,N ; τ),

Θν(A, h,N ; τ) =
∑

g (mod cN)
g≡h (modN)

Θν(cA, g, cN ; cτ) (c ∈ N),

where e(x) := e2πix. From this one can conclude that for M = (a b
c d) ∈ Γ0(2N) with 2|b, we have

Θν(A, h,N ;Mτ) = e

(
abAh2

2N2

)(
2Ac
d

)
ε−1
d (cτ + d)ν+ 1

2 Θν(A, ah,N ; τ).

Also note that if h1 ≡ h2 (modN), then we have

Θν(A, h1, N ; τ) = Θν(A, h2, N ; τ), Θν(A,−h,N ; τ) = (−1)νΘν(A, h,N ; τ).

2.2. Jacobi forms

Jacobi forms were first systematically studied by Eichler and Zagier [23]. They play an
important role in number theory and other areas, including the theory of Siegel modular forms
(note that there is an important lift, the so-called Saito–Kurokawa lift which maps modular
forms to Siegel modular forms; this lift can be constructed using Jacobi forms, see [1, 36, 41]),
the study of central L-values and derivatives of twisted elliptic curves [25], and in the theory
of umbral moonshine [18], just to name a few. Roughly speaking, a Jacobi form is a function
φ : C × H → C, which satisfies two transformations similar to the transformations of elliptic
functions and of modular forms. To give a more precise definition, let k,m ∈ N. A holomorphic
Jacobi form of weight k and index m on SL2(Z) is a holomorphic function φ : C × H → C

satisfying.

(1) For all (a b
c d) ∈ SL2(Z), we have that

φ

(
z

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)ke

(
cmz2

cτ + d

)
φ(z; τ). (2.2)

(2) For all λ, μ ∈ Z, we have that

φ(z + λτ + μ; τ) = e
(−m

(
λ2τ + 2λz

))
φ(z; τ). (2.3)

(3) The function φ has a Fourier expansion of the form (ζ := e2πiz)

φ(z; τ) =
∑
n,r∈Z

4mn�r2

cφ(n, r)qnζr.
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Note that one can generalize this definition to include half-integral weight and/or half-integral
index and/or multipliers. A particular example of a Jacobi form (of weight and index 1

2 ) is
given by the Jacobi theta function

ϑ(z; τ) := i
∑
n∈Z

(−1)nq
1
2 (n+ 1

2 )
2

ζn+ 1
2 . (2.4)

To be more precise it satisfies

ϑ(z + 1; τ) = −ϑ(z; τ), ϑ(z + τ ; τ) = −e−πiτ−2πizϑ(z; τ),

ϑ(z; τ + 1) = e
πi
4 ϑ(z; τ), ϑ

(
z

τ
;−1

τ

)
= −i

√−iτe
πiz2

τ ϑ(z; τ).

Jacobi forms are related to modular forms in various ways, one of which we recall here. It
is a classical result that Fourier coefficients (in z) of holomorphic Jacobi forms are modular
forms [23]. This follows from the so-called theta decomposition. To state it, define for a ∈ Z

and m ∈ N

ϑm,a(z; τ) :=
∑
r∈Z

r≡a (mod 2m)

q
r2
4m ζr.

These theta functions are examples of weight 1
2 and index m Jacobi forms. In particular, we

have

ϑm,a(z; τ + 1) = e

(
a2

4m

)
ϑm,a(z; τ), (2.5)

ϑm,a

(
z

τ
;−1

τ

)
=

√
τ

2mi
e

(
mz2

τ

) ∑
b (mod 2m)

e

(
− ab

2m

)
ϑm,b(z; τ). (2.6)

Now recall that the Fourier coefficients cφ(n, r) of a Jacobi form φ only depend on 4mn− r2

and r (mod 2m) (which follows from (2.3)). Thus, one can define for N ∈ N0 and for any r ∈ Z

satisfying r ≡ a (mod 2m),

ca(N) := cφ

(
N + r2

4m
, r

)
.

Here, we set ca(N) := 0 if N �≡ −a2 (mod 4m). We then define for a ∈ Z/2mZ the generating
functions

ha(τ) :=
∞∑

N=0

ca(N)q
N
4m .

Then φ has the theta decomposition,

φ(z; τ) =
∑

a (mod 2m)

ha(τ)ϑm,a(z; τ). (2.7)

Using (2.2) as well as (2.5) and (2.6), one may show that the functions ha transform like
vector-valued modular forms. To be more precise, we have

ha(τ + 1) = e

(−a2

4m

)
ha(τ), ha

(
−1
τ

)
=

τk√−2imτ

∑
b (mod 2m)

e

(
ab

2m

)
hb(τ). (2.8)

The decomposition (2.7) gives an isomorphism between Jacobi forms of weight k and index m
and vector-valued modular forms satisfying (2.8).
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3. False theta functions and their completions

In this section we describe the modular completions found in [13] for the false theta functions.
These parallel the situation with mock theta functions in contrast to what one may predict
from the above quote by Ramanujan. For simplicity, I describe our results in a special case.
That is, we consider the following false Jacobi theta function:

ψ(z; τ) := i
∑
n∈Z

sgn
(
n +

1
2

)
(−1)nq

1
2 (n+ 1

2 )
2

ζn+ 1
2 . (3.1)

Although the function ψ is invariant under T := (1 1
0 1), it does not transform invariantly under

S := (0 −1
1 0 ). Note that removing the sign-factor yields the Jacobi theta function (2.4), thus a

Jacobi form.
To repair the broken modularity in the case of ψ(z; τ), we define, for τ, w ∈ H and z ∈ C

with

ψ̂(z; τ, w) := i
∑
n∈Z

erf
(
−i

√
πi(w − τ)

(
n +

1
2

+
z2

τ2

))
(−1)nq

1
2 (n+ 1

2 )
2

ζn+ 1
2 ,

where for w ∈ C, let w2 := Im(w), and where erf(z) := 2√
π

z∫
0

e−w2
dw denotes the error function.

Note that

lim
t→∞ ψ̂(z; τ, τ + it + ε) = ψ(z; τ)

if − 1
2 < z2

τ2
< 1

2 and ε > 0 arbitrary. In that sense ψ̂ may be viewed as completion of ψ. The

following theorem from [13] gives the modular properties of ψ̂.

Theorem 3.1. The function ψ̂ transforms like a Jacobi form. To be more precise, we have
for M = (a b

c d) ∈ SL2(Z) and m, r ∈ Z

ψ̂

(
z

cτ + d
;
aτ + b

cτ + d
,
aw + b

cw + d

)
= χτ,w(M) νη(M)3(cτ + d)

1
2 e

πicz2
cτ+d ψ̂(z; τ, w),

ψ̂(z + mτ + r; τ, w) = (−1)m+rq−
m2
2 ζ−mψ̂(z; τ, w).

Sketch of proof. Define

ψ̃(z; τ, w) :=
√
i(w − τ)ψ̂(z; τ, w).

One can show that the series defining ψ̃ converges to a holomorphic function of w. We next
write

ψ̃(z; τ, w) = e
−πiz2

1τ

τ2
2

∑
n∈Z+ 1

2

Fτ,w

(
n +

z2

τ2

)
e
2πin

(
− Im(zτ)

τ2
+ 1

2

)
, (3.2)

where

Fτ,w(x) :=
√
i(w − τ)erf

(
−i

√
πi(w − τ)x

)
eπixτ .

Changing variables (z, τ, w) 	→ ( z
τ ,− 1

τ ,− 1
w ) in (3.2), we obtain

ψ̃

(
z

τ
;−1

τ
,
w

τ

)
= e

πi(Im(zτ))2

ττ2
2

+πi
(

z2
τ2

+ 1
2

) ∑
r∈Z

F− 1
τ ,− 1

w

(
r +

1
2

+
Im(zτ)

τ2

)
e
2πir

(
z2
τ2

+ 1
2

)
. (3.3)
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Let F be the Fourier transform of f : R → C, defined by

F(f)(x) :=
∫
R

f(y)e−2πixydy.

Then it is easy to verify that

F(Fτ,w)(x) = (−i)−
1
2
√
wF− 1

τ ,− 1
w

(x).

Using this and elementary properties of Fourier transforms, we obtain that (3.3) equals

(−i)−
1
2√

w
e

πi(Im(zτ))2

ττ2
2

+πi
(

z2
τ2

+ 1
2

) ∑
r∈Z

Fτ,w

(
−r +

z2

τ2
+

1
2

)
e
2πi

(
r− z2

τ2
− 1

2

)(
1
2+

Im(zτ)
τ2

)
.

Changing r 	→ −r and simplifying gives the claim. �

4. Asymptotics of mixed false theta functions

We call linear combinations of false theta functions multiplied by modular forms mixed false
theta functions. Before describing how to determine the asymptotic behavior of such functions,
let me recall the situation for weakly holomorphic modular forms using an explicit example. A
partition of n ∈ N0 is a non-increasing sequence of positive integers, which sum to n. We let
p(n) denote the number of partitions of n and set p(0) := 1. For example, the partitions of 5
are given by

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

so that p(5) = 7. Euler proved that the partition generating function has a nice representation
as infinite product. Namely, we have that

p(q) :=
∞∑

n=0

p(n)qn =
∞∏

n=1

1
1 − qn

=
q

1
24

η(τ)
, (4.1)

so (up to a q-power) a weakly holomorphic modular form of weight − 1
2 . This product

representation has many important consequences. For example, as Euler deduced from it a
recurrence formula for p(n) which enables one to compute much higher values of p(n) than by
more naive methods. To be more precise, using the Pentagonal Number Theorem

(q; q)∞ =
∑
n∈Z

(−1)nq
n(3n+1)

2

we have that

p(n) =
n∑

k=1

(−1)k+1

(
p

(
n− k(3k − 1)

2

)
+ p

(
n− k(3k + 1)

2

))
.

Even better, Rademacher [37] used the modularity of (4.1) to give an exact, infinite summation
formula for p(n), as in the following theorem. Before stating the result, define the Kloosterman-
type sums

Ak(n) :=
∑

0�h<k
gcd(h,k)=1

ωh,ke
− 2πinh

k ,

where

ωh,k := exp(πis(h, k)).



970 KATHRIN BRINGMANN

Here

s(h, k) :=
∑

μ (mod k)

((μ
k

))((
hμ

k

))
is the usual Dedekind sum, where for x ∈ R we set

((x)) :=

{
x− 
x� − 1

2 if x ∈ R \ Z,

0 if x ∈ Z.

Moreover, we define the modified Bessel function (of the first kind)

Iκ(x) :=
∞∑

m=0

1
m!Γ(m + κ + 1)

(x
2

)2m+κ

,

where Γ denotes the Gamma-function.

Theorem 4.1 (Rademacher). If n ∈ N, then

p(n) =
2π

(24n− 1)
3
4

∞∑
k=1

Ak(n)
k

I 3
2

(
π
√

24n− 1
6k

)
.

In particular, as n → ∞ we have that

p(n) ∼ 1
4
√

3n
eπ
√

2n
3 .

Sketch of proof. The proof uses the so-called Circle Method [28]. To summarize the idea,
suppose that one is interested in the asymptotic behavior of some sequence {a(n)} as n → ∞.
One builds a generating function out of this sequence

A(q) :=
∞∑

n=0

a(n)qn,

which is supposed to be scaled so that A has radius of convergence equal to one. Cauchy’s
theorem then gives, for n ∈ N, the formula

a(n) =
1

2πi

∫
C

A(q)
qn+1

dq, (4.2)

where C is an arbitrary path inside the unit disk that loops around zero in the counterclockwise
direction exactly once.

If one takes {a(n)} = {p(n)} (and thus A(q) = P (q)), one cannot take the integral in (4.2)
over the whole unit circle due to the singularities at roots of unity of the product formula (4.1).
For many interesting sequences {a(n)}, including the case of the sequence {p(n)} of partition
numbers, the singularities of the generating function A on the unit circle are well understood
and occur at roots of unity q. One can often find nice approximations of A near these points.
For example, in the case of {p(n)}, one can use the modularity of P (q) to approximate it
toward roots of unity by its principal parts. The integrals of these principal parts may then
be evaluated.

Using the asymptotic behavior of the I-Bessel function

Iα(x) ∼ ex√
2πx

(as x → ∞) (4.3)

gives the asymptotics. �
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There are general formulas for Fourier coefficients of weakly holomorphic modular forms.
Rademacher and Zuckerman [38, 44, 45] obtained the following result. For this, define the
Klossterman sums

Kk(m,n; c) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
d (mod c)∗

e

(
md + nd

c

)
if k ∈ Z,

∑
d (mod c)∗

( c

d

)
ε2k
d e

(
md + nd

c

)
if k ∈ 1

2Z \ Z.

Here, for d ∈ Z, d is such that dd ≡ 1 (mod c) and the sum only runs over those d which are
coprime to c.

Theorem 4.2. If f ∈ M !
k with k ∈ −N0, then, for n ∈ N, we have

cf (n) = 2πik
∑
m<0

cf (m)
( |m|

n

) 1−k
2 ∞∑

c=1

Kk(m,n; c)
c

I1−k

(
4π

√|mn|
c

)
.

In particular, as n → ∞, we have

cf (n) ∼ cf (n0)
|n0| 14− k

2

2
√

2π
n

k
2− 3

4 e4π
√

|n0|n,

where n0 is the smallest negative integer with cf (n0) �= 0.

To describe an example involving false theta functions, we recall that a finite sequence of
positive integers {aj}sj=1 is called a unimodal sequence of size n if there exists k ∈ N such that
a1 � a2 � · · · � ak � ak+1 � · · · � as and a1 + · · · + as = n. Let u(n) denote the number of
unimodal sequences of size n. Then (see, for example, [3])

U(q) :=
∞∑

n=0

u(n)qn =
1

(q; q) 2∞

∞∑
n=1

(−1)n+1q
n(n+1)

2 .

Note that we may write

U(q) =
i

2
q−

1
24

ψ(τ)
η(τ)2

+
q

1
12

η(τ)2
,

where ψ(τ) := ψ(0; τ) (with ψ(z; τ) defined in (3.1)). The asymptotic main term of u(n) was
determined by Auluck [3] as

u(n) =
1

8 · 3 3
4n

5
4
e2π

√
n
3

(
1 + O

(
n− 1

2

))
. (4.4)

This result was then generalized by Wright [40], who gave the asymptotic expansion to all
orders of n for the leading exponential term. Using the modularity of U(q), Nazaroglu and
the author proved an exact formula for u(n) [13]. Our expression is analogous to the exact
formula in Theorem 4.1. To state the exact formula for u(n), we define for n, r ∈ Z and k ∈ N

the Kloosterman sums

Kk(n) := i
∑

0�h<k
gcd(h,k)=1

νη(Mh,k)2ζ
−(12n−1)h−h′

12k ,

Kk(n, r) := e
3πi
4 (−1)r

∑
0�h<k

gcd(h,k)=1

νη(Mh,k)−1ζ
−(24n+1)h+(12r2+12r+1)h′

24k ,
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where h′ is a solution of hh′ ≡ −1 (mod k), Mh,k := (h′ −hh′+1
k

k −h
), ζ	 := e

2πi
� for � ∈ N and νη

is the multiplier system for η. In particular, for M = (a b
c d) with c > 0 it is given by (see [2,

Theorem 3.4])

νη(M) := exp
(
πi

(
a + d

12c
− 1

4
+ s(−d, c)

))
, where s(h, k) :=

k−1∑
r=1

r

k

(
hr

k
−

⌊
hr

k

⌋
− 1

2

)
.

We then have the following expression for u(n).

Theorem 4.3. We have

u(n) =
2π

12n− 1

∑
k�1

Kk(n)
k

I2

( π

3k
√

12n− 1
)
− π

2
3
4
√

3(24n + 1)
3
4

∑
k�1

∑
r (mod 2k)

Kk(n, r)
k2

×
∫ 1

−1

(
1 − x2

) 3
4 cot

(
π

2k

(
x√
6
− r − 1

2

))
I 3

2

(
π

3
√

2k

√
(24n + 1)(1 − x2)

)
dx.

Sketch of proof. Define for � ∈ Q

f(τ) := − i

2
ψ(τ)
η(τ)2

, g(τ) :=
1

η(τ)2
, and E
(τ) :=

∫ τ+i∞+ε




η(z)3√
i(z− τ)

dz,

where the integration path avoids the branch-cut. To apply the Circle Method we first
determine the “false” modular behavior of f . Using Theorem 3.1, one may show thatq%,
for M = (a b

c d) ∈ SL2(Z) with c > 0,

f(τ) = e
πi
4 νη(M)−1

√
−i(cτ + d)

(
f

(
aτ + b

cτ + d

)
− 1

2
g

(
aτ + b

cτ + d

)
E a

c

(
aτ + b

cτ + d

))
.

We next rewrite the error integrals E
 as “Mordell-type integrals.” One can prove that, for
V ∈ C with Re(V ) > 0,

E
(� + iV ) = − i

π

∑
n∈Z

(−1)neπi(n+ 1
2 )

2

 lim
ε→0+

∫ ∞

−∞

e−πV x2

x− (
n + 1

2

)
(1 + iε)

dx.

Write � = h′
k where h′, k are integers satisfying gcd(h′, k) = 1 and k > 0. Given a real number

d with 0 � d < 1
8 we split

e2πdV Eh′
k

(
h′

k
+ iV

)
= E∗

h′
k ,d

(
h′

k
+ iV

)
+ Ee

h′
k ,d

(
h′

k
+ iV

)
,

where

E∗
h′
k ,d

(
h′

k
+ iV

)
:=

e2πdV

πi

∑
n∈Z

(−1)neπi(n+ 1
2 )

2 h′
k lim

ε→0+

√
2d∫

−√
2d

e−πV x2

x− (
n + 1

2

)
(1 + iε)

dx,

Ee
h′
k ,d

(
h′

k
+ iV

)
:=

e2πdV

πi

∑
n∈Z

(−1)neπi(n+ 1
2 )

2 h′
k lim

ε→0+

∫
|x|�√

2d

e−πV x2

x− (
n + 1

2

)
(1 + iε)

dx.

One can show that for 0 � d < 1
8 , h′, k ∈ Z, gcd(h′, k) = 1, k > 0, and Re(V ) � 1 we have

Ee
h′
k ,d

(
h′

k
+ iV

)
= O(log(k)),
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where the bound is independent of h′ and V . One can then use the Circle Method; the main
difficulty is that one has to approximate the additional integrals E∗

h′
d′ ,d

. �

Using (4.3), the contribution from k = 1 in Theorem 4.3 gives the asymptotic main term.

Corollary 4.4. The asymptotic (4.4) holds.

5. Quantum modular forms

Another consequence of our completions is the proof of quantum modularity of false theta
functions. Recall that a quantum modular form of weight k ∈ 1

2Z is a function f : P1(Q) \ S →
C for some discrete subsets S of Q such that for all M = (a b

c d) ∈ Γ (some congruence subgroup
of SL2(Z)), the function

f(x) − χ−1(M)(cx + d)−kf

(
ax + b

cx + d

)
for certain multipliers χ, satisfies a suitable property of continuity or analytically in R.

For simplicity we consider a special family studied by Milas and the author [12]. Define, for
j ∈ Z and N ∈ N>1,

Fj,N (τ) :=
∑
n∈Z

n≡j (mod 2N)

sgn(n)q
n2
4N .

In fact, we can further restrict to 1 � j � N − 1, because Fj,N = −F−j,N and Fj+2N,N = Fj,N .
We first describe the classical proof of quantum modularity. In [12] (following [42]) it was shown
(using the Euler–Maclaurin summation formula) that Fj,N has an asymptotic expansion of the
shape

Fj,N

(
it +

h

k

)
∼

∑
m�0

ah,k(m)tm
(
t → 0+

)
.

Now one can find the following “companion” for Fj,N :

F ∗
j,N (τ) :=

1√
π

∑
n∈Z

n≡j (mod 2N)

sgn(n)Γ
(

1
2
,
πn2τ2
N

)
q−

n2
4N .

To be more precise

F ∗
j,N

(
it− h

k

)
∼

∑
m�0

ah,k(m)(−t)m
(
t → 0+

)
.

Using the weight 3
2 unary theta functions

fj,N (τ) :=
1

2N

∑
n∈Z

n≡j (mod 2N)

nq
n2
4N ,

one can write

F ∗
j,N (τ) = −i

√
2N

∫ i∞

−τ

fj,N (w)√−i(w + τ)
dw.
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Quantum modularity now follows from the modularity properties of fj,N (which is implied
from (2.1)). In particular, we have

fj,N (τ) =

√
2
N

(−iτ)−
3
2

N−1∑
k=1

sin
(
πjk

N

)
fk,N

(
−1
τ

)
.

From this one may conclude that

F ∗
j,N (τ) − 1√−iτ

√
2
N

N−1∑
k=1

sin
(
πjk

N

)
F ∗
k,N

(
−1
τ

)
= i

√
2
∫ i∞

0

fj,N (w)√−i(w + τ)
dw.

In [7] a two-dimensional example was considered. The proof was, however, very technical
and the hard part was to find the corresponding companion. Therefore we developed a more
systematic approach in [13] which used the transformation behavior of false theta functions
on the upper-half plane. To state this, define for M = (a b

c d) ∈ SL2(Z),

ψj,r(M) :=

⎧⎪⎪⎨⎪⎪⎩
e2πiab j2

4N e−
πi
4 (1−sgn(d))δj,r if c = 0,

e−
3πi
4 sgn(c)

√
2

N |c|

|c|−1∑
k=0

e
πi

2Nc (a(2Nk+j)2+dr2) sin
(
πr(2Nk + j)

N |c|
)

if c �= 0,

where δj,r = 1 if j = r and 0 otherwise. Using Theorem 3.1, one can show the following theorem.

Theorem 5.1. For M = (a b
c d) ∈ SL2(Z), we have

Fj,N (τ) − sgn(cτ1 + d)(cτ + d)−
1
2

N−1∑
r=1

ψj,r

(
M−1

)
Fr,N

(
aτ + b

cτ + d

)
= −i

√
2N

∫ i∞

− d
c

fj,N (z)√−i(z− τ)
dz,

where the integration path avoids the branch cut defined by
√−i(z− τ).

As a corollary we obtain quantum modular properties of Fj,N .

Corollary 5.2. The functions Fj,N are vector-valued quantum modular forms with
quantum set Q.

6. Fourier coefficients of meromorphic Jacobi forms

Recall the theta decomposition for holomorphic Jacobi forms given in (2.7). This implies that
Fourier coefficients of holomorphic Jacobi forms are modular forms. If φ has poles in the elliptic
variable, the story becomes more complicated. In this case, the Fourier coefficients (see (6.3))
depend on the choice of range of z and are not modular. Such coefficients showed up in the study
of the mock theta functions of Ramanujan in [46]. Meromorphic Jacobi forms also played a key
role in the study of Kac–Wakimoto characters [31]. Kac and Wakimoto asked for modularity
properties of these characters; this question was answered in [6, 34], when the meromorphic
Jacobi form has positive index.

In [5], Creutzig, Rolen, and the author considered Kac–Wakimoto characters for negative
index which are, for M,N ∈ N0 and after a change of variables, given by

φM,N (z) = φM,N (z; τ) :=
ϑ
(
z + 1

2 ; τ
)M

ϑ(z; τ)N
.
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In [15], we offered a completely general picture for negative index Jacobi forms. To describe
our results, we let m ∈ − 1

2N and ε ∈ {0, 1}, and consider meromorphic functions φ : C → C

that satisfy the elliptic transformation law (extending (2.3) and suppressing τ)

φ(z + λτ + μ) = (−1)2mμ+ελe−2πim(λ2τ+2λz)φ(z). (6.1)

For example, φM,N transforms according to (6.1) with m = M−N
2 and ε = ε(N) ∈ {0, 1} with

ε(N) ≡ N (mod 2). Note that a Jacobi form also satisfies a modular transformation law (in
the suppressed variable τ), but for our main result, only (6.1) has to be assumed.

We now define Dx := 1
2πi

∂
∂x for a general variable x, and consider the level 2M Appell–Lerch

sum given for M ∈ 1
2N and z1, z2 ∈ C by (ζj := e2πizj )†

FM,ε(z1, z2) = FM,ε(z1, z2; τ) :=
(
ζ1ζ

−1
2

)M ∑
n∈Z

(−1)εnζ−2Mn
2 qMn(n+1)

1 − ζ1ζ
−1
2 qn

.

We have the elliptic transformation property

FM,ε(z1, z2 + λτ + μ) = (−1)2Mμ+ελe−2πiM(λ2τ+2λz2)FM,ε(z1, z2), (6.2)

for all λ, μ ∈ Z. Furthermore, z2 	→ FM,ε(z1, z2) is a meromorphic function having only simple
poles in Zτ + Z + z and residue 1

2πi in z2 = z. Let Dj,w = Dj,w(τ) be the −jth Laurent
coefficient of φ around z1 = w, sz0,τ gives the locations of a set of representatives of the poles
of φ, and Pz0 is a fundamental parallelogram for the lattice Zτ + Z. Further note that in the
following theorem, although the dependence on τ is suppressed, both sides of (6.1) depend on
τ .

Theorem 6.1. Let m ∈ − 1
2N and ε ∈ {0, 1}, and suppose that z0 is chosen so that φ has

no poles on ∂Pz0 . If φ is a meromorphic function satisfying (6.1), then

φ(z) = −
∑

z1∈sz0,τ

∑
n∈N

Dn,z1

(n− 1)!
[Dn−1

z2 (F−m,ε(z, z2))
]
z2=z1

.

Remark. As φ is a meromorphic function, there are only finitely many non-zero terms in
the sum over n in the right-hand side in Theorem 6.1.

Proof of Theorem 6.1. Let z ∈ C be such that φ is holomorphic in z. Furthermore let z0 ∈ C

be such that without loss of generality z ∈ Pz0 and that φ has no poles on the boundary of
Pz0 . We consider the integral ∫

∂Pz0

φ(w)F−m,ε(z, w)dw,

which we compute in two different ways: on the one hand, the integral vanishes since by
equations (6.1) and (6.2) the integrand is both 1- and τ -periodic. On the other hand, by the
Residue Theorem,∫

∂Pz0

φ(w)F−m,ε(z, w)dw = φ(z) + 2πi
∑

z1∈sz0,τ

Res
z2=z1

(φ(z2)F−m,ε(z, z2))

and thus, we get

φ(z) = −2πi
∑

z1∈sz0,τ

Res
z2=z1

(φ(z2)F−m,ε(z, z2)).

†Note that now z1, z2 ∈ C and are not to be confused with the real and imaginary part of z in the
previous sections.
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The theorem now follows immediately by inserting the definition of the Laurent coefficients
Dn,z1 . �

Applying this result to the Kac–Wakimoto characters φM,N yields the following.

Corollary 6.2. For M ∈ N0 and N ∈ N with M < N , we have the decomposition

φM,N (z) = −
N∑

n=1

Dn,0

(n− 1)!

[
Dn−1

z2

(
FN−M

2 , ε(N)(z, z2)
)]

z2=0
.

We next find an explicit description for the Fourier coefficients of meromorphic Jacobi forms
of negative index. For this, define for z0 ∈ C and φ a function satisfying the transformation in
(6.1) with m ∈ 1

2Z and ε ∈ {0, 1}, the (slightly modified) Fourier coefficients by

h	(τ) = h	,z0(τ) := q−
�2
4m

∫ z0+1

z0

φ(z; τ)e−2πi	zdz, (6.3)

where � ∈ Z + m. Here, the path of integration is the straight line connecting z0 and z0 + 1 if
there are no poles on this line. If there is a pole on the line which is not an endpoint, then
we define the path to be the average of the paths deformed to pass above and below the pole.
Finally, if there is a pole at an endpoint, note that the integral (6.3) only depends on the
imaginary part of z0. Then we replace the path [z0, z0 + 1] with [z0 − δ, z0 + 1 − δ] for δ > 0
sufficiently small such that there is no pole at an endpoint, and then define the integral as
above if there is a pole in the interior of the line. We also require the following partial theta
functions defined for z ∈ C, τ ∈ H, M ∈ 1

2N, and � ∈ Z + M by

ϑ+
	,ε,M (z) = ϑ+

	,ε,M (z; τ) :=
∞∑

n=0

(−1)nεq
(2Mn−�)2

4M ζ2Mn−	.

Remark. Note that

ϑ+
	,ε,M (z) =

1
2

∑
n∈Z

(
sgn

(
n +

1
2

)
+ 1

)
(−1)nεq

(2Mn−�)2

4M ζ2Mn−	.

So we may write ϑ+
	,ε,M as sum of a false Jacobi theta function and an ordinary Jacobi

theta function.

Theorem 6.3. Let m ∈ − 1
2N and φ be a meromorphic function satisfying (6.1) with ε ∈

{0, 1}. If z0 ∈ C is chosen so that φ has no poles on ∂Pz0 , then we have for any � ∈ Z + m that

h	,z0(τ) =
∑

z1∈sz0,τ

∑
n�1

Dn,z1(τ)
(n− 1)!

[
Dn−1

z

(
ϑ+
	,ε,−m(z; τ)

)]
z=z1

.

Remark. Proceeding as in Section 3 (and turning Dz into certain invariant operators) one
can find completions of the Fourier coefficients h	,z0(τ).

Before giving the proof of Theorem 6.3, we require the following properties of the partial
theta functions, which follow from a direct calculation.

Lemma 6.4. (1) For λ, μ ∈ Z, � ∈ 1
2Z, and M ∈ 1

2N, we have

(−1)2	μqMλ2
ζ2Mλϑ+

	,ε,M (z + λτ + μ) = ϑ+
	−2Mλ,ε,M (z).
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(2) We have

ϑ+
	,ε,M (z) − (−1)εqMζ2Mϑ+

	,ε,M (z + τ) = q
�2
4M ζ−	.

Proof of Theorem 6.3. By the Residue Theorem, we have∫
∂Pz0

φ(w)ϑ+
	,ε,−m(w)dw = 2πi

∑
w∈sz0,τ

Res
z=w

(
φ(z)ϑ+

	,ε,−m(z)
)
. (6.4)

On the other hand, we can compute the integral directly. Since φϑ+
	,ε,−m is one-periodic, we

find, using Lemma 6.4, that∫
∂Pz0

φ(w)ϑ+
	,ε,−m(w)dw =

∫ z0+1

z0

φ(w)ϑ+
	,ε,−m(w)dw −

∫ z0+τ+1

z0+τ

φ(w)ϑ+
	,ε,−m(w)dw

=
∫ z0+1

z0

(
φ(w)ϑ+

	,ε,−m(w) − φ(w + τ)ϑ+
	,ε,−m(w + τ)

)
dw

=
∫ z0+1

z0

φ(w)
(
ϑ+
	,ε,−m(w) − (−1)εe−2πim(τ+2w)ϑ+

	,ε,−m(w + τ)
)
dw

= e−
πi�2τ
2m

∫ z0+1

z0

φ(w)e−2πi	wdw = h	,z0(τ).

Comparing with (6.4) and inserting the definition of the Laurent coefficients of φ give the
claim. �

7. Higher dimensional false theta functions

We next turn to higher dimensional false theta functions. In [8], we expressed under quite
general conditions, rank two false theta functions as iterated, holomorphic, Eichler-type
integrals. This provided a new method for examining their modular properties and we applied
it in a variety of situations where rank two false theta functions arose.

A key step in our proof is the following sign-lemma.

Lemma 7.1. For �1, �2 ∈ R, κ ∈ R, with (�1, �2 + κ�1) �= (0, 0), we have

sgn(�1)sgn(�2 + κ�1)q
�21
2 +

�22
2 =

∫ τ+i∞

τ

�1e
πi	21w1√

i(w1 − τ)

∫ w1

τ

�2e
πi	22w2√

i(w2 − τ)
dw2dw1

+
∫ τ+i∞

τ

m1e
πim2

1w1√
i(w1 − τ)

∫ w1

τ

m2e
πim2

2w2√
i(w2 − τ)

dw2dw1 +
2
π

arctan(κ)q
�21
2 +

�22
2 ,

where m1 := 	2+κ	1√
1+κ2 and m2 := 	1−κ	2√

1+κ2 .

Summing over a shifted lattice then yields two-dimensional Eichler integrals.
We next explain natural occurrences of (higher dimensional) false theta functions. As already

seen in Section 6 (for the one-dimensional case), a rich source for false theta functions is through
the Fourier coefficients of meromorphic Jacobi forms with negative index or their multivariable
generalizations [10, 15]. In vertex algebra theory, important examples of meromorphic Jacobi
forms come from characters of irreducible modules for the simple vertex operator algebra
Vk(g) at an admissible level k. At a boundary admissible level [30], these characters admit a
particularly elegant infinite product form. Modular properties of their Fourier coefficients are
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understood only for g = sl2 and V− 3
2
(sl3). For the latter, the Fourier coefficients are essentially

rank two false theta functions (see [10] for more details). On the other extreme, if the level is
generic, the character of Vk(g) is given by

ch[Vk(g)](ζ; q)] =
q
− dim(g)k

24(k+h∨)

(q; q)n∞
∏

α∈Δ+
(ζαq; q)∞

∏
α∈Δ+

(ζ−αq; q)∞
, (7.1)

where h∨ is the dual Coxeter number, and ζ are variables parametrizing the set of positive roots
Δ+ of g. Although (7.1) is not a Jacobi form, a slight modification in the Weyl denominator
gives a Jacobi form of negative index. The Fourier coefficients of (7.1) are important because
they are essentially characters for the parafermion vertex algebra Nk(g) [21, 22, 29], whose
character is given by

(q; q)n∞CT[ζ](ch[Vk(g)](ζ; q)]). (7.2)

This character can be expressed as a linear combination of coefficients of Jacobi forms. As one
example we studied modular properties of (7.2) for types A2 and B2, which leads us to the
following result; note that a more precise version of this result was given in [10].

Theorem 7.2. Characters of the parafermion vertex algebras of type A2 and B2 can be
written as linear combinations of (quasi)-modular forms and false theta functions of rank
one and two. The rank two pieces in these decompositions can be written as iterated, holo-
morphic, Eichler-type integrals, which yields the modular transformation properties of these
functions.

Meromorphic Jacobi forms closely related to characters of affine Lie algebras at boundary
admissible levels also show up in the computation of the Schur index I(q) of 4d N = 2 SCFTs
[4, 16]. If refined by flavor symmetries, the Schur index is denoted by I(q, z1, .., zn). In [10], we
were only interested in the Schur index of some specific superconformal field theorem (SCFTs),
called Argyres–Douglas theories of type (A1, D2k+2), whose index with two flavors was first
computed in [16] (see also [19]) and later identified with certain vertex algebra characters in
[20]. In particular, for k = 1 the index coincides with the character of the aforementioned vertex
algebra V− 3

2
(sl3). Our second main result in [8] dealt with modularity of Fourier coefficients of

these indices.

Theorem 7.3. The Fourier coefficients of the Schur indices of Argyres–Douglas theories
of type (A1, D2k+2) are essentially rank two false theta functions. Moreover, its constant term
can be expressed as a double Eichler-type integral.

The third main result in [8] concerned the Ẑ-invariants called homological blocks of plumbed
3-invariants introduced recently by Gukov, Pei, Putrov, and Vafa [27] and further studied
from several viewpoints in [11, 17, 24, 26, 27, 32, 35]. For Seifert homology spheres, it
is well known that they can be expressed as linear combinations of derivatives of unary false
theta functions. Further computations of Ẑ-invariants for certain non-Seifert integral homology
spheres were given in [11].

Theorem 7.4. Let M be a plumbed 3-manifold obtained from a unimodular H-graph as in
[11]. Then the Ẑ-invariant of M has a representation

Ẑ(τ) =
∫ τ+i∞

τ

∫ w1

τ

Θ1(w1, w2)√
i(w1 − τ)

√
i(w2 − τ)

dw2dw1 + Θ2(τ),
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where Θ1(w1, w2) is a linear combination of products of derivatives of unary theta functions in

w1 and w2 and Θ2(τ) is a rank two theta function. Moreover, there is a completion Ẑ(τ, w) of
Ẑ that transforms like a weight one modular form†.

Currently, in [9] we are working on building a theory of general false theta functions; this is
work in progress.

Acknowledgement. The author thanks Walter Bridges, Caner Nazaroglu, and the referee
for helpful comments on an earlier version of this paper.
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