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Abstract
In this paper, we consider representations of positive integers as sums of generalized
m-gonal numbers, which extend the formula for the number of dots needed to make
up a regular m-gon. We mainly restrict to the case where the sums contain at most
four distinct generalizedm-gonal numbers, with the secondm-gonal number repeated
twice, the third repeated four times, and the last is repeated eight times. For a number
of small choices of m, Sun conjectured that every positive integer may be written in
this form. By obtaining explicit quantitative bounds for Fourier coefficients related to
theta functions which encode the number of such representations, we verify that Sun’s
conjecture is true for sufficiently large positive integers. Since there are only finitely
many choices of m appearing in Sun’s conjecture, this reduces Sun’s conjecture to a
verification of finitely many cases. Moreover, the bound beyond which we prove that
Sun’s conjecture holds is explicit.

Keywords Polygonal numbers · Theta functions · Modular forms · Quadratic forms

1 Introduction and Statement of Results

For m ∈ N≥3 and � ∈ Z, let pm(�) be the �-th (generalized) m-gonal number

pm(�) := 1

2
(m − 2)�2 − 1

2
(m − 4)�.
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For � ∈ N, these count the number of dots contained in a regular polygon withm sides
having � dots on each side. For example, the special case m = 3 corresponds to trian-
gular numbers, m = 4 gives squares, and m = 5 corresponds to pentagonal numbers.
There are several conjectures related to sums of polygonal numbers. Specifically, for
α ∈ N

d ,1 we are interested in the solvability of the Diophantine equation

∑

1≤ j≤d

α j pm(� j ) = n (1.1)

with � j ∈ N0 or � j ∈ Z. We call such a sum universal if it is solvable for every
n ∈ N. Fermat stated (his claimed proof was not found in his writings) that every
positive integer is the sum of three triangular number, four squares, five pentagonal
numbers, and in general at most m m-gonal numbers. In other words, he claimed that
the sum

∑
1≤ j≤m pm(� j ) is universal. His claim for squares (m = 4) was proven by

Lagrange in 1770, the claim for triangular numbers (m = 3) was shown by Gauss
in 1796, and the full conjecture was proven by Cauchy in 1813. Going in another
direction, Ramanujan fixed m = 4 and conjectured a full list of choices of α ∈ N

4

for which the resulting sum is universal; this conjecture was later proven by Dickson
[11]. Following this, the classification of universal quadratic forms was a central area
of study throughout the twentieth century, culminating in the Conway–Schneeberger
15-theorem [3, 8] and the 290-theorem [4], which state that arbitrary quadratic forms
whose cross terms are even (resp. are allowed to be odd) are universal if and only if
they represent every integer up to 15 (resp. 290). Theorems of this type are now known
as finiteness theorems. Namely, given an infinite set S ⊆ N, one determines a finite
subset S0 of S such that a solution to (1.1) exists for every n ∈ S if and only if it exists
for every n ∈ S0. Taking S = N, one obtains a condition for universality of a given
sum of polygonal numbers. For example, choosing m = 3 or m = 6, (1.1) is solvable
with � ∈ Z

d for all n ∈ N if and only if it is solvable for every n ≤ 8 [6], for m = 5
it is solvable with � ∈ Z

d for all n ∈ N if and only if it is solvable for every n ≤ 109
[13], while it is solvable with � ∈ N

d
0 for all n ∈ N if and only if it is solvable for

every n ≤ 63 [14] and for m = 8 it is solvable for � ∈ Z
d for all n ∈ N if and only if

it is solvable for every n ≤ 60 [15].
Here, we consider the question of universality in the case α = (1, 2, 4, 8) as one

varies m. Specifically, we have the following conjecture of Sun (see [21, Conjec-
ture 5.4]).

Conjecture 1.1 For m ∈ {7, 9, 10, 11, 12, 13, 14} and � ∈ Z
4, the equation

pm(�1) + 2pm(�2) + 4pm(�3) + 8pm(�4) = n (1.2)

is solvable for every n ∈ N.

Remark A proof of Conjecture 1.1 would give a classification of those m for which
the sum (1.1) is universal in the case α = (1, 2, 4, 8). By direct computation, one
sees that pm(�) ∈ {0, 1} or pm(�) ≥ m − 3. Using this, one obtains that (1.2) is not

1 We denote vectors like α in bold and the j-th component of a vector α we write as α j throughout.
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solvable for n = 16 for every m ≥ 20. For m = 16, m = 17, m = 18, and m = 19,
one finds directly that there is no solution for n = 29, n = 30, n = 16, and n = 17,
respectively. Moreover, for m ∈ {3, 6}, it is known by work of Liouville [18] that the
sum is universal, form = 4, it was conjectured by Ramanujan and proven by Dickson
[11] that the sum is universal, while for m = 5 (resp. m = 8), it was shown by Sun in
[20] (resp. [21]) to be universal.

In this paper, we prove that Conjecture 1.1 is true for n sufficiently large.

Theorem 1.2 For m ∈ {7, 9, 10, 11, 12, 13, 14}, there exists an explicit constant Cm

(defined in Table 2) such that (1.2) is solvable with � ∈ Z
4 for every n ∈ N≥Cm , with

the restriction that n �≡ 4 (mod 16) if m = 12.

Remark To prove Conjecture 1.1 form = 12, it suffices to show that (1.2) holds for all
n ∈ N with n �≡ 4 (mod 16) (see Lemma 5.1). Hence, the restriction in Theorem 1.2
is natural.

By completing the square, one easily sees that representations of integers as sums of
polygonal numbers are closely related to sums of squares with congruence conditions.
In particular, setting

rm,α(n) : = #

⎧
⎨

⎩� ∈ Z
4 :

∑

1≤ j≤4

α j pm(� j ) = n

⎫
⎬

⎭ ,

sr ,M,α(n) : = #

⎧
⎨

⎩x ∈ Z
4 :

∑

1≤ j≤4

α j x
2
j = n, x j ≡ r (mod M)

⎫
⎬

⎭ ,

we have

rm,(1,2,4,8)(n) = sm,2(m−2),(1,2,4,8)

(
8(m − 2)n + 15(m − 4)2

)
. (1.3)

Hence, since Conjecture 1.1 is equivalent to proving that rm,(1,2,4,8)(n) > 0 for every
n ∈ N and m ∈ {7, 9, 10, 11, 12, 13, 14}, the conjecture is equivalent to showing that
for every n ∈ N, we have

sm,2(m−2),(1,2,4,8)

(
8(m − 2)n + 15(m − 4)2

)
> 0. (1.4)

We investigate the numbers sr ,M,α(n) by forming the generating function (setting
q := e2π iτ )

�r ,M,α(τ ) :=
∑

n≥0

sr ,M,α(n)qn .

It is well known that these functions are modular forms (see Lemma 2.1 for the precise
statement). By the theory of modular forms, there is a natural decomposition

�r ,M,α = Er ,M,α + fr ,M,α, (1.5)
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where Er ,M,α lies in the space spanned by Eisenstein series and fr ,M,α is a cusp form.
In order to prove Theorem 1.2, we obtain in the special case r = m, M = 2(m − 2),
and α = (1, 2, 4, 8) an explicit lower bound for the n-th Fourier coefficient ar ,M,α(n)

of Er ,M,α in Corollary 4.2 and an explicit upper bound on the absolute value of the
n-th Fourier coefficient br ,M,α(n) of fr ,M,α in the proof of Theorem 1.2.

The paper is organized as follows. In Sect. 2, we recall properties of the theta
functions�r ,M,α , the actions of certain operators onmodular forms, the decomposition
of modular forms into Eisenstein series and cusp forms, and evaluate certain Gauss
sums. In Sect. 3, we investigate the growth of the theta functions toward all cusps and
use this to compute the Eisenstein series component of the decomposition (1.5). The
Fourier coefficients of the Eisenstein series components are then explicitly computed
and lower bounds are obtained in Sect. 4. We complete the paper by obtaining upper
bounds on the coefficients of the cuspidal part of the decomposition (1.5) and prove
Theorem 1.2 in Sect. 5.

2 Setup and Preliminaries

2.1 Modularity of the Generating Functions

In this subsection, we consider themodularity properties of the theta functions�r ,M,α .
To set notation, for �1(N ) ⊆ � ⊆ SL2(Z) (N ∈ N) and a character χ modulo N , let
Mk(�, χ) be the space of modular forms of weight k with character χ . In particular,
an element f in this space satisfies, for γ = ( a b

c d

) ∈ �,

f
∣∣
kγ (τ) := (cτ + d)−k f (γ τ) = χ(d) f (τ ).

Setting �N ,L := �0(N ) ∩ �1(L), by [7, Theorem 2.4], we have the following.

Lemma 2.1 For α ∈ N
4, we have

�r ,M,α ∈ M2

(
�4 lcm(α)M2,M ,

(∏4
j=1 α j

·
))

.

2.2 Operators on Non-holomorphic Modular Forms

For a translation-invariant function f with Fourier expansion (denoting τ = u + iv ∈
H)

f (τ ) =
∑

n≥0

c f ,v(n)qn,

we define the sieving operator (M , m ∈ N)

f
∣∣SM,m(τ ) :=

∑

n≥0
n≡m (mod M)

c f ,v(n)qn .
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As usual, we also define the V -operator (δ ∈ N) by

f
∣∣Vδ(τ ) :=

∑

n≥0

c f ,δv(n)qδn .

We require the modularity properties of (non-holomorphic) modular forms under the
operators SM,m and Vd . Arguing via commutator relations for matrices, a standard
argument (for example, see the proof of [17, Lemma 2]), one obtains the following.

Lemma 2.2 Suppose that k ∈ Z, L, N ∈ N with L | N, and f satisfies weight k
modularity on �N ,L .

(1) For d ∈ N, the function f |Vd satisfies weight k modularity on �lcm(4,Nd),L .
(2) For m ∈ Z and M ∈ N, the function f |SM,m satisfies weight k modularity on

�1(NM2).

It is useful to determine the commutator relations between the V -operator and sieving.

Lemma 2.3 Let m ∈ Z and M1, M2 ∈ N be given and set d := gcd(M1, M2) and

μ j := Mj
d . Then for any translation-invariant function f , we have

f
∣∣VM1

∣∣SM2,m =
{
f
∣∣Sμ2,μ1

m
d

∣∣VM1 if d | m,

0 otherwise,

where μ̄1 is the inverse of μ1 (mod μ2).

Proof Recall that

f
∣∣SM1,m

∣∣ VM2(τ ) =
∑

n≡m (mod M1)

c f ,M2v(n)qM2n,

f
∣∣VM1

∣∣ SM2,m(τ ) =
∑

n

c f ,M1v(n)qM1n
∣∣∣∣SM2,m(τ ) =

∑

n≡m (mod M2)

c̃ f ,v(n)qn

=
∑

n≡m (mod M2)
M1|n

c f ,M1v

(
n

M1

)
qn,

where

c̃ f ,v(n) :=
{
c f ,M1v

(
n
M1

)
if M1 | n,

0 otherwise.

If d = gcd(M1, M2) � m, then n ≡ m (mod M2) and M1 | n are not consistent, and
hence f |VM1 |SM2,m vanishes identically.
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We may hence assume that d | m and we note that gcd(μ1, μ2) = 1, obtaining

f
∣∣VM1

∣∣ SM2,m(τ ) =
∑

n
d ≡m

d (mod μ2)

M1|n

c f ,M1v

(
n

M1

)
qn

n 	→M1n=
∑

n≡μ̄1
m
d (mod μ2)

c f ,M1v(n)qM1n

= f
∣∣∣Sμ2,μ̄1

m
d

∣∣∣ VM1(τ ). ��

2.3 Decomposition Into Eisenstein Series and Cusp Forms

Comparing Fourier coefficients on both sides of (1.5), we have

sr ,M,α(n) = ar ,M,α(n) + br ,M,α(n). (2.1)

Theorem 1.2 is equivalent to showing (1.4) for n sufficiently large (with the restric-
tion that n �≡ 4 (mod 16) for m = 12). Roughly speaking, the approach in this
paper to proving (1.4) is to prove that for n sufficiently large with n ≡ 15(m −
4)2 (mod 8(m − 2)) (noting the congruence conditions in (1.4))

ar ,M,α(n) > |br ,M,α(n)|.

To obtain an upper bound for |br ,M,α(n)|, we recall that Deligne [9] proved that for
a normalized newform f (τ ) =∑n≥1 c f (n)qn of weight k on�0(N )withNebentypus
character χ (normalized so that c f (1) = 1), we have

|c f (n)| ≤ σ0(n)n
k−1
2 , (2.2)

where σk(n) := ∑
d|n dk . To obtain an explicit bound for |c f (n)| for arbitrary f ∈

Sk(�1(N )), we combine (2.2) with a trick implemented by Blomer [5] and Duke [12].
For cusp forms f , g ∈ Sk(�), we define the Petersson inner product by

〈 f , g〉 := 1

[SL2(Z) : �]
∫

�\H
f (τ )g(τ )vk

dudv

v2
.

Letting ‖ f ‖ := √〈 f , f 〉 denote thePetersson norm of f ∈ Sk(�), a bound for |c f (n)|
in terms of ‖ f ‖ may be obtained. Specifically, suppose that f is a cusp form f of
weight k ∈ N on �N ,L (with L | N ) and character χ modulo N . Using Blomer’s
method from [5], an explicit bound is obtained in [1, Lemma 4.1] for |c f (n)| as a
function of N , L , and the Petersson norm ‖ f ‖. Denoting by ϕ Euler’s totient function,
we recall a bound from the case k = 2 below (see [1, (4.4)]).
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Lemma 2.4 Suppose that f ∈ S2(�N ,L , χ) with L | N and χ a character modulo N.
Then, we have the inequality

∣∣c f (n)
∣∣ ≤ 6.95 · 1018 · ‖ f ‖N 1+2.5·10−6 ∏

p|N

(
1 + 1

p

) 1
2

ϕ(L)n
3
5 .

By Lemma 2.4, in order to obtain an explicit bound for |br ,M,α(n)|, it remains to
estimate ‖ fr ,M,α‖, where fr ,M,α is the cusp form appearing in the decomposition in
(1.5). An explicit bound for ‖ fr ,M,α‖ was obtained in [16, Lemma 3.2]. To state the
result, let α ∈ Z

�. For the quadratic form Q = Qα given by

Qα(x) :=
�∑

j=1

α j x
2
j ,

we define the level and the discriminant of Qα as

Nα = 4 lcm(α), Dα = 2�
�∏

j=1

α j .

Lemma 2.5 Let � ≥ 4 be even, α ∈ N
�, r ∈ Z, and M ∈ N. Then,

‖ fr ,M,α‖2 ≤ 32�−2
(

�
2 − 2

)!
2

�
2−3π�

M2�−4N �−2
α∏

p|M2Nα

(
1 − p−2

)

×
∑

δ|M2Nα

ϕ

(
M2Nα

δ

)
ϕ(δ)

M2Nα

δ

(
gcd(M2, δ)

M2

)�

×
�
2−2∑

m=0

(2π)−m

(
�
2 − 2 − m

)! (� − m − 2)!
(

9

Dα
(� − m − 1)

M2Nα

π
+ �2

)
.

2.4 Gauss Sums

Define the generalized quadratic Gauss sum (a, b ∈ Z, c ∈ N)

G(a, b; c) :=
∑

� (mod c)

e
2π i
c

(
a�2+b�

)
.
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Background information and many properties of these sums may be found in [2]. To
state the properties that we require, for d odd, we define

εd :=
{
1 if d ≡ 1 (mod 4) ,

i if d ≡ 3 (mod 4) ,

and we write [a]b for the inverse of a modulo b if gcd(a, b) = 1.

Lemma 2.6 For a, b ∈ Z and c, d ∈ N, the following hold.

(1) If gcd(a, c) � b, then G(a, b; c) = 0, while if gcd(a, c) | b then

G(a, b; c) = gcd(a, c)G

(
a

gcd(a, c)
,

b

gcd(a, c)
; c

gcd(a, c)

)
.

(2) If gcd(a, c) = 1 and c is odd, then

G(a, b; c) = εc
√
c
(a
c

)
e− 2π i[4a]cb2

c .

(3) If gcd(c, d) = 1, then

G(a, b; cd) = G(ac, b; d)G(ad, b; c).

(4) If gcd(a, c) = 1, 4 | c, and b is odd, then G(a, b; c) = 0.
(5) If a is odd, b is even, and r ∈ N≥2, then

G
(
a, b; 2r ) = 2

r
2 (1 + i)

(−2r

a

)
εae

2π i
2r

(
−[a]2r b2

4

)

.

We require an explicit evaluation of certain Gauss sums that naturally occur in the
study of theta functions (see Lemma 3.1 below). Throughout the paper, for k, M ∈ N,
and r ∈ Z with ord2(r) ≤ ord2(M), we write M = 2μM0, r = 2�r0 (with � ≤ μ),
and k = 2κk0 with M0, r0, and k0 odd. We furthermore set g0 := gcd(M0, k0) and
g1 := gcd(g0,

k0
g0

).

Lemma 2.7 Suppose that h ∈ Z, k ∈ N with gcd(h, k) = 1, � ∈ N0, r ∈ Z, M ∈ N

with gcd(M, r) ∈ {1, 2, 4}, and � ≤ μ.

(1) If g1 �= 1 or � < min(μ, κ − � − μ) − 1, then

G
(
2�hM2, 2�+1hrM; k

)
= 0.

(2) Suppose that g1 = 1 and � ≥ min(μ, κ−�−μ)−1. Setting δ := min(�+2�, κ),
we then have
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e
2π i2�hr2

k G
(
2�hM2, 2�+1hrM; k

)

= √kg0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2
κ
2 ε k0

g0

(
2�+κ hg0

k0
g0

)
e

2π ihr20
2κ−δ g0

2�+2�−δ
[
k0
g0

]

2κ−δ g0
if κ ≤ � + 2μ

or κ = � + 2μ + 1 and � = μ − 1,

2
�+2μ
2 (1 + i)εhg0

(
−2�+κ k0

g0
hg0

)
e

2π ihr20
g0

[
2κ−�−2μ k0

g0

]

g0 if κ ≥ � + 2μ + 2 and � = μ,

0 otherwise.

Proof We evaluate G(a, b; c) for a := 2�hM2, b := 2�+1hrM , and c := k. By
Lemma 2.6 (1), G(a, b; c) = 0 unless gcd(a, c) | b. Hence, we first compute, using
the fact that gcd(h, k) = 1, gcd(M0

g0
, k0
g0

) = 1, and k0
g0

is odd,

gcd(a, c) = 2min(�+2μ,κ)g0g2, (2.3)

where g2 := gcd(M0,
k0
g0

).

(1) A direct calculation gives that gcd(a, c) | b if and only if g1 = 1 and � ≥
min(μ, κ − � − μ) − 1, which implies the claim by Lemma 2.6 (1).

(2) Set γ := min(� + 2μ, κ). Note that γ ≤ � + μ + � + 1. From the calculation
yielding (1), we see that g1 = 1 implies g2 = 1. Plugging g1 = g2 = 1 into (2.3)
yields gcd(a, c) = 2γ g0 and it is not hard to see that gcd(a, c) | b. Therefore,
Lemma 2.6 (1),(3) implies that

G(a, b; c) = 2γ g0G

(
2�+2μ+κ−2γ hM0

M0

g0
, 2�+μ+�+1−γ hr0

M0

g0
; k0
g0

)

×G

(
2�+2μ−γ hM0

M0

g0

k0
g0

, 2�+μ+�+1−γ hr0
M0

g0
; 2κ−γ

)
.

Since k0
g0

is odd, we use Lemma 2.6 (2) to evaluate the first Gauss sum, yielding,
after simplification,

G(a, b; c) = 2γ ε k0
g0

√
k0g0

(
2�+κhg0

k0
g0

)
e
− 2π ihr20

k0
g0

2�+2�[2κ g0] k0
g0

× G

(
2�+2μ−γ hM0

M0

g0

k0
g0

, 2�+μ+�+1−γ hr0
M0

g0
; 2κ−γ

)
. (2.4)

It remains to evaluate the final Gauss sum in (2.4). We use Lemma 2.6 (4) and
Lemma 2.6 (5) to obtain
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G

(
2�+2μ−γ hM0

M0

g0

k0
g0

, 2�+μ+�+1−γ hr0
M0

g0
; 2κ−γ

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if κ ≤ � + 2μ,

2 if κ = � + 2μ + 1, � = μ − 1,

2
κ−�−2μ

2 (1 + i)

(
−2�+κ

hM0
M0
g0

k0
g0

)
ε
hM0

M0
g0

k0
g0

e
− 2π ihr20

2κ−�−2μ [k0]2κ−�−2μ if κ ≥ � + 2μ + 2, � = μ,

0 otherwise.

(2.5)

Plugging (2.5) into (2.4) and then simplifying yields that G(a, b; c) equals

ε k0
g0

√
kg0

(
hg0
k0
g0

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
κ
2

(
2�+κ

k0
g0

)
e
− 2π ihr20

k0
g0

2�+2�[2κ g0] k0
g0

if κ ≤ � + 2μ

or κ = � + 2μ + 1, � = μ − 1,

2
�+2μ
2 (1 + i)ε

hM0
M0
g0

k0
g0

(
−2�+κ

hM0
M0
g0

k0
g0

)(
2�+κ

k0
g0

)
if κ ≥ � + 2μ + 2, � = μ,

×e
− 2π ihr20

k0
g0

2�+2μ[2κ g0] k0
g0 e

− 2π ihr20
2κ−�−2μ [k0]2κ−�−2μ

0 otherwise.

To obtain the claim, we multiply by e
2π i2�hr2

k and simplify by using the Chinese
Remainder Theorem to combine the exponentials. For example, if κ ≤ � + 2μ or
(κ = � + 2μ + 1 and � = μ − 1), then the exponential becomes

e

2π ihr20
2κ−δk0

2�+2�−δ

(
1−2κ g0[2κ g0] k0

g0

)

.

Since gcd(g0,
k0
g0

) = g1 = 1 and k0 is odd, to determine 1 − 2κg0 [2κg0] k0
g0(

mod 2κ−δk0
)
the Chinese Remainder Theorem implies that it suffices to compute

1 − 2κg0
[
2κg0

]
k0
g0

≡ 1 (mod g0) , 1 − 2κg0
[
2κg0

]
k0
g0

≡ 0

(
mod

k0
g0

)
,

1 − 2κg0
[
2κg0

]
k0
g0

≡ 1
(
mod 2κ−δ

)
.

Thus,

1 − 2κg0 [g0] k0
g0

≡ k0
g0

[
k0
g0

]

2κ−δg0

(
mod 2κ−δk0

)
.

So the exponential simplifies in this case as e
2π ihr20
2κ−δg0

2�+2�−δ[ k0g0 ]2κ−δg0 .
The remaining case κ ≥ �+ 2μ+ 2 and � = μ follows by a similar but longer and

more tedious calculation. ��
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3 Growth Toward the Cusps of Certain Modular Forms

In this section, we determine the growth toward the cusps of theta functions �r ,M,α

and certain (non-holomorphic) Eisenstein series. The purpose of this calculation is to
compare the growth in order to determine the unique Eisenstein series Er ,M,α in (1.5)
whose growth toward the cusps matches that of the theta function.

3.1 Growth of the Theta Functions at the Cusps

In order to obtain the Eisenstein series, we determine the growth of �r ,M,α toward all
of the cusps, which follows by a straightforward calculation.

Lemma 3.1 Let m ∈ N≥3 andα ∈ N
4 be given. For h ∈ Z and k ∈ Nwith gcd(h, k) =

1, we have

− lim
z→0+ z2�r ,M,α

(
h

k
+ i z

k

)

= − 1

4k2M4
∏4

j=1
√

α j

4∏

j=1

e
2π ir2hα j

k G
(
hα j M

2, 2hrα j M; k
)

.

Proof We have

�r ,M,α(τ ) =
∑

x∈Zd

x j≡r (mod M)

q
∑4

j=1 α j x2j =
4∏

j=1

ϑ(r , M; 2Mα jτ), (3.1)

where

ϑ(r , M; τ) :=
∑

n≡r (mod M)

q
n2
2M .

By definition,

ϑ

(
r , M; 2Mα j

(
h

k
+ i z

k

))
=

∑

n≡r (mod M)

e
2π iα j n2

(
h
k + i z

k

)

.

Write n = r + Mα + Mk� (α (mod k) , � ∈ Z) to obtain that this equals

∑

α (mod k)

e2π iα j (r+Mα)2 h
k
∑

�∈Z
e−2π(r+Mα+Mk�)2

α j
k z

=
∑

α (mod k)

e2π iα j (r+Mα)2 h
k ϑ(r + Mα, Mk; 2Mα j i z).
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We now recall the modular inversion formula (see [19, (2.4)])

ϑ

(
r , M;−1

τ

)
= M− 1

2 (−iτ)
1
2

∑

ν (mod M)

e
2π iνk
M ϑ(ν, M; τ).

We use this with τ = i
2Mα j z

, r 	→ r + Mα, M 	→ Mk to obtain that

ϑ(r + Mα, Mk; 2Mα j i z)

= (Mk)−
1
2

(
1

2Mα j z

) 1
2 ∑

ν (mod Mk)

e
2π i
Mk (r+Mα)νϑ

(
ν, Mk; i

2Mα j z

)
.

Thus,

ϑ

(
r , M; 2Mα j

(
h

k
+ i z

k

))
= 1

M

√
1

2kα j z

∑

α (mod k)

e2π iα j (r+Mα)2 h
k

×
∑

ν (mod Mk)

e
2π i
Mk (r+Mα)νϑ

(
ν, Mk; i

2Mα j z

)
.

Now assume that z ∈ R
+ and let z → 0+. The contribution that is not exponentially

decaying comes from ν = 0 and gives

lim
z→0+

√
zϑ

(
r , M; 2Mα j

(
h

k
+ i z

k

))
= 1

M

√
1

2kα j

∑

α (mod k)

e2π iα j (r+Mα)2 h
k .

Note that

∑

α (mod k)

e2π iα j (r+Mα)2 h
k = e

2π iα j r
2h

k
∑

α (mod k)

e
2π i
k

(
α j M2α2+2rα j Mα

)
h

= e
2π iα j r

2h
k G

(
hα j M

2, 2hrα j M; k
)

.

Plugging back into (3.1) yields the claim. ��
We next use Lemma 2.7 to evaluate the right-hand side of Lemma 3.1. Since the

theta function �r ,M,α only depends on r modulo M , we may assume without loss of
generality that

� = ord2(r) ≤ ord2(M) = μ

by replacing r with r + M in Lemma 3.1 if � > μ. A direct calculation gives the
following.
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Corollary 3.2 Suppose that h ∈ Z and k ∈ N with gcd(h, k) = 1, α = (1, 2, 4, 8),
r ∈ Z, and M ∈ N with gcd(M, r) ∈ {1, 2, 4} and ord2(r) ≤ ord2(M). If g1 �= 1 or
� < min(μ, k − � − μ) − 1, then

− lim
z→0+ z2�r ,M,α

(
h

k
+ i z

k

)
= 0.

If g1 = 1 and � ≥ min(μ, k − � − μ) − 1, then, setting δ0 := min(κ, 2�),

− lim
z→0+ z2�r ,M,α

(
h

k
+ i z

k

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 22κ−4μ−5

M4
0

g20e
2π ihr20
2κ−δ0 g0

22�−δ0 15
[
k0
g0

]

2κ−δ0 g0 if κ ≤ 2μ,

or κ = 2μ + 1 and � = μ − 1,

g20
M4

0
e
2π ihr20

g0
15
[
2κ−2μ k0

g0

]

g0 if κ ≥ 2μ + 5 and � = μ,

0 otherwise.

Remark Although the right-hand side of Corollary 3.2 splits into a number of cases,
we obtain an explicit element of the cyclotomic fieldQ(ζ2 j g0) for some j ∈ N0, where

ζν := e
2π i
ν . To use Corollary 3.2 for practical purposes, one can evaluate the right-hand

side of Corollary 3.2 with a computer as an element of Q(ζν) ∼= Q[x]/ 〈 fν〉, where
fν is the minimal polynomial of ζν over Q, which is well known to be

fν(x) =
∏

1≤k≤ν
gcd(k,ν)=1

(
x − ζ k

ν

)
=
∏

d|ν

(
xd − 1

)μ( ν
d )

.

Here, μ denotes the Möbius μ-function.

3.2 Growth of Eisenstein Series Toward the Cusps

The goal of this section is to obtain the growth of certain weight two Eisenstein series
toward the cusps. These are formed by applying certain sieving and V -operators to
the (non-holomorphic but modular) weight two Eisenstein series

Ê2(τ ) := E2(τ ) − 3

πv
, where E2(τ ) := 1 − 24

∑

n≥1

σ(n)qn

with σ(n) := σ1(n). In light of Lemma 2.3, we may furthermore always assume
without loss of generality that sieving is applied before the V -operator. The growth
toward the cusps of such functions is given in the following lemma.
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Lemma 3.3 Let m ∈ Z and M1, M2 ∈ N. Then, for h ∈ Z and k ∈ Nwith gcd(h, k) =
1, we have

− lim
z→0+ z2 Ê2

∣∣SM1,m
∣∣VM2

(
h

k
+ i z

k

)

= 1

M3
1M

2
2

∑

j (mod M1)

gcd (hM1M2 + jk, M1k)
2 ζ

− jm
M1

.

Proof For a translation-invariant function f , we use the presentation

f |SM1,m(τ ) = 1

M1

M1−1∑

j=0

ζ
− jm
M1

f

(
τ + j

M1

)
.

Applying VM2 to this yields

f |SM1,m
∣∣VM2(τ ) = 1

M1

M1−1∑

j=0

ζ
− jm
M1

f

(
M2τ + j

M1

)
.

Plugging in f = Ê2 and using the weight two modularity of Ê2, the claim follows by
a standard calculation. ��

4 Eisenstein Series Component

In this section, we determine the Eisenstein series component Er ,M,α in (1.5).

Proposition 4.1 For n ∈ N, we have the following.

(1) For m = 7, we have a7,10,(1,2,4,8)(n) = 0 unless n ≡ 15 (mod 40), in which
case we have

a7,10,(1,2,4,8)(n) = 1

240

(
σ(n) − σ

(n
5

))
.

(2) For m = 9, we have a9,14,(1,2,4,8)(n) = 0 unless n ≡ 39 (mod 56), in which
case we have

a9,14,(1,2,4,8)(n) = 1

672
σ(n).

(3) For m = 10, we have a10,16,(1,2,4,8)(n) = 0 unless n ≡ 28 (mod 64), in which
case we have

a10,16,(1,2,4,8)(n) = 1

256
σ
(n
4

)
.
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(4) For m = 11, we have a11,18,(1,2,4,8)(n) = 0 unless n ≡ 15 (mod 72), in which
case we have

a11,18,(1,2,4,8)(n) = 1

1728
σ(n).

(5) For m = 12, we have a12,20,(1,2,4,8)(n) = 0 unless 80 | n, in which case we have

a12,20,(1,2,4,8)(n) = 1

120

(
σ
( n

16

)
− σ

( n

32

)
− σ

( n

80

)
+ σ

( n

160

)

+8σ
( n

256

)
− 32σ

( n

512

)

−8σ
( n

1280

)
+ 32σ

( n

2560

))
.

(6) For m = 13, we have a13,22,(1,2,4,8)(n) = 0 unless n ≡ 71 (mod 88), in which
case we have

a13,22,(1,2,4,8)(n) = 1

2640
σ(n).

(7) For m = 14, we have

a14,24,(1,2,4,8)(n) =
{

1
768

(
σ
( n
4

)− σ
( n
12

))
if n ≡ 60 (mod 96) ,

0 otherwise.

Proof (1) By comparing Fourier coefficients, we see that the identity is equivalent to

E7,10,(1,2,4,8) = − 1

5760
E2
∣∣ (1 − V5)

∣∣S40,15. (4.1)

Lemma 2.1 and (1.5) give that

E7,10,(1,2,4,8) ∈ M2

(
�3200,10

)
,

while Lemma 2.2 implies that

E2
∣∣ (1 − V5)

∣∣S40,15 ∈ M2 (�1 (1600)) .

Enumerating the cusps of �1(3200) (see [10, Proposition 3.8.3]), we then use a com-
puter together with Lemma 3.3 and Corollary 3.2 to verify that the growth toward
every cusp of both sides of (4.1) agrees, yielding the claim.

To see this in more details note that by [10, Proposition 3.8.3], two cusps a
c and α

γ

are equivalent modulo the action of �1(N ) if and only if there exists j ∈ Z such that
(α, γ ) ≡ ±(a+ jc, c) (mod N ) (for some choice of±). As in [10, p. 102], by taking
d := gcd(c, N ), we may write a set of representatives of the inequivalent cusps in the
form a

dγ
with d | N , a running modulo d with gcd(a, d) = 1, and 1 ≤ γ ≤ � N

2d �
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with gcd(γ, N
d ) = 1. Since both sides of (4.1) are elements of M2(�1(3200)), we

thus need to compute the constant term at every cusp h
k with h, k ∈ Z, gcd(h, k) = 1,

and k = dγ with d | 3200 and 1 ≤ γ ≤ 1600
d with gcd(γ, 3200

d ) = 1. For each
such representative h

k of the cusps of �1(3200), we use Lemma 3.3 together with a
computer to evaluate

− 1

5760
lim
z→0+ z2

(
E2
∣∣S8,3

∣∣V5
(
h

k
+ i z

k

)
− E2

∣∣S40,15
(
h

k
+ i z

k

))

as an element of Q(ζ40). Comparing this with Corollary 3.2 in the case r = 7 and
M = 10, we then verify with a computer that

− 1

5760
lim
z→0+ z2

(
E2
∣∣S8,3

∣∣V5
(
h

k
+ i z

k

)
− E2

∣∣S40,15
(
h

k
+ i z

k

))

= − lim
z→0+ z2�7,10,α

(
h

k
+ i z

k

)
. (4.2)

Since f7,10,(1,2,4,8) is a cusp form, we have

− lim
z→0+ z2 f7,10,α

(
h

k
+ i z

k

)
= 0

and hence

− lim
z→0+ z2�7,10,α

(
h

k
+ i z

k

)
= − lim

z→0+ z2E7,10,α

(
h

k
+ i z

k

)
.

Therefore, (4.2) implies that

E7,10,(1,2,4,8) + 1

5760
E2
∣∣(1 − V5)S40,15

vanishes toward all cusps, and is hence a cusp form. Since it is also in the subspace of
Eisenstein series, it is orthogonal to all cusp forms and therefore vanishes, implying
(4.1), and hence the claim.

For the remaining cases, the argument is similar, but we provide the identities
analogous to (4.1) for the convenience of the reader.
(2) The claim is equivalent to

E9,14,(1,2,4,8) = − 1

16128
E2
∣∣S56,39.

(3) The claim is equivalent to

E10,16,(1,2,4,8) = − 1

6144
E2
∣∣S16,7

∣∣V4.
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(4) The claim is equivalent to

E11,18,(1,2,4,8) = − 1

41472
E2
∣∣S72,15.

(5) The claim is equivalent to

E12,20,(1,2,4,8) = − 1

2880
E2
∣∣ (S5,0 − V5

) ∣∣ (1 − V2 + 8V16 − 32V32)
∣∣V16.

(6) The claim is equivalent to

E13,22,(1,2,4,8) = − 1

63360
E2
∣∣S88,71.

(7) The claim is equivalent to

E14,24,(1,2,4,8) = − 1

18432
E2
∣∣ (1 − V3)

∣∣S24,15
∣∣V4. ��

As a corollary to Proposition 4.1, we obtain explicit lower bounds on the Fourier
coefficients ar ,M,α(n) in these special cases.

Corollary 4.2 Let n ∈ N.

(1) If n ≡ 15 (mod 40), then we have

a7,10,(1,2,4,8)(n) ≥ n

240
.

(2) If n ≡ 39 (mod 56), then we have

a9,14,(1,2,4,8)(n) ≥ n

672
.

(3) If n ≡ 28 (mod 64), then we have

a10,16,(1,2,4,8)(n) ≥ n

1024
.

(4) If n ≡ 15 (mod 72), then we have

a11,18,(1,2,4,8)(n) ≥ n

1728
.

(5) Assume that 80 | n and write n = 2a5bc with gcd(10, c) = 1. We have

a12,20,(1,2,4,8)(n) ≥ 5bc

120

{
2a−4 if 4 ≤ a ≤ 7,

24 if a ≥ 8.
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(6) If n ≡ 71 (mod 88), then we have

a13,22,(1,2,4,8)(n) ≥ n

2640
.

(7) If n ≡ 60 (mod 96), then we have

a14,24,(1,2,4,8)(n) ≥ n

3072
.

Proof For m �= 12, the claims with the exception of (5) follow directly from Proposi-
tion 4.1. For (5), a direct simplification yields that the right-hand side of Proposition 4.1
(5) simplifies as

5bσ(c)

120

{
2a−4 if 4 ≤ a ≤ 7,

24 if a ≥ 8,

which gives the claim. ��

5 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The constants Cm from the theorem statement
may be found in Table 2.

Proof of Theorem 1.2 We require the case � = 4 of Lemma 2.5. Since the inner sum
only has a single term namely m = 0 in this case, Lemma 2.5 simplifies as

‖ fr ,M,α‖2 ≤ 2 · 36
π4

M4N 2
α∏

p|M2Nα

(
1 − p−2

)

×
∑

δ|M2Nα

ϕ

(
M2Nα

δ

)
ϕ(δ)

M2Nα

δ

(
gcd(M2, δ)

M2

)4
2

(
27

Dα

M2Nα

π
+ 16

)
. (5.1)

For θr ,M,(1,2,4,8), we obtain a lower bound for ar ,M,(1,2,4,8)(n) (for n in an appro-
priate congruence class) from Corollary 4.2 (see the third column of Table 1 for a list
of the bounds for individual choices of r and M).

Computing the constants in (5.1) explicitly for fixed M yields an upper bound for
‖ fr ,M,(1,2,4,8)‖2 (see the fourth column of Table 1 for the explicit bounds), which
plugged into Lemma 2.4 yields an upper bound for |br ,M,(1,2,4,8)(n)| (see the final
column of Table 1 for the explicit bounds). Plugging the bounds for ar ,M,(1,2,4,8)(n)

and |br ,M,(1,2,4,8)(n)| into (2.1), we see that sr ,M,(1,2,4,8)(n) > 0 for n sufficiently
large in an appropriate congruence class (see Table 2 for the explicit constants).

We then conclude that rm,(1,2,4,8) > 0 for n sufficiently large by using (1.3), yielding
the claim. ��

In order to explain why it is sufficient to assume that n �≡ 4 (mod 16) for m = 12
in Theorem 1.2, we require the following lemma combined with (1.3).

123



La Matematica

Table 1 Bounds for ar ,M,(1,2,4,8), ‖ fr ,M,(1,2,4,8)‖, and |br ,M,(1,2,4,8)|
r M Bound for ar ,M,(1,2,4,8) Bound for ‖ fr ,M,(1,2,4,8)‖ Bound for |br ,M,(1,2,4,8)|

7 10 n
240 8.11 · 1014 3.41 · 1030n 3

5

9 14 n
672 1.03 · 1016 3.48 · 1031n 3

5

10 16 n
1024 3.2 · 1016 9.98 · 1031n 3

5

11 18 n
1728 6.1 · 1016 1.52 · 1032n 3

5

12 20 n
1920 1.49 · 1017 3.69 · 1032n 3

5

13 22 n
2640 2.55 · 1017 6.96 · 1032n 3

5

14 24 n
3072 5.63 · 1017 1.09 · 1033n 3

5

Table 2 Bounds on n for sm,2(m−2),(1,2,4,8)(n) > 0 and rm,(1,2,4,8) > 0

m Bound for sm,2(m−2),(1,2,4,8)(n) > 0 Bound Cm for rm,2(m−2),(1,2,4,8)(n) > 0

7 1.92 · 1082 4.8 · 1080
9 8.38 · 1085 1.5 · 1084
10 3.41 · 1087 5.33 · 1085
11 3.55 · 1088 4.93 · 1086
12 4.25 · 1089 5.31 · 1087
13 4.57 · 1090 5.19 · 1088
14 2.04 · 1091 2.13 · 1089

Lemma 5.1 Let n ∈ N be given. If the equation

x21 + 2x22 + 4x23 + 8x24 = n

is solvable with x j ≡ 12 (mod 20), then the equation

x21 + 2x22 + 4x23 + 8x24 = 256n

is also solvable with x j ≡ 12 (mod 20).
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