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STATISTICS FOR UNIMODAL SEQUENCES

WALTER BRIDGES AND KATHRIN BRINGMANN

Abstract. We prove a number of limiting distributions for statistics for unimodal sequences of
positive integers by adapting a probabilistic framework for integer partitions introduced by Fristedt.
The difficulty in applying the direct analogue of Fristedt’s techniques to unimodal sequences lies in
the fact that the generating function for partitions is an infinite product, while that of unimodal
sequences is not. Essentially, we get around this by conditioning on the size of the largest part and
working uniformly on contributing summands. Our framework may be used to derive many distri-
butions, and our results include joint distributions for largest parts and multiplicities of small parts.
We discuss ranks as well. We further obtain analogous results for strongly unimodal sequences.

1. Introduction and Statement of results

A partition λ of n is a sequence of positive integers that sum to n,

λ : λ1 ≥ · · · ≥ λℓ > 0,
ℓ∑

k=1

λk = n.

We write |λ| = n for the size of λ, set p(n) := #{λ ⊢ n}, and we define p(0) := 1. The generating
function for partitions is the well-known infinite product

P (q) :=
∑

λ

q|λ| =
∑

n≥0

p(n)qn =
∏

n≥1

1

1− qn
.

An important result in the study of partition statistics is due to Erdős and Lehner who proved
that, as n → ∞, the largest part of almost all partitions of n is roughly A

√
n log(A

√
n) and varies

from this mean by an extreme value distribution. Here and throughout the article, let A :=
√
6
π
.

Theorem 1.1 (Theorem 1.1 of [15]). For v ∈ R, we have

lim
n→∞

#

{
λ ⊢ n :

λ1−A
√
n log(A

√
n)

A
√
n

≤ v

}

p(n)
= e−e−v

.

Erdős and Lehner’s proof used only straightforward recurrences and the Hardy–Ramanujan as-
ymptotic formula for p(n) ([20], equation (1.41)). After a series of papers of Szalay–Turán and
Erdős–Turán (see [16, 31, 32, 33]), Fristedt introduced what has proved to be an indispensable
probabilistic technique, allowing him to greatly extend previous distributions [18]. In particular,

Theorem 1.1 was extended to a joint distribution for the tn largest parts, where tn = o(n
1
4 ).
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2 WALTER BRIDGES AND KATHRIN BRINGMANN

Theorem 1.2 (Theorems 2.5 and 2.6 of [18]). For any integer tn = o(n
1
4 ) and {vt}tnt=1 ⊂ R

tn , the

following limit vanishes

lim
n→∞



#

{
λ ⊢ n :

λt−A
√
n log(A

√
n)

A
√
n

≤ vt for 1 ≤ t ≤ tn

}

p(n)
−
∫ v1

−∞
· · ·
∫ vtn

−∞
f(u1, . . . , utn)dutn · · · du1


 ,

where

f(u1, . . . , utn) :=

{
e−

∑tn
t=1 ut−e−utn if u1 ≥ · · · ≥ utn ,

0 otherwise.

Remark. The distribution on the right-hand side was interpreted in [18] as a limiting Markov
chain. Another equivalent distribution was given by Pittel ([25], lemma on p. 127) in his proof
of Wilf’s conjecture that the limiting proportion of partitions of n whose parts are the vertex
degrees of a simple graph is 0. In follow-up work, Pittel further improved on the above by proving
explicit convergence rates [24]. We leave a similar strengthening of our results below, as well as
any analogous applications, as interesting open problems.

Remark. Fristedt obtained a stronger version of the above which he stated in terms of the Lévy–
Prokhorov distance between measures (see [6], p. 72). Our results below too could be strengthened
in this way, but we prefer the simpler statements which show only convergence in distribution.

Fristedt found a wide array of limiting distributions by introducing what is now known as a
Boltzmann model. This is now a standard technique for studying the statistical behavior and
constructing sampling algorithms of many combinatorial structures (see [14]), but our exposition
here is self-contained. The Boltzmann model replaces the uniform probability measure on {λ ⊢ n}
with a measure on all partitions λ, by defining

Qq(λ) :=
q|λ|

P (q)
, for q ∈ (0, 1). (1.1)

Since Qq agrees on all λ ⊢ n, the Boltzmann model, when conditioned on λ ⊢ n, equals the
uniform measure on partitions of n, and thus this technique is often called a conditioning device.
In statistical mechanics, the Boltzmann model is known as the macro-canonical ensemble, and the
uniform measure on {λ ⊢ n} is known as the micro-canonical ensemble (see [36]). Under Qq, one
directly gains independence of the relevant random variables that one lacks under the uniform
probability measure. This is precisely because P (q) is an infinite product, and much of the work
applying Boltzmann models to study statistics for partitions relies on product generating functions.
In this article, we show that a conditioned Boltzmann model may still be useful even without an
infinite product generating function.1 We demonstrate this in the case of unimodal sequences.

A unimodal sequence λ of size n is a generalization of an integer partition, in which parts are
allowed to increase and then decrease2,

λ : λ[L]
r ≤ · · · ≤ λ

[L]
1 ≤ λPK ≥ λ

[R]
1 · · · ≥ λ[R]

s and λPK +
r∑

k=1

λ
[L]
k +

s∑

k=1

λ
[R]
k = n. (1.2)

1As pointed out to us by one of the referees there is a somewhat similar construction in work of Pittel [26] on
partitions with bounded min/max ratio.

2For convenience, we reverse the usual convention of indexing so that here λ
[L]
t , λ

[L]
t+1 are decreasing in t.
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We write Un for the set of unimodal sequences of size n, with U0 containing a single empty sequence.
Let u(n) := #Un and U := ∪n≥0Un. The special part λPK is called the peak. The generating function
for u(n) is obtained by summing over the size of peaks as

U(q) :=
∑

λ∈U
q|λ| =

∑

n≥0

u(n)qn = 1 +
∑

m≥1

qm
m∏

k=1

1

(1− qk)
2 .

We note that there are two slightly different definitions of unimodal sequences in the literature
which differ in whether or not the peak is specified. The second author and Mahlburg studied
the asymptotic behavior of various types of unimodal sequences, where what we call unimodal
sequences in this paper were referred to as stacks with summits on p. 196 of [11], as opposed to

stacks, where the peak is unspecified. (This is equivalent to forcing the inequality λPK ≥ λ
[R]
s to

be strict.) All of our results here hold for these stacks as well; it is simply easier to state and prove
our results with the above definition. Stacks seem to have been introduced by Auluck in [4], who
called them type B partitions, whereas stacks with summits are also called V-partitions in §2.5 of
[30]. Andrews [3] has also called these sequences convex compositions when the peak is strictly
larger than the other parts (which is equivalent to adding 1 to the peak of unimodal sequences).
As pointed out to us by one of the referees statistics for unimodal sequences were also studied in
the context of statistical mechanics by Temperley (see [35], Section 3), who gave a heuristic for the
limiting shape of diagrams. Limit shapes for several types of unimodal sequences were rigorously
proved by the first author in [8]. Recent work of the second author, Jennings-Shaffer, Mahlburg
and Rhoades [9, 10] proved the distribution of the rank, defined below, a statistic connected to
modular forms.

To state our results, let Pn be the uniform probability measure on Un, and introduce the following
random variables on U :
• Let PK(λ) := λPK denote the peak of a sequence.

• Let X
[L]
k (λ) (resp. X

[R]
k (λ)) denote the number of parts in λ equal to k and to the left (resp.

right) of the peak.

• Let Y
[L]
t (λ) := λ

[L]
t (resp. Y

[R]
t ) denote the t-th largest part in λ to the left (resp. right) of the

peak.

• Let N(λ) :=
∑

k≥1 k(X
[L]
k (λ) +X

[R]
k (λ)) + PK(λ) denote the size of λ.

Example. If λ is the unimodal sequence 1 + 1 + 2 + 3 + 3 + 3+ 1 (the peak is boldfaced), then

X
[L]
1 (λ) = 2, X

[L]
2 (λ) = 1, X

[L]
3 (λ) = 2, PK(λ) = 3, X

[R]
3 (λ) = 0, X

[R]
2 (λ) = 0, X

[R]
1 = 1,

N(λ) = 14.

Note that the Y
[L]
t are explicitly determined in terms of the X

[L]
k as

Y
[L]
t := sup



ℓ :

∑

k≥ℓ

X
[L]
k ≥ t



 .

A similar statement holds for Y
[R]
t .

Our first result is an analogue of Theorem 1.1. Here and throughout the article, let B :=
√
3
π
.

Theorem 1.3. For v ∈ R, we have

lim
n→∞

Pn

(
PK−B

√
n log (2B

√
n)

B
√
n

≤ v

)
= e−e−v

.



4 WALTER BRIDGES AND KATHRIN BRINGMANN

Moreover, if En denotes expectation under Pn, then we have

En(PK) = B
√
n log

(
2B

√
n
)
+Bγ

√
n(1 + o(1)),

where γ is the Euler–Mascheroni constant.

Remark. Note that Un is almost the same as the set of pairs of partitions of total size n, so a
reasonable heuristic guess would be that Theorem 1.1 holds with λ1 7→ PK and n 7→ n

2 . However,
the presence of the extra factor of log(2) is justified by Theorem 1.4 below.

Remark. It would be interesting to improve the error term for the mean, as Ngo and Rhoades did
for Theorem 1.1 [22]. We discuss this further in Section 6.

We also prove the following analogue of Theorem 1.2.

Theorem 1.4. For any integer tn = o(n
1
4 ) and {v[j]t }1≤t≤tn,j∈{L,R} ⊂ R

2tn , the following difference

vanishes as n → ∞,

Pn

(
PK−B

√
n log (2B

√
n)

B
√
n

≤ v0,
Y

[j]
t −B

√
n log (2B

√
n)

B
√
n

≤ v
[j]
t , for j ∈ {L,R}, 1 ≤ t ≤ tn

)

−
∫ v0

−∞

∫ v
[L]
1

−∞

∫ v
[R]
1

−∞
· · ·
∫ v

[L]
tn

−∞

∫ v
[R]
tn

−∞
F
(
u0, u

[L]
1 , u

[R]
1 , . . . , u

[L]
tn

, u
[R]
tn

)
du

[R]
tn

· · · du0,

where

F
(
u0, u

[L]
1 , u

[R]
1 , . . . , u

[L]
tn

, u
[R]
tn

)

:=





1
22tn

e
−u0−

∑

1≤t≤tn

(

u
[L]
t +u

[R]
t

)

− e
−u

[L]
tn

2
− e

−u
[R]
tn

2 if u0 ≥ u
[j]
1 ≥ · · · ≥ u

[j]
tn

for j ∈ {L,R},
0 otherwise.

Next, we show that the joint distribution of the numbers of small parts, when re-scaled, behaves
as the joint distribution for independent and identically distributed exponential random variables,
and that of medium sized parts behaves geometrically; this is an analogue of Theorem 2.2 of [18].

Theorem 1.5. Let kn = o(n
1
4 ) be an integer and {v[j]t }1≤k≤kn,j∈{L,R} ⊂ [0,∞)2kn . Then

lim
n→∞


Pn

(
kX

[j]
k

B
√
n

≤ v
[j]
k , for 1 ≤ k ≤ kn and j ∈ {L,R}

)
−

∏

1≤k≤kn
j∈{L,R}

∫ v
[j]
k

0
e−u

[j]
k du

[j]
k


 = 0.

Moreover, for an integer k = o(n
1
2 ) and v[L], v[R] ∈ R, we have

lim
n→∞

Pn

(
kX

[L]
k

B
√
n

≤ v[L],
kX

[R]
k

B
√
n

≤ v[R]

)
=
(
1− e−v[L]

)(
1− e−v[R]

)
,

and for k = ⌊cn 1
2 ⌋ with v[L], v[R] ∈ N0, we have

lim
n→∞

Pn

(
X

[L]
k ≤ v[L],X

[R]
k ≤ v[R]

)
=
(
1− e−

c
B (v

[L]+1)
)(

1− e−
c
B (v

[R]+1)
)
.
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It is combinatorially obvious that Pn(X
[L]
k ≤ X

[R]
k ) = 1

2 , simply by swapping left and right
parts on every element of Un. A more refined measure of symmetry in the small parts would be a

joint distribution for the differences of X
[L]
k and X

[R]
k for k ≤ kn. As a corollary of the above, we

show that this behaves like the joint distribution of independent Laplace distributions. Below and
throughout, χS := 1 if a statement S holds and 0 otherwise.

Corollary 1.6. Let kn = o(n
1
4 ) be an integer and let {vk}1≤k≤kn ⊂ R

kn. Then the following limit

vanishes,

lim
n→∞


Pn



k
(
X

[L]
k −X

[R]
k

)

B
√
n

≤ vk, for 1 ≤ k ≤ kn


−

∏

1≤k≤kn

((
1− e−vk

2

)
χvk≥0 +

evk

2
χvk<0

)
 .

By summing the differences X
[L]
k −X

[R]
k over all k, we obtain the rank of a unimodal sequence,

rank(λ) :=
∑

k≥1

(
X

[L]
k (λ)−X

[R]
k (λ)

)
. (1.3)

Bringmann, Jennings-Shaffer, and Mahlburg proved that at the scaling of
√
n the rank obeys a

logistic distribution.

Theorem 1.7 (Proposition 1.2 of [9]). For x ∈ R, we have

lim
n→∞

Pn

(
rank

B
√
n
≤ x

)
=

1

1 + e−x
.

Bringmann, Jennings-Shaffer, and Mahlburg used the method of moments, an approach that
relies on suitable two-variable generating functions and is independent of the present work. We
prove the following related result.

Theorem 1.8. For any integer kn = o(n
1
2 ) with kn → ∞ and vL, vR ∈ R,

lim
n→∞

Pn


∑

k≤kn

X
[j]
k −B

√
n log(kn)

B
√
n

≤ vj , for j ∈ {L,R}


 = e−e−vL−e−vR

.

Thus, the total small part counts on the left and the right behave as independent extreme value
distributions when the mean of B

√
n log(kn) is subtracted, and their convolution gives the logistic

distribution in Theorem 1.7. Our techniques are not robust enough to prove Theorem 1.7, but
when combined with the following, Theorem 1.8 is highly suggestive of Theorem 1.7.

Proposition 1.9 (see Theorem 1.2 of [8]). For any fixed ε > 0 and any fixed a > 0, we have

lim
n→∞

Pn



∣∣∣∣∣∣
1√
n

∑

k≥a
√
n

(
X

[L]
k −X

[R]
k

)
∣∣∣∣∣∣
< ε


 = 1.

Note that our methods also easily extend to the so-called t-th successive ranks, defined by limiting
the range in (1.3) to k ≥ t, whereas extension of the techniques in [9] appears to be non-trivial.

Finally, we can prove results similar to Theorems 1.4 and 1.5 for strongly unimodal sequences,
defined so that the inequalities in (1.2) are strict. Let U∗

n denote the set of strongly unimodal
sequences of size n, let u∗(n) := #U∗

n and let P∗
n denote the uniform probability measure on U∗

n.

Theorem 1.10. For strongly unimodal sequences, Theorems 1.3 and 1.4 hold with Pn replaced by

P∗
n and B =

√
3

π
replaced by A =

√
6
π
.
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Since a part can occur at most once on either side of the peak in a strongly unimodal sequence,
it is natural to expect the following analogue of Theorem 9.2 of [18]. Note that here we can take a
larger range for kn than in Theorem 1.5. Here and throughout, boldface letters represent vectors
(except when we use them for probability measures).

Theorem 1.11. Suppose that kn = o(n
1
2 ) and let w ∈ {0, 1}2kn . Then

lim
n→∞

(
P∗

n

((
X

[j]
k

)
j∈{L,R},1≤k≤kn

= w

)
− 1

22kn

)
= 0.

We content ourselves with the above results, as once our machinery is described many of the
details follow [18] closely. It would be interesting to apply our methods to the other types of stacks
and unimodal sequences discussed in [11] or to extend the work of Pittel [23] to unimodal sequences,
where Fristedt’s methods were used to study distributions of mid-range parts in partitions.

Section 2 contains some preliminaries needed for asymptotic analysis. In Section 3, we briefly re-
call Fristedt’s machinery and in Section 4, we introduce our modification, a conditioned Boltzmann
model for unimodal sequences. We believe these methods should be useful in contexts beyond the
present work, especially for non-product generating functions in the theory of partitions. Section 5
contains the details of the proofs of our main theorems. Lastly, in Section 6 we discuss the moment
generating functions for PK, a method independent from Boltzmann models, but one which may
lead to more precise results for PK.
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2. Preliminaries

2.1. Notation. We use the following standard asymptotic notation. We write

• f(n) ∼ g(n) if limn→∞
f(n)
g(n) = 1,

• f(n) = O(g(n)) (or f(n) ≪ g(n)) if the quotient f(n)
g(n) is bounded as n → ∞,

• f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0,

• f(n) = ω(g(n)) if the quotient f(n)
g(n) is unbounded as n → ∞, and

• f(n) ≍ g(n) if f(n) = O(g(n)) and g(n) = O(f(n)).

To concisely write products in generating functions, we employ the standard q-factorial notation,
defined for n ∈ N0 ∪ {∞} by

(a)n = (a; q)n :=

n−1∏

j=0

(
1− aqj

)
.

2.2. Euler–Maclaurin summation, logarithmic series, and integral calculations. We need
the following two variants of Euler–Maclaurin summation. Let {x} := x−⌊x⌋ denote the fractional
part of x. Note that the first variant is recovered by taking a → 1− in Theorem B.5 of [21].
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Lemma 2.1 (Theorem B.5 in [21]). For N ∈ N and continuously differentiable g : R → C, we have

N∑

k=1

g(k) =

∫ N

1
g(u)du +

1

2
(g(N) + g(1)) +

∫ N

1

(
{u} − 1

2

)
g′(u)du (2.1)

=

∫ N

0
g(u)du +

1

2
(g(N)− g(0)) +

∫ N

0

(
{u} − 1

2

)
g′(u)du. (2.2)

The following lemma is useful for the approximation logarithmic series by Taylor expansions.
Here and throughout, we write Log for the principal branch of the complex logarithm, and log
when Log is restricted to the positive real axis.

Lemma 2.2 (Lemma 1 in [28] with Lemma 1 in [7]). There exists a constant C > 0 such that for

all 0 < x < 1 and s ∈ R, we have

∣∣∣∣Log
(

1± x

1± xeis

)
− isx

1± x
+

s2x

2(1 ± x)2

∣∣∣∣ ≤ C
x|s|3

(1− x)3
.

We also need the following lemma concerning the asymptotic behavior of a certain product. This
should be compared with a similar formula on p. 723 of [18].

Lemma 2.3. Uniformly in v ≥ − log(n)
8 as n → ∞, we have

∏

k>A
√
n(v+log(A

√
n))

(
1− e

− k
A
√

n

)
∼ e−e−v

, (2.3)

∏

k>A
√
n(v+log(A

√
n))

1

1 + e
− k

A
√

n

∼ e−e−v

. (2.4)

Proof. Equation (2.3) is proved in equation (6.10) of [18]. Next note that (2.4) is equivalent to

− lim
n→∞

∑

k>A
√
n(v+log(A

√
n))

log
(
1 + e

− k
A
√

n

)
+ e−v = 0,

uniformly in v ≥ − log(n)
8 . After using the inequality −x < − log(1 + x) < −x+ x2

2 for x ∈ (0, 1), a
short calculation shows

O
(
e−v− log(n)

2

)
< −

∑

k>A
√
n(v+log(A

√
n))

log
(
1 + e

− k
A
√

n

)
+ e−v < O

(
e−v− log(n)

2

)
+O

(
e−2v− log(n)

2

)
.

Both terms are o(1) if v ≥ − log(n)
8 , completing the proof. �

Another integral evaluation gives the distribution of the sum of independent exponentially dis-
tributed random variables with means 1, 1

2 , . . . ,
1
n
; the proof follows using induction.

Lemma 2.4. For x ≥ 0 and for n ∈ N, we have

n!

∫ x

0

∫ x−un

0
· · ·
∫ x−un−···−u2

0
e−

∑n
i=1 jujdu1 · · · dun =

(
1− e−x

)n
.
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2.3. Saddle-point method. We require the following specific case of the saddle-point method for
evaluating Cauchy integrals. Our variant is essentially the one used by Fristedt [18] in the proof of
Proposition 4.5, and also in the proofs of [28] Proposition 3 and [7] Proposition 3, although these
are all stated in probabilistic terminology. This may also be compared with [17] Chapter VIII,
Figure VIII.4.

Proposition 2.5. Let {gn}n≥1 be a sequence of twice continuously differentiable functions. Suppose

that for all sufficiently small fixed ε > 0, after decomposing the integral as

∫ 1
2

− 1
2

exp (gn(2πiθ)) dθ =

∫ εn
−1

2

−εn−1
2

exp (gn(2πiθ)) dθ +

∫

εn−1
2 <|θ|≤ 1

2

exp (gn(2πiθ)) dθ,

the following hold as n → ∞.

(1) We have that gn(0) ≍ n
1
2 and g′′n(0) ≍ n

3
2 where the implied constants are positive real numbers,

g′n(0) = o(n
3
4 ), and we have a quadratic approximation on the “major arc”: for a constant

independent of ε, we have
∣∣∣∣gn(2πiθ)− gn(0)− g′n(0)2πiθ − g′′n(0)

(2πiθ)2

2

∣∣∣∣ = O
(
θ3n2

)
, for |θ| ≤ εn− 1

2 .

(2) The “minor arc” is negligible:

lim sup
n→∞

Re (gn(2πiθ))− gn(0)

n
1
2

< −δε, for some δε > 0 and εn− 1
2 |θ| ≤ 1

2
.

Then ∫ 1
2

− 1
2

exp (gn(2πiθ)) dθ ∼ egn(0)√
2πg′′n(0)

.

Proof. If we prove that
∫ εn

−1
2

−εn
− 1

2

exp (gn(2πiθ)) dθ ∼ egn(0)√
2πg′′n(0)

,

then the proposition follows by assumption (2). Thus we focus on the major arc and use assumption
(1) to write

∫ εn
−1

2

−εn
−1

2

exp (gn(2πiθ)) dθ = egn(0)
∫ εn

−1
2

−εn
− 1

2

exp

(
g′n(0)2πiθ + g′′n(0)

(2πiθ)2

2
+O

(
n2θ3

))
dθ.

We then substitute θ 7→ θ

π
√

2g′′n(0)
to get

egn(0)

π
√

2g′′n(0)

∫ πε
√

2g′′n(0)n
− 1

2

−πε
√

2g′′n(0)n
− 1

2

exp

(
g′n(0)

π
√

2g′′(0)
2πiθ − θ2

(
1 +O

(
θ

g′′n(0)
3
2

n2

)))
dθ

∼ egn(0)

π
√

2g′′n(0)

∫ πε
√

2g′′n(0)n
−1

2

−πε
√

2g′′n(0)n
− 1

2

exp
(
−θ2

(
1 +O

(
θn− 1

4

)))
dθ,

where by hypothesis the constant is independent of ε. But π
√

2g′′n(0)n
− 1

2 ≍ n
1
4 , and hence ε can

be taken small enough so that 1 + O(θn
1
4 ) is bounded by a positive constant. Since the integrand
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converges pointwise in θ to e−θ2 , Lebesgue’s Dominated Convergence Theorem gives

egn(0)

π
√

2g′′n(0)

∫ πε
√

2g′′n(0)n
−1

2

−πε
√

2g′′n(0)n
− 1

2

exp
(
−θ2

(
1 +O

(
θn− 1

4

)))
dθ ∼

√
πegn(0)

π
√

2g′′n(0)
=

egn(0)√
2πg′′n(0)

,

as claimed. �

2.4. Probability theory. We require only the notions of random variables and their distributions,
as well as the total variation metric, dTV, which is defined on measures µ and ν on R

d by

dTV(µ, ν) := sup
B⊂Rd

Borel

(µ(B)− ν(B)) .

The Borel sets are the σ-algebra on R
d generated by open sets. We also use Chebyshev’s Inequality.

Lemma 2.6 (Chebyshev’s Inequality). If X is a square-integrable random variable under a prob-

ability measure P with finite expectation m and variance σ, then for any t > 0

P(|X −m| ≥ t) ≤ σ2

t2
.

3. Boltzmann models for partitions and the work of Fristedt

Here we recall the primary methods of Fristedt in Section 4 of [18]. Let Pn be the uniform
probability measure on partitions of size n. In analogy to our situation, let Xk be the random
variable giving the number of k’s in a partition and let N =

∑
k≥1 kXk denote the size of a

partition. The key point is that the Xk are independent under Qq (but not under Pn).

Proposition 3.1 (Proposition 4.1 of [18]). The Xk are independent under Qq. Furthermore,

Qq(Xk = ℓ) = qkℓ(1− qk), so Xk is geometric with mean qk

1−qk
.

By definition Qq agrees on all λ ⊢ n, so an immediate consequence is that,

Pn = Qq(·|N = n),

i.e., Qq, when conditioned on N = n, agrees with Pn. (This can also be shown directly from the

definition of Qq.) Now if Wn : P → R
dn is a random vector on partitions which is defined in terms

of the Xk, the probability measure Qq is used to bridge the gap between the probability distribtion

Pn(W
−1
n ) on R

dn and some explicitly given distributions νn on R
dn . For a particular q = q(n),

Fristedt showed that Pn(W
−1
n ) and Qq(W

−1
n ) are close in the sense of total variation given a very

general condition on Wn.

Proposition 3.2 (Proposition 4.6 of [18]). Let Kn be a set of integers such that Wn : P → R
dn is

determined by Xk for k ∈ Kn with probability 1. Let q = q(n) = e
− π√

6n . If

∑

k∈Kn

k2qk

(1− qk)
2 = o

(
n

3
2

)
,

then we have dTV(Pn(W
−1
n ), Qq(W

−1
n )) → 0.

The individual probabilities Qq(Wn = w) are often straightforward to calculate, and Fristedt
found limiting distributions for Wn under Qq for a number of different Wn. Together with Propo-
sition 3.2, this proved his many results. The generality of Proposition 3.2 is the primary advantage
of the probabilistic approach over a classical, direct Circle Method/saddle-point method approach.
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In the following section, we prove an analogue of Proposition 3.2 for a conditioned Boltzmann
model for unimodal sequences. Our exposition is self-contained, but the interested reader is invited
to examine Section 4 of [18] for more probabilistic intuition for why Proposition 3.2 is true.

4. Conditioned Boltzmann model

To bridge the gap between Pn and the distributions in our main theorems, we introduce the
Boltzmann model. This probability measure is defined for any q ∈ (0, 1) on all of U by

Qq(λ) :=
q|λ|

U(q)
,

where U(q) := 1 +
∑

m≥1
qm

(q)2m
(see [11], equation (1.8)). As written, Qq is not very useful for us

because there is not a simple expression for the individual probabilities, Qq(X
[L]
k = ℓ), and in fact

the X
[L]
k and X

[R]
ℓ are not independent. This lies in the fact that U(q) is not a product. However,

the m-th summand in U(q) is of course the product

qm
m∏

k=1

1

(1− qk)
2 =

∑

λ
PK(λ)=m

q|λ|.

By conditioning Qq on the event PK = m, we do gain tractable expressions for the individual

probabilities of X
[L]
k = ℓ, and we can use the full power of Fristedt’s techniques in [18]. Furthermore

- and most importantly - we can do this uniformly for m in the contributing range, and thus we are
able to piece together the local distributions to obtain our global results. We conclude this section
with Proposition 4.6, a direct analogue of Proposition 3.2.

We do the analogous thing for strongly unimodal sequences, setting

Q∗
q(λ) :=

q|λ|

U∗(q)
,

where U∗(q) :=
∑

m≥0(−q)2m−1q
m is the generating function for strongly unimodal sequences (see

[3], where u∗(n) = xd(n)). Throughout the article, we place ∗ in the superscript (and sometimes
in the subscript) for the corresponding sets and functions defined on strongly unimodal sequences,
calling attention to any significant differences when they arise.

Set Qq,m := Qq (·|PK = m) and Pn,m := Pn (·|PK = m). Let Un,m ⊂ Un be those sequences
with peak m, and set um(n) := #Un,m. For strongly unimodal sequences, it is more convenient for
indexing to set P∗

n,m := P∗
n (·|PK = m+ 1) and Q∗

q,m := Q∗
q (·|PK = m+ 1).

The following two lemmas are easily verified directly from the definitions.

Lemma 4.1.

(1) We have

Qq,m(λ) =

{
(q)2mq|λ|−m if PK(λ) = m,

0 otherwise.

(2) The set {X [j]
k }j∈{L,K}

k≥1

is a set of independent random variables under Qq,m with probability

densities

Qq,m

(
X

[j]
k = ℓ

)
=

{(
1− qk

)
qℓk if k ≤ m,

0 otherwise.
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In particular,

Qq,m(N = n) =
[
ζn−m

] (q; q)2m
(ζq; ζq)2m

.

(3) We have Pn,m = Qq,m (·|N = n).

For strongly unimodal sequences, we have the following analogue.

Lemma 4.2.

(1) We have

Q∗
q,m(λ) =

{
(−q)2mq|λ|−m−1 if PK(λ) = m+ 1,

0 otherwise.

(2) The set {X [j]
k }j∈{L,R}

k≥1

is a set of independent random variables under Qq,m with probability

densities

Q∗
q,m

(
X

[j]
k = ℓ

)
=





1
1+qk

if k ≤ m and ℓ = 0,
qk

1+qk
if k ≤ m and ℓ = 1,

0 otherwise.

In particular,

Q∗
q,m(N = n) =

[
ζn−m

] (−ζq; ζq)2m
(−q; q)2m

(3) We have P∗
n,m = Q∗

q,m (·|N = n).

Heuristically, it makes sense to choose q = q(n) ∈ (0, 1) to maximize

Qq,m (N = n) = um(n)qn−m(q)2m,

i.e., as the saddle-point of qm−n(q)−2
m . Following, for example, [7, 18, 23, 28, 36] we set q =

q(n) = e
− 1

B
√

n , which importantly is independent of m. We use this q throughout when referring to
unimodal sequences, and we always write m in terms of r ∈ R as m = B

√
n log(2B

√
n) + Br

√
n,

and we switch freely between these notations. Here and throughout, r is assumed to be in 1
B
√
n
(Z−

log(2B
√
n)), so that m ∈ Z. When referring to strongly unimodal sequences, we also always use3

q = q(n) = e
− 1

A
√

n here for ease of notation, and we take r ∈ 1
A
√
n
(Z − log(2A

√
n)) depending on

m now as m + 1 = A
√
n log(2A

√
n) + Ar

√
n. For any [r1, r2] ⊂ R, we can break up Pn into the

ranges

Pn =


∑

r<r1

+
∑

r∈[r1,r2]
+
∑

r>r2


Pn (PK = m) ·Pn,m,

and we can bound the tail ranges for any measurable set S as

∑

r<r1

Pn (PK = m) ·Pn,m(S) ≤
∑

r<r1

Pn (PK = m) = Pn

(
PK−B

√
n log(2B

√
n)

B
√
n

< r1

)
, (4.1)

∑

r>r2

Pn (PK = m) ·Pn,m(S) ≤ Pn

(
PK−B

√
n log(2B

√
n)

B
√
n

> r2

)
. (4.2)

3It is a bit surprising that this is also Fristedt’s choice of q for partitions.
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For sequences an ≤ bn of positive integers, we define

X[an,bn] :=
(
X

[j]
k

)
k∈[an,bn],j∈{L,R}

.

To prove our main theorems, we show that (4.1) and (4.2) tend to 0 as r1 → −∞ and r2 → ∞,
respectively, and that dTV(Pn,m(X−1

[an,bn]
),Qq,m(X−1

[an,bn]
)) → 0 uniformly for r ∈ [r1, r2] given a

simple condition on an and bn. To aid the proof of the latter, we have the following analogue of
Lemma 4.2 in [18]; it is proved in exactly the same way.

Proposition 4.3. Let an ≤ bn be sequences of integers and suppose that there exist Bn,m ⊂
R
2(bn−an+1) such that, uniformly for r in any [r1, r2],

(1) Qn,m

(
X[an,bn] ∈ Bn,m

)
→ 1,

(2)
Qq,m(N=n|X[an,bn]=x)

Qq,m(N=n) → 1 uniformly in x ∈ Bn,m.

Then dTV(Pn,m(X−1
[an,bn]

),Qq,m(X−1
[an,bn]

)) → 0 uniformly for r in [r1, r2]. For strongly unimodal

sequences, the same holds if we replace Pn,m 7→ P∗
n,m and Qq,m 7→ Q∗

q,m.

So long as the sequences an and bn fulfill a simple condition, the sets Bn,m above exist, as we
show in Proposition 4.6. But first we find the asymptotic behavior of the denominator in condition
(2) of Proposition 4.3.

Proposition 4.4. Let q = e
− 1

B
√

n . Uniformly for r in any [r1, r2], we have

Qq,m(N = n) ∼ 1

2 · 3 1
4n

3
4

, (4.3)

Pn(PK = m) ∼ 1

B
√
n
e−r−e−r

. (4.4)

For strongly unimodal sequences, we have the corresponding

Q∗
q,m(N = n) ∼ 1

2 · 6 1
4n

3
4

, (4.5)

P∗
n(PK = m+ 1) ∼ 1

A
√
n
e−r−e−r

. (4.6)

Before proving Proposition 4.4, we show that the tail ranges (4.1) and (4.2) tend to 0 as a
corollary and we prove Theorem 1.3.

Corollary 4.5. For any [r1, r2] ⊂ R, we have

Pn

(
r1 ≤

PK−B
√
n log(2B

√
n)

B
√
n

≤ r2

)
∼ e−e−r2 − e−e−r1

,

and thus, because Pn is a probability measure, (4.1) and (4.2) tend to 0 as r1 → −∞ and r2 → ∞,

respectively. Furthermore, Theorem 1.3 holds.

For strongly unimodal sequences, the above holds with Pn 7→ P∗
n and B 7→ A.

Proof. Using (4.4), we have,

Pn

(
λ ∈ U(n) : r1 ≤

PK(λ)−B
√
n log(2B

√
n)

B
√
n

≤ r2

)

∼ 1

B
√
n

∑

r∈[r1,r2]∩
(

1
B
√

n
Z−log(2B

√
n)

)

e−r−e−r

=

∫ r2

r1

e−r−e−r

dr+O
(
n− 1

2

)
= e−e−r2 − e−e−r1

+O
(
n− 1

2

)
,
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where the first equality comes from recognizing a Riemann sum. Thus, the first part of Theorem
1.3 holds. The second part is a consequence of the following similar calculation. Let

P̃K :=
PK−B

√
n log(2B

√
n)

B
√
n

,

so PK = m if and only if P̃K = r, and the second part of Theorem 1.3 is equivalent to En(P̃K) ∼ γ.

For this we write

En

(
P̃K
)
=


∑

r<r1

+
∑

r∈[r1,r2]
+
∑

r>r2


 rPn

(
P̃K = r

)
.

where above and below the sums on r run over ( 1
B
√
n
Z− log(2B

√
n)). Assuming (4.4), the middle

sum is
∑

r∈[r1,r2]
rPn

(
P̃K = r

)
=

1

B
√
n

∑

r∈[r1,r2]
re−r−e−r

=

∫ r2

r1

re−r−e−r

dr +O
(
n− 1

2

)
. (4.7)

For the upper tail, we write m2 as the integer corresponding to r2, and use the elementary identity
∑

m>m2

mPn(PK = m) =
∑

m>m2

Pn(PK ≥ m) +m2Pn(PK > m2),

so that
∑

r>r2

rPn

(
P̃K = r

)
=
∑

m>m2

m−B
√
n log (2B

√
n)

B
√
n

Pn (PK = m)

=
1

B
√
n

(
∑

m>m2

Pn(PK ≥ m) +m2Pn(PK > m2)

)
+ log

(
2B

√
n
)
Pn(PK > m2)

=
1

B
√
n

∑

m>m2

Pn (PK ≥ m) + r2Pn(PK > m2)

=
1

B
√
n

∑

r>r2

Pn

(
P̃K ≥ r

)
+ r2Pn

(
P̃K > r2

)

=

∫ ∞

r2

(
1− e−e−r

)
dr + r2

(
1− e−e−r2

)
+O

(
n− 1

2

)
, (4.8)

where in the last step we use the first part of Theorem 1.3.
In a similar way, we estimate the lower tail as

∑

r<r1

rPn

(
P̃K = r

)
=

∫ r1

−∞
e−e−r

dr + r1e
−e−r1

+O
(
n− 1

2

)
. (4.9)

Taking r1 → −∞ and r2 → ∞ in (4.7), (4.8) and (4.9) gives

En

(
P̃K
)
∼
∫ ∞

−∞
re−r−e−r

dr = −
∫ ∞

0
log(t)e−tdt = −Γ′(1) = γ,

which proves the second part of Theorem 1.3.
Repeating this entire proof with B 7→ A proves the claims for strongly unimodal sequences. �

We are now ready to prove Proposition 4.4.
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Proof of Proposition 4.4. First note that

Qq,m(N = n) = (q)2mqn−mum(n). (4.10)

To estimate the right-hand side, we could take the probabilistic approach given in the proofs of
Proposition 4.5 in [18] and Proposition 3 in [28], and the reader is invited to examine these for a
more heuristic approach. Instead, we use Proposition 2.5, a version of the classical saddle-point
method, after representing um(n) as a Cauchy contour integral, but this approach is essentially
equivalent to Fristedt’s probabilistic approach. We omit some details when they are very similar
to calculations carried out in [7] and [28]. First, write

um(n) =
1

2πi

∫

C

ζm−n−1

(ζ)2m
dζ,

where C is a circle centered at 0 with radius less than 1 orientated counterclockwise. Substituting

ζ = e
− 1

B
√

n
+2πiθ

, we have

um(n) =

∫ 1
2

− 1
2

e
−m−n

B
√

n
+2πi(m−n)θ

(
e
− 1

B
√

n
+2πiθ

)2
m

dθ =

∫ 1
2

− 1
2

exp (f(2πiθ)) dθ,

where

f(z) :=
n−m

B
√
n

+ (m− n)z − 2

m∑

k=1

Log
(
1− e

− k
B
√

n
+kz
)
.

For ease of notation, we omit the dependence of f on n throughout the proof. To prove that
condition (i) in Proposition 2.5 holds, we need to find the asymptotic behavior of f(0), f ′(0), and
f ′′(0). These are easily computed:

f(0) =
n−m

B
√
n

− 2

m∑

k=1

log
(
1− e

− k
B
√

n

)
, f ′(0) = m− n+ 2

m∑

k=1

k

e
k

B
√

n − 1
,

f ′′(0) = 2

m∑

k=1

k2e
− k

B
√

n

(
1− e

− k
B
√

n

)2 .
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Next, we use Lemma 2.2 with x 7→ e
− k

B
√

n , s 7→ 2πkθ to compute
∣∣∣∣f(2πiθ)− f(0)− f ′(0)2πiθ − f ′′(0)

(2πiθ)2

2

∣∣∣∣

=

∣∣∣∣∣
n−m

B
√
n

+ (m− n)2πiθ − 2

m∑

k=1

log
(
1− e

− k
B
√

n
+kθ
)
− n−m

B
√
n

− 2

m∑

k=1

log
(
1− e

− k
B
√

n

)

−
(
(m− n) + 2

m∑

k=1

k

e
k

B
√

n − 1

)
2πiθ −

m∑

k=1

k2e
− k

B
√

n

(
1− e

k
B
√

n

)2 (2πiθ)
2

∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣

m∑

k=1


 Log

(
1− e

− k
B
√

n

1− e
− k

B
√

n
+2πikθ

)
− e

− k
B
√

n

1− e
− k

B
√

n

2πikθ +
e
− k

B
√

n

(
1− e

− k
B
√

n

)2
(2πikθ)2

2




∣∣∣∣∣∣∣∣∣∣∣

≤ C

m∑

k=1

k3e
− k

B
√

n

(
1− e

− k
B
√

n

)3 |θ|
3,

for some constant C. Recognizing Riemann sums for a convergent integral, the sum is bounded by

B4n2
∑

k≥1

(
k

B
√
n

)3
e
− k

B
√

n

(
1− e

− k
B
√

n

)3
1

B
√
n
= B4n2

∫ ∞

0

u3e−u

(1− e−u)3
du

(
1 +O

(
1√
n

))
= O

(
n2
)
, (4.11)

where the constant is independent of n. Now we work out the asymptotic behavior of f(0), f ′(0),
and f ′′(0). The details here are very similar to the proofs of Propositions 1–3 in [28]. For f(0), we

take g(u) := − log(1− e
− u

B
√

n ) in (2.1). Estimating as in the proof of Proposition 1 in [28] gives

f(0) = 2π

√
n

3
− log(n)− r − e−r − log

(
12

π

)
+ o(1). (4.12)

The asymptotic behavior of the derivatives is similar to the proof of Proposition 2 in [28]. For
f ′(0), we take g(u) := u

e
u

B
√

n−1
with (2.2), noting that

g′(u) =
e

u
B
√

n − u
B
√
n
e

u
B
√

n − 1
(
e

u
B
√

n − 1
)2 .

A short calculation gives

f ′(0) = O
(√

n log(n)
)
. (4.13)

Finally, for f ′′(0) take g(u) = u2e
− u

B
√

n

(1−e
− u

B
√

n )2
in (2.2). Using that

g′(u) = −
ue

− u
B
√

n

((
u

B
√
n
+ 2
)
e
− u

B
√

n + u
B
√
n
− 2
)

(
1− e

− u
B
√

n

)3 ,
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a short calculation gives

f ′′(0) =
2
√
3

π
n

3
2 +O

(
n log(n)2

)
. (4.14)

Thus, assumption (i) in Proposition 2.5 holds for any fixed ε > 0 and |θ| ≤ εn− 1
2 .

It remains to check that assumption (ii) in Proposition 2.5 holds. First, we write

Ref(2πiθ)− f(0) = −2

m∑

k=1

(
Re
(
Log

(
1− e

− k
B
√

n
+2πiθ

))
− Log

(
1− e

− k
B
√

n

))

= 2

m∑

k=1

∑

ℓ≥1

e
−ℓ k

B
√

n

ℓ
(cos(2πkℓθ)− 1) ≤ 2

m∑

k=1

e
− k

B
√

n (cos(2πkθ)− 1) .

We analyze the sum in the exponential as in [28], p. 13. Because it is a Riemann sum, we have,

for n sufficiently large and εn− 1
2 ≤ |θ| ≤ 1

2 ,

m∑

k=1

e
− k

B
√

n (cos(2πkθ)− 1)

= −B
√
n

m∑

k=1

e
− k

B
√

n (1− cos(2πkθ))
1

B
√
n
< −B

√
n

2

∫ m
B
√

n

0
e−u

(
1− cos

(
2πB

√
nθu

))
du

< −B
√
n

2
inf

θ≥εn−1
2

∫ T

0
e−u

(
1− cos

(
2πB

√
nθu

))
du = −B

√
n

2
inf
s≥ε

∫ T

0
e−u (1− cos (2πBsu)) du,

for any T > 0, since m
B
√
n
→ ∞. The infimum above is positive, since the function

s 7→
∫ T

0
e−u (1− cos (2πBsu)) du

is continuous and nonzero on [ε,∞) and tends to 1− e−T > 0 as s → ∞ by the Riemann–Lebesgue
Lemma, so assumption (ii) in Proposition 2.5 holds, and we conclude that

um(n) ∼ ef(0)√
2πf ′′(0)

. (4.15)

Recalling (4.10) and using ef(0) = (q)−2
m qm−n, the cancellation yields

Qq,m(N = n) ∼ 1√
2πf ′′(0)

.

Plugging in (4.14) proves (4.3).
Note that the asymptotic behavior of f(0) is only required to prove (4.4). By definition,

Pn(PK = m) =
um(n)

u(n)
.

Plugging in (4.12) and (4.14) into (4.15) and using the asymptotic due to Auluck ([2], eq. (24))

u(n) ∼ e
2
√

n
3

8·3
3
4 n

5
4
proves (4.4).
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For strongly unimodal sequences, we make a very similar argument using Proposition 2.5. A
more probabilistic approach for this case is similar to the proof of Proposition 3 in [7]. We write

u∗m(n) =

∫ 1
2

− 1
2

exp (f∗(2πiθ)) dθ,

where this time,

f∗(z) :=
n−m− 1

A
√
n

+ (m+ 1− n)z + 2
m∑

k=1

log
(
1 + e

− k
A
√

n
+kz
)
.

We have

f∗(0) =
n−m− 1

A
√
n

+ 2

m∑

k=1

log
(
1 + e

− k
A
√

n

)
, f ′

∗(0) = m+ 1− n+ 2

m∑

k=1

k

e
k

A
√

n + 1
,

f ′′
∗ (0) = 2

m∑

k=1

k2e
− k

A
√
n

(
1 + e

− k
A
√

n

)2 .

Next, we use Lemma 2.2 with x 7→ e
− k

A
√

n , s 7→ 2πkθ to compute

∣∣∣∣f∗(2πiθ)− f∗(0)− f ′
∗(0)2πiθ − f ′′

∗ (0)
(2πiθ)2

2

∣∣∣∣ ≤ C

m∑

k=1

k3e
− k

A
√

n

(
1− e

− k
A
√

n

)3 |θ|
3 = O

(
θ3n2

)
,

similarly to before. We now find the asymptotic behavior of f∗(0), f ′
∗(0), and f ′′

∗ (0) using Lemma
2.1. The reader may consult the proof of Propositions 1 and 2 in [7] for similar asymptotic calcu-
lations. We obtain the following

f∗(0) = π

√
2

3
n− r − e−r − log

(
4A

√
n
)
+ o(1), (4.16)

f ′
∗(0) = O

(√
n log(n)

)
, (4.17)

f ′′
∗ (0) =

2
√
6

π
n

3
2 +O

(
n log(n)2

)
. (4.18)

It remains to check condition (ii). Here, the analysis is similar to (p. 253 in [29]). First, we use
the identity

∣∣∣∣
1 + qke2πikθ

1 + qk

∣∣∣∣
2

=
1

(1 + qk)
2

(
1 + 2qk cos (2πkθ) + q2k

)
= 1− 2qk (1− cos(2πθ))

(1 + qk)
2 ,

where we recall that q = e
− 1

A
√

n . Thus,

|exp (f∗(2πiθ)− f∗(0))| =
m∏

k=1

∣∣∣∣
1 + qke2πikθ

1 + qk

∣∣∣∣
2

=

m∏

k=1

(
1− 2qk (1− cos(2πθ))

(1 + qk)
2

)
,
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so

Re(f∗(2πiθ))− f∗(0) =
m∑

k=1

log

(
1− 2qk(1− cos(2πkθ))

(1 + qk)
2

)
≤ −

m∑

k=1

2qk(1− cos(2πkθ))

(1 + qk)2

≤ −2

m∑

k=1

qk(1− cos(2πkθ)),

which gives the same Riemann sum as in the estimate of Re(f(2πiθ))− f(0) with the constants A

and B swapped. Thus, the above is −δε
√
n for some δε > 0 and εn− 1

2 ≤ |θ| ≤ 1
2 exactly as before,

so assumption (ii) holds, and Proposition 2.5 implies

u∗m(n) ∼ ef∗(0)√
2πf ′′∗ (0)

.

We then get (4.5) exactly as before, by plugging in (4.18). For (4.6), we plug in (4.16) and (4.18)

and use the asymptotic u∗(n) ∼ e
π

√
2
3n

8·6
1
4 n

3
4
due to Rhoades ([27], Theorem 1.1). �

The next proposition handles the numerator in Proposition 4.3 by providing an explicit set Bn,m,
given a simple condition.

Proposition 4.6. Suppose that an ≤ bn are sequences of integers such that

∑

an≤k≤bn

k2qk

(1− qk)
2 = o

(
c2n
)

(4.19)

holds for a sequence cn = o(n
3
4 ). Then for bn,m := min{bn,m},

Bn,m :=




(
x
[j]
k

)
j∈{L,R}

an≤k≤bn,m

:

∣∣∣∣∣∣

∑

an≤k≤bn,m

2kqk

1− qk
−

∑

an≤k≤bn,m

k
(
x
[L]
k + x

[R]
k

)
∣∣∣∣∣∣
≤ cn



× {0}2(bn−bn,m)

satisfies the hypotheses of Proposition 4.3, so dTV(Pn,m(X−1
[an,bn]

),Qq,m(X−1
[an,bn]

)) → 0 uniformly

for r in any [r1, r2].
For strongly unimodal sequences, we have dTV(P

∗
n,m(X−1

[an,bn]
),Q∗

q,m(X−1
[an,bn]

)) → 0 if

∑

an≤k≤bn

k2qk

(1 + qk)
2 = o

(
c2n
)

(4.20)

for cn = o(n
3
4 ) with

B∗
n,m :=




(
x
[j]
k

)
j∈{L,R}

an≤k≤bn,m

:

∣∣∣∣∣∣

∑

an≤k≤bn,m

2kqk

1 + qk
−

∑

an≤k≤bn,m

k
(
x
[L]
k + x

[R]
k

)
∣∣∣∣∣∣
≤ cn



× {0}2(bn−bn,m).

Proof. To show Qn,m

(
X[an,bn] ∈ Bn,m

)
→ 1, we use Lemma 2.6. Note that we have

Eq,m

(
X

[L]
k

)
=
(
1− qk

)∑

ℓ≥1

ℓqkℓ =
qk

1− qk
,

Varq,m

(
X

[L]
k

)
=
(
1− qk

)∑

ℓ≥1

ℓ2qkℓ − q2k

(1− qk)
2 =

qk + q2k

(1− qk)
2 − q2k

(1− qk)
2 =

qk

(1− qk)
2 .
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These are also exactly the same for X
[R]
k . Thus, we have

Eq,m


 ∑

an≤k≤bn,m

k
(
X

[L]
k +X

[R]
k

)

 =

∑

an≤k≤bn,m

2kqk

1− qk
,

and, using independence,

Varq,m


 ∑

an≤k≤bn,m

k
(
X

[L]
k +X

[R]
k

)

 =

∑

an≤k≤bn,m

2k2qk

(1− qk)2
.

Thus, by Chebyshev’s Inequality (Lemma 2.6) and the definition of Bn,m

Qn,m

(
X[an,bn] ∈ R

bn−an+1 \Bn,m

)
≤ c−2

n

∑

an≤k≤bn,m

2k2qk

(1− qk)
2 = o(1),

as required. Now let x = (x
[j]
k )j∈{L,R},an≤k≤bn,m

× {0}bn−bn,m ∈ Bn,m, and write
∑

x :=
∑

an≤k≤bn,m

k
(
x
[L]
k + x

[R]
k

)
.

We want to show that

Qq,m(N = n|X[an,bn] = x) ∼ 1

2 · 3 1
4n

3
4

.

The proof of this is simply a slight adjustment to the proof of the first part of Proposition 4.4.
Again, we wish to apply Proposition 2.5 to a Cauchy integral. We write, using independence,

Qq,m(N = n|X[an,bn] = x) =
Qq,m

(
N = n and X[an,bn] = x

)

Qq,m(X[an,bn] = x)

=
Qq,m

(
N = n and X[an,bn] = x

)
∏

an≤k≤bn,m
Qq,m

(
X

[L]
k = x

[L]
k

)
Qq,m

(
X

[R]
k = x

[R]
k

)

=
(q)2mqn−m

q
∑

x
(q)2

bn,m

(q)2an−1

#
{
λ : N(λ) = n,PK(λ) = m,X[an,bn](λ) = x

}

=
(q)2m(q)2an−1q

n−m

(q)2bn,m
q
∑

x

∫ 1
2

− 1
2

exp(F (2πiθ))dθ,

where now

F (z) :=
n−m−∑x

B
√
n

+
(∑

x+m− n
)
z − 2

∑

k∈[1,m]\[an,bn,m]

Log
(
1− e

− k
B
√

n
+kz
)
.

We have, with all sums are over k ∈ [1,m] \ [an, bn,m]

F (0) =
n−m−∑x

B
√
n

− 2
∑

k

log
(
1− e

− k
B
√

n

)
, F ′(0) =

∑
x+m− n+ 2

∑

k

k

e
k

B
√

n − 1
,

F ′′(0) = 2
∑

k

k2e
− k

B
√

n

(
1− e

− k
B
√

n

)2 ,
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The exact asymptotic behavior of F (0) is immaterial, since

(q)2m(q)2an−1q
n−m

(q)2bn,m
q
∑

x
eF (0) = 1.

Since x ∈ Bn,m, we have

F ′(0) = m− n+ 2
∑

k≤m

k

e
k

B
√

n − 1
+ o(cn) = f ′(0) + o(cn) ∼ f ′(0),

and by hypothesis,

F ′′(0) = 2
∑

k≤m

k2e
− k

B
√

n

(
1− e

− k
B
√

n

)2 + o
(
c2n
)
= f ′′(0) + o

(
c2n
)
∼ f ′′(0).

Finally, Lemma 2.2 is used on individual summands as in the proof of Proposition 4.4, so assumption
(i) in Proposition 2.5 holds.

It remains to check assumption (ii). First, we claim that there is an interval [α
√
n, β

√
n] contained

in [1,m] \ [an, bn,m]. Indeed, it is contained in [1,m] for large n and r in any [r1, r2], and we have

∑

α
√
n≤k≤β

√
n

k2qk

(1− qk)
2 ≍ n

3
2 ,

by estimating the Riemann sum by an integral as in the calculation for f ′′(0). If for all α and β

this intersected [an, bn,m], then this would contradict the condition (4.20).
Now we can estimate the contribution from the minor arc as before, using

∑

k∈[1,m]\[an,bn,m]

e
− k

B
√

n (cos (2πkθ)− 1) <
∑

α
√
n≤k≤β

√
n

e
− k

B
√

n (cos (2πkθ)− 1) .

Similarly to before, we bound this negative sum from above by (for εn− 1
2 ≤ |θ| ≤ 1

2)

−
√
n

2B
inf
s≥ε

∫ β
B

α
B

(1− cos(2πsu)) e−udu,

and assumption (ii) holds as before. Employing Proposition 2.5, we conclude that for x ∈ Bn,m,

Qq,m(N = n|X[an,bn] = x) ∼ (q)2m(q)2an−1q
n−m

(q)2bn,m
q
∑

x
eF (0) 1√

2πF ′′(0)
∼ 1√

2πf ′′(0)
∼ Qq,m(N = n).

The proof for strongly unimodal sequences is similar, mirroring the proof of Proposition 4.4 for
strongly unimodal sequences. The main difference is that, if E∗

q,m and Var∗q,m denote expectation

and variance under Q∗
q,m, then as X

[j]
k ∈ {0, 1}, we have

E∗
q,m

(
X

[j]
k

)
=

qk

1 + qk
and Var∗q,m

(
X

[j]
k

)
=

qk

(1 + qk)2
,

for j ∈ {L,R}. �
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5. Proofs of the main results

We now apply Proposition 4.6 to the sequences an and bn for which X[an,bn] determines the
random variables in Theorems 1.4, 1.5, 1.8, 1.10, and 1.11. We then use the conditioned Boltzmann
model Qq,m to compute probability densities, identify Riemann sums and conclude the limiting
distributions.

5.1. Small parts: the proofs of Theorem 1.5, Corollary 1.6, and Theorem 1.11.

Proof of Theorem 1.5. Take an = 1 and bn = kn = o(n
1
4 ), so that

∑

k≤kn

k2qk

(1− qk)
2 ∼ n

3
2

B

∫ kn
B
√

n

0

u2e−u

(1− e−u)2
du = o

(
n

3
2

)
,

and Proposition 4.6 applies to X[1,kn]. Let x = (x
[j]
k )j∈{L,R},k≤kn ∈ R

2kn
≥0 be such that x

[j]
k ∈ k

B
√
n
N.

Then, using independence and the exact same analysis as in [18] §5,

Qq,m

(
X[1,kn] = x

)
=

∏

j∈{L,R}
k≤kn

Qq,m

(
X

[j]
k =

B
√
n

k
x
[j]
k

)
=

∏

j∈{L,R}
1≤k≤kn

(
1− qk

)
q

B
√

n

k
x
[j]
k

k

∼ kn!
2

(
1

B
√
n

)2kn ∏

j∈{L,R}
k≤kn

e−x
[j]
k =

∏

j∈{L,R}
k≤kn

e−x
[j]
k

k

B
√
n
. (5.1)

Note that the second to last step, which comes from the analysis in [18], is the only place kn = o(n
1
4 )

is used, rather than just o(n
1
2 ). This is uniform in x and independent of m. Hence, for any

B =
∏

k≤kn
j∈{L,R}

(
−∞, v

[j]
k

]
⊂ R

2kn ,

we have the following, uniformly for r in any [r1, r2], by recalling that x
[j]
k ∈ k

B
√
n
N:

Pn,m

(
X[1,kn] ∈ B

)
∼ Qq,m

(
X[1,kn] ∈ B

)
∼
∑

w∈B

∏

j∈{L,R}
k≤kn

e−w
[j]
k

k

B
√
n

∼
∏

k≤kn
j∈{L,R}

∫ v
[j]
k

−∞
e−u

[j]
k du

[j]
k =: νn(B).
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Thus by Corollary 4.5, we have

|Pn

(
X[1,kn] ∈ B

)
− νn(B)|

=

∣∣∣∣∣
∑

r

Pn,m

(
X[1,kn] ∈ B

)
Pn(PK = m)− νn(B)

∣∣∣∣∣

=

∣∣∣∣∣
∑

r

(
Pn,m

(
X[1,kn] ∈ B

)
− νn(B)

)
Pn(PK = m)

∣∣∣∣∣

≤


∑

r<r1

+
∑

r∈[r1,r2]
+
∑

r>r2


∣∣Pn,m

(
X[1,kn] ∈ B

)
− νn(B)

∣∣Pn(PK = m)

≤ 2e−e−r1
+

∑

r∈[r1,r2]

∣∣Pn,m

(
X[1,kn] ∈ B

)
− νn(B)

∣∣Pn(PK = m) + 2
(
1− e−e−r2

)

∼ 2e−e−r1
+ 2

(
1− e−e−r2

)
.

Taking r1 and r2 arbitrarily close to −∞ and ∞, respectively, completes the proof of the first part

of Theorem 1.5. The second part is proved in the same way, merely noting that for k = o(n
1
2 ) and

w[L], w[R] ∈ k
B
√
n
N0, we have

Qq,m

(
kX

[L]
k

B
√
n

= w[L],
kX

[R]
k

B
√
n

= w[R]

)
=
(
1− e

− k
B
√

n

)2
e−w[L]−w[R] ∼

(
k

B
√
n

)2

e−w[L]−w[R]
,

and similarly for k = ⌊c√n⌋ and u[L], u[R] ∈ N0,

Qq,m

(
X

[L]
k = u[L],X

[R]
k = u[R]

)
∼
(
1− e−

c
B

)2
e−

cu[L]

B
− cu[R]

B . �

Corollary 1.6 is proved similarly as above, again using (5.1) to estimate the Qq,m probabilities.
We now turn to small parts in strongly unimodal sequences.

Proof of Theorem 1.11. To prove Theorem 1.11, we can apply Proposition 4.6 when we take an = 1

and bn = kn = o(n
1
2 ), for

∑

k≤kn

k2qk

(1 + qk)
2 ∼ n

3
2

A

∫ kn
A
√

n

0

u2e−u

(1 + e−u)2
du = o

(
n

3
2

)
.

Now, if x ∈ {0, 1}2kn , then we simply note that

Q∗
q,m

(
X[1,kn] = x

)
=

∏

k≤kn
j∈{L,R}

Q∗
q,m

(
X

[j]
k = x

[j]
k

)
=

∏

k≤kn
j∈{L,R}

e
− kx

[j]
k

A
√

n

1 + e
− k

A
√

n

∼ 1

22kn
. �

5.2. Large parts: the proofs of Theorems 1.4 and 1.10. Let tn = o(n
1
4 ) and let

Wn :=

(
Y

[j]
t −B

√
n log(2B

√
n)

B
√
n

)

j∈{L,R},1≤t≤tn

.
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Define ξn,m := Pn,m(W−1
n ), ζn,m := Qq,m(W

−1
n ) and let νn,r be the probability measure on

(−∞, r]2tn with density




1
22tn e

e−r−
∑tn

t=1(u
[L]
t +u

[R]
t )− e

−u
[L]
tn

2
− e

−u
[R]
tn

2 if u
[j]
1 ≥ · · · ≥ u

[j]
tn

for j ∈ {L,R},
0 otherwise.

Here it is easier to first that ζn,m(U) ∼ νn,r(U) uniformly for r in any [r1, r2] for

U =
∏

t≤tn
j∈{L,R}

(
−∞, v

[j]
t

]
. (5.2)

We then use Proposition 4.6 to complete the proof. Let w = (w
[j]
t )j∈{L,R},t≤tn be such that

r ≥ w
[L]
1 ≥ · · · ≥ w

[L]
tn

r ≥ w
[R]
1 ≥ · · · ≥ w

[R]
tn

and

y
[j]
t := B

√
n
(
w

[j]
t + log

(
2B

√
n
))

∈ Z.

Directly we find

ζn,m(w) = Qq,m

((
Y

[L]
t

)
t≤tn

×
(
Y

[R]
t

)
t≤tn

=
(
y
[L]
t

)
t≤tn

×
(
y
[R]
t

)
t≤tn

)

= q−m(q)2mq
m+

∑

t≤tn

(

y
[L]
t +y

[R]
t

)∑

λ

q|λ|,

where the sum is taken over pairs of partitions λ with parts at most y
[j]
tn
, respectively, for j ∈ {L,R}.

Continuing using Lemma 2.3, this is

q

∑

t≤tn

(

y
[L]
t +y

[R]
t

)

(q)2m
(q)

y
[L]
tn

(q)
y
[R]
tn

= q

∑

t≤tn

(

y
[L]
t +y

[R]
t

)

∏

y
[L]
tn

<t≤m

(
1− qt

) ∏

y
[R]
tn

<t≤m

(
1− qt

)

= e
−

∑

t≤tn

(

w
[L]
t +w

[R]
t

)(
1

2B
√
n

)2tn ∏

y
[L]
tn

<t≤m

(
1− qt

) ∏

y
[R]
tn

<t≤m

(
1− qt

)

∼ e
−

∑

t≤tn

(

w
[L]
tn

+w
[R]
tn

)(
1

2B
√
n

)2tn

ee
−r− e

−w
[L]
tn

2
− e

−w
[R]
tn

2

=
1

22tn
e
e−r− ∑

t≤tn

(w
[L]
t +w

[R]
t )− e

−w
[L]
tn

2
− e

−w
[R]
tn

2

(
1

B
√
n

)2tn

,

uniformly for r, w
[L]
t , w

[R]
t ≥ − log(n)

8 . Now let

S :=

{
w : w

[L]
tn

≥ − log(n)

8
and w

[R]
tn

≥ − log(n)

8

}
.

Since w
[j]
t ∈ 1

B
√
n
(Z − log(2B

√
n)), recognizing Riemann sums gives

ζn,m(U ∩ S) ∼ νn,r(U ∩ S),
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for U as in (5.2) uniformly for r in any [r1, r2]; in particular, we have ζn,m(S) ∼ νn,r(S). But,
letting Sc denote the complement of S, we see that νn,r(S

c) → 0 follows exactly as in [18], p. 724.
Now note that

0 = 1− 1 = ζn,m(Sc)− νn,r(S
c) + ζn,m(S)− νn,r(S) = ζn,m(Sc) + o(1).

Thus, ζn,m(Sc) → 0 also, and we have ζn,m(U) ∼ νn,r(U) uniformly for r in any [r1, r2], as desired.
Recalling that

Y
[j]
t = sup



ℓ :

∑

k≥ℓ

X
[j]
k ≥ t



 ,

we see that Wn ∈ S if and only if for j ∈ {L,R}

sup



ℓ :

∑

k≥ℓ

X
[j]
k ≥ tn



 ≥ B

√
n log

(
2Bn

3
8

)
,

i.e., if and only if Y
[j]
tn

depends only on X
[j]
k for k ≥ B

√
n log(2Bn

3
8 ). But now taking an =

B
√
n log(2Bn

3
8 ) and bn = n, we have

∑

an≤k≤bn

k2qk

(1− qk)
2 ≤ B3n

3
2

∫ ∞

log
(

2Bn
3
8

)

u2e−u

(1− e−u)2
du = o

(
n

3
2

)
,

and Proposition 4.6 applies to X[an,n]. This in turn yields ξn,m(U ∩ S) ∼ ζn,m(U ∩ S) for U as
above, and then finally ξn,m(U) ∼ ζn,m(U) as before. Using the uniformity of these estimates for
r ∈ [r1, r2] finishes the proof.

The proof of Theorem 1.10 is the same, except we use Lemma 2.3 to estimate the product that
arises in the calculation ofQ∗

q,m(Wn = w). �

5.3. Total small parts: proof of Theorem 1.8. As in Subsection 5.1, Proposition 4.6 applies

to X[1,kn] with kn = o(n
1
2 ). This clearly implies that for

Wn :=

(∑
k≤kn

X
[j]
k −B

√
nk log (kn)

B
√
n

)

j∈{L,R}
,

we have dTV(Pn,m(W−1
n ),Qq,m(W−1

n )) → 0. Now, as in Section 5.1, we write

Pn

(
(Wn)j ≤ vj, j ∈ {L,R}

)

=


∑

r<r1

+
∑

r∈[r1,r2]
+
∑

r>r2


Pn,m

(
(Wn)j ≤ vj , j ∈ {L,R}

)
Pn (PK = m) . (5.3)

We ignore the sums over the ranges r < r1 and r > r2 which tend to 0, and in the range r ∈ [r1, r2]
we may replace Pn,m with Qq,m, so that (using independence) this is asymptotic to

∑

r∈[r1,r2]
Pn,m(PK = m)

∏

j∈{L,R}
Qq,m

(
(Wn)j ≤ vj

)
. (5.4)

Following §8 of [18], we focus now on a particular term of Qq,m and first restrict the range to

k ≤ ℓn, where ℓn := ⌊k
1
2
n ⌋ = o(n

1
4 ), so that we can use the calculation (5.1). It is also simpler if we
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first do this without subtracting the B
√
n log (kn) term. Thus, we have

Qq,m

(∑
k≤ℓn

X
[j]
k

B
√
n

≤ vj

)

=
∑

w
[j]
kn

∈ 1
B
√

n
N0∩[0,vj ]

· · ·
∑

w
[j]
1 ∈ 1

B
√

n
N0∩

[

0,vj−w
[j]
ℓn

−···−w
[j]
2

]

ℓn∏

k=1

Qq,m

(
X

[j]
k

B
√
n
= w

[j]
k

)
. (5.5)

Now, by (5.1),

ℓn∏

k=1

Qq,m

(
X

[j]
k

B
√
n
= w

[j]
k

)
=

ℓn∏

k=1

Qq,m

(
X

[j]
k =

B
√
n

k
kw

[j]
k

)
∼ ℓn!

ℓn∏

k=1

(
e−kw

[j]
k

1

B
√
n

)
.

Plugging this into (5.5) and recognizing Riemann sums, we get, by Lemma 2.4

Qq,m

(∑
k≤ℓn

X
[j]
k

B
√
n

≤ vj

)
∼ ℓn!

∫ vj

0
· · ·
∫ vj−u

[j]
ℓn

−···−u
[j]
2

0
e−u

[j]
1 −2u

[j]
2 −...ℓnu

[j]
ℓndu

[j]
1 · · · du[j]ℓn

=
(
1− e−vj

)ℓn
.

Since this is uniform in vj ∈ [0,∞), we may replace vj 7→ vj + log(ℓn) (for fixed vj), to get

Qq,m

(∑
k≤ℓn

X
[j]
k −B

√
n log (ℓn)

B
√
n

≤ vj

)
∼ e−e

−vj
.

But we want to show that the above holds with ℓn 7→ kn. But since ℓn = ⌊k
1
2
n ⌋, this is equivalent

to proving that
∑

k
1
2
n <k≤kn

X
[j]
k −B

√
n log

(
k

1
2
n

)

B
√
n

asymptotically has a point-mass distribution with mean 0. This is accomplished by showing that
its expectation and variance under Qq,m are both o(1). This in turn follows from

Varq,m




∑
k
1
2
n <k≤kn

X
[j]
k −B

√
n log

(
k

1
2
n

)

B
√
n


 = Varq,m




1

B
√
n

∑

k
1
2
n <k≤kn

X
[j]
k




=
1

B2n

∑

k
1
2
n <k≤kn

qk

(1− qk)
2 ∼ 1

B2n

∑

k
1
2
n <k≤kn

1
(
1− e

− k
B
√

n

)2 ∼
∑

k
1
2
n <k≤kn

1

k2
= o(1),

Eq,m




1

B
√
n

∑

k
1
2
n <k≤kn

X
[j]
k


 =

1

B
√
n

∑

k
1
2
n <k≤kn

qk

1− qk
=

∑

k
1
2
n <k≤kn

1

k
+ o(1) = log

(
k

1
2
n

)
+ o(1).

Thus, we have

Qq,m

(
(Wn)j ≤ vj

)
= Qq,m

(∑
k≤kn

X
[j]
k −B

√
n log (kn)

B
√
n

≤ vj

)
∼ e−e

−vj
.
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Using this in (5.4) and then replacing Pn,m in (5.3) with Qq,m, the range over r ∈ [r1, r2] is
asymptotic to

∑

r∈[r1,r2]
Pn(PK = m)e−e−vL−e−vR ∼

(
e−e−r2 − e−e−r1

)
e−e−vL−e−vR

,

by Proposition 4.4. Taking r2 → ∞ and r1 → −∞ completes the proof. �

6. Moment Generating Functions

In this section, we outline an approach towards refining Theorem 1.3 with the method of mo-
ments. This discussion is independent of our conditioned Boltzmann model. Throughout this
section, we assume that q ∈ C with |q| < 1. Recall that Y1(λ) denotes the largest part in the
integer partition λ. By standard combinatorial arguments, one finds the generating function for
the k-th moment of the largest part for partitions to be

MPk(q) =
∑

n≥0

mpk(n)q
n :=

∑

λ∈P
λ1(λ)

kq|λ| =
∑

m≥0

mkqm

(q)m
, for k ≥ 0.

Analogous to the mean found in Theorem 1.3, Theorem 1.1 implies that

mp1(n) = A
√
n log(A)

√
n+Aγ

√
n (1 + o(1)) ,

where A =
√
6

π
, as before. Ngo and Rhoades used the factorization ([22], equation (1.8)),

MP1(q) = MP0(q)
∑

n≥1

qn

1− qn
=

1

(q)∞

∑

n≥1

qn

1− qn
,

essentially a product of a modular form and a quantum modular form, to improve the error term
to log(n).

Theorem 6.1 (Theorem 1.5 in [22]). We have

mp1(n) = A
√
n log

(
A
√
n
)
+Aγ

√
n+O (log(n)) .

Furthermore, they found the recursions ([22], remark on p. 10)

MPk(q) =
k−1∑

j=0

(
k − 1

j

)
MPj(q)Sk−1−j(q), where Sk(q) :=

∑

n≥1

nkqn

1− qn
. (6.1)

which express each MPk recursively in terms of modular forms and quantum modular forms. They
stated that their methods could be used to prove asymptotic expansions for all moments mpk(n).

Turning to unimodal sequences, recall that PK(λ) denotes the size of the peak. Let

MUk(q) =
∑

n≥0

muk(n)q
n :=

∑

λ∈U
PK(λ)kq|λ| =

∑

m≥0

mkqm

(q)2m
, for k ∈ N0.

In particular, the generating function for unimodal sequences satisfies (see [30], Proposition 2.5.1)

U(q) = MU0(q) =
1

(q)2∞

∑

n≥0

(−1)nq
n(n+1)

2 ,

which is a product of a modular form and a false theta function. Recently, Nazaroglu and the
second author discovered how to fit this false theta function into a modular framework [12]. Thus,
it would be interesting if we could relate the higher moments MUk to MU0 in the way that Ngo
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and Rhoades did for partitions. We leave this as an open problem, but we prove a recurrence that
is somewhat analogous to (6.1).

Recall that the complete Bell polynomials Bk = Bk(a1, . . . , ak) are defined by

∑

k≥0

Bk

k!
uk := exp


∑

k≥1

ak

k!
uk


 .

Theorem 6.2. For k ≥ −1 and n ≥ 1, define

Sk,n(q) :=
∑

m≥1

mkqnm

1− qm
,

and let Bk,n := Bk (S0,n, . . . , Sk−1,n) be the complete Bell polynomials in Sj,n. Then

MUk(q) =
1

(q)2∞

∑

n≥0

(−1)nq
n(n+1)

2 Bk,n+1. (6.2)

Remark. Note that we have the recurrence (see [13], §3.3.)

Bk :=

{
1 if k = 0,
∑k−1

j=0

(
k−1
j

)
Bk−jaj+1 if k ≥ 1.

But the reason that we cannot directly obtain a recurrence for the MUks like in (6.1) is that the
Bs and Ss depend on n.

Proof of Theorem 6.2. Define

U(ζ; q) :=
∑

λ∈U
ζPK(λ)q|λ| =

∑

m≥0

ζmqm

(q)2m
,

and let δζ := ζ ∂
∂ζ
. Then

MUk(q) =
[
δkζ (U(ζ; q))

]
ζ=1

(6.3)

Using straightforward manipulation with Euler’s two series expansions ([2], Corollary 2.2)

1

(ζ; q)∞
=
∑

n≥0

ζn

(q)n
, (−ζ; q)∞ =

∑

n≥0

ζnq
n(n−1)

2

(q)n
,

we have

U(ζ; q) = 1 +
∑

m≥1

ζmqm

(q)2m
= 1 +

1

(q)∞

∑

m≥1

ζmqm
(
qm+1

)
∞

(q)m

= 1 +
1

(q)∞

∑

m≥1
n≥0

(−1)nζmqm+n(m+1)+
n(n−1)

2

(q)m(q)n
= 1 +

1

(q)∞

∑

m≥1
n≥0

(−1)nq
n(n+1)

2

(q)n
· ζ

mq(n+1)m

(q)m

= 1 +
1

(q)∞

∑

n≥0

(−1)nq
n(n+1)

2

(q)n

(
1

(ζqn+1)∞
− 1

)
.

By the chain rule, [
δkζ

(
1

(ζqn+1)∞

)]

ζ=1

=

[
∂k

∂uk
1

(euqn+1)∞

]

u=0

,
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so it suffices to find the Taylor expansion of (euqn+1)−1
∞ about u = 0. We first find the Taylor

expansion of its logarithm and then exponentiate, which introduces the complete Bell polynomials.
We have

Log

(
1

(euqn+1)∞

)
= −

∑

ℓ≥n+1

Log
(
1− euqℓ

)
=
∑

ℓ≥n+1
m≥1

emuqmℓ

m
=
∑

m≥1

emuq(n+1)m

m(1− qm)
=
∑

k≥0

uk

k!
Sk−1,n+1,

where clearly S−1,n+1 = Log( 1
(qn+1)∞

). Hence,

1

(euqn+1)∞
=

1

(qn+1)∞
exp


∑

k≥1

uk

k!
Sk−1,n+1


 =

1

(qn+1)∞

∑

k≥0

uk

k!
Bk,n+1.

Thus, [
δkζ

(
1

(ζqn+1)∞

)]

ζ=1

=
Bk,n+1

(qn+1)∞
,

and we obtain (6.2) by plugging into (6.3). �

We leave further exploration of the q-series MKk(q) as an open problem.
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