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Abstract. Mirror symmetry relates Gromov-Witten invariants of an elliptic curve
with certain integrals over Feynman graphs [9]. We prove a tropical generalization
of mirror symmetry for elliptic curves, i.e., a statement relating certain labeled
Gromov-Witten invariants of a tropical elliptic curve to more refined Feynman
integrals. This result easily implies the tropical analogue of the mirror symmetry
statement mentioned above and, using the necessary Correspondence Theorem, also
the mirror symmetry statement itself. In this way, our tropical generalization leads
to an alternative proof of mirror symmetry for elliptic curves. We believe that our
approach via tropical mirror symmetry naturally carries the potential of being gen-
eralized to more adventurous situations of mirror symmetry. Moreover, our tropical
approach has the advantage that all involved invariants are easy to compute. Fur-
thermore, we can use the techniques for computing Feynman integrals to prove
that they are quasimodular forms. Also, as a side product, we can give a combi-
natorial characterization of Feynman graphs for which the corresponding integrals
are zero. More generally, the tropical mirror symmetry theorem gives a natural
interpretation of the A-model side (i.e., the generating function of Gromov-Witten
invariants) in terms of a sum over Feynman graphs. Hence our quasimodularity
result becomes meaningful on the A-model side as well. Our theoretical results are
complemented by a Singular package including several procedures that can be
used to compute Hurwitz numbers of the elliptic curve as integrals over Feynman
graphs.
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1. Introduction

Mirror symmetry is a deep symmetry relation motivated by dualities in string the-
ory. Many results and conjectures of different flavors are related to mirror symmetry
(see e.g. [12, 13, 15, 19, 24, 26, 27]). Here, we focus on statements relating Gromov-
Witten invariants of a variety X to certain integrals on a mirror partner X∨.

Tropical geometry has proved to be an interesting new tool for mirror symmetry
(see e.g. [1, 14–16,24]). Our paper can be viewed as a sequel and extension of Gross’
paper [14], where he provides tropical methods for the study of mirror symmetry of
P2. The main purpose of his paper is of a philosophical nature: he suggests tropical
geometry as a new and worthwhile method for the study of mirror symmetry. More
precisely, you can find (a version of) the following triangle in the introduction of [14]:

Correspondence Theorem

IntegralsGW invariants

Mirror symmetry

tropical GW invariants

The relation between Gromov-Witten invariants and integrals (the top arrow) is a
consequence of mirror symmetry. Tropical geometry comes in naturally, because there
are many instances of Correspondence Theorems that relate Gromov-Witten invari-
ants with their tropical analogues (the first of these is due to Mikhalkin [23]). The
connection between tropical geometry and integrals is in general yet to be understood.

Gross studies the triangle in the situation of P2: here, the mirror is (C∗)2. For
this case, statements relating Gromov-Witten invariants to integrals are known al-
ready [3]; but again, the purpose is to a lesser extent to give a new proof of this mirror
symmetry relation, but to outline a new path for future progress in mirror symmetry.
In the case of P2, the mirror symmetry relation involves descendant Gromov-Witten
invariants of P2. Only a partial Correspondence Theorem is proved to relate some of
these invariants to their tropical counterparts [22]. Gross concentrates on proving the
right arrow in his situation, i.e., he provides a natural connection between integrals
and tropical Gromov-Witten invariants. This connection very roughly relates mono-
mials in a big generating function that yield a nonzero contribution to an integral
with pieces of tropical curves that glue to one big tropical curve satisfying the require-
ments. The heart of the argument is thus a purely combinatorial hunt of monomials
respectively pieces of tropical curves, and the fact that both sides can be boiled down
to combinatorics that fits together very naturally strongly recommends the tropical
approach for future experiments in mirror symmetry. However, since the existing
Correspondence Theorems are not sufficient yet to cover the whole situation needed
for mirror symmetry of P2, this exciting new approach does not give an alternative
proof of the mirror symmetry statement for P2 (the top arrow) yet.

It is our purpose to demonstrate that tropical geometry can actually lead to a com-
plete alternative proof of mirror symmetry, and that this approach is very natural and
requires not much more than a careful analysis of the underlying combinatorics. We
prove a tropical mirror symmetry theorem for tropical elliptic curves that in particu-
lar implies mirror symmetry for elliptic curves. Furthermore, we pursue our approach
to prove new results about the involved generating functions, most importantly the
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quasimodularity of certain Feynman integrals resp. generating functions of Hurwitz
numbers.

We study the triangle above for elliptic curves. As in the case of P2, mirror symme-
try of elliptic curves is known and can to the best of our knowledge even be considered
as folklore in mirror symmetry [9], i.e., in principle the top arrow is taken care of al-
ready (see Theorem 2.6). The known proof is inspired by physics and uses quantum
field theory.

We provide the alternative route via the left and right arrows. The Gromov-Witten
invariants involved in the upper left vertex of the triangle are nothing but Hurwitz
numbers — numbers of covers of an elliptic curve having simple ramification above
some fixed branch points. The integrals in the upper right vertex are certain integrals
over Feynman graphs.

Correspondences between Hurwitz numbers and their tropical counterparts have
been studied [4,7], and an easy generalization yields a Correspondence Theorem that
is suitable for our situation (see Theorem 2.13). As in the case of P2, most exciting
is the right arrow. It turns out that a more general formulation of mirror symmetry
is more natural on the tropical side. We prove a tropical mirror symmetry theorem
(Theorem 2.20) relating numbers of labeled tropical covers with refined Feynman in-
tegrals. A careful analysis of the combinatorial principles underlying the count of
labeled tropical covers on the one hand and nonzero contributions to refined integrals
over Feynman graphs on the other hand reveals that they can be related very natu-
rally. The right arrow then follows easily from our tropical mirror symmetry theorem,
see Theorem 2.14. We consider the Tropical Mirror Symmetry Theorem 2.20 (and its
consequences) to be the most important contribution of this paper.

To sum up, for the case of elliptic curves, we complete the picture of the triangle
as follows:

Tropical Mirror Symmetry

Mirror symmetry

Hurwitz numbers

tropical
Hurwitz numbers

Feynman
integrals

refined
Feynman integrals

numbers of
labeled tropical covers

Thm.
2.14

Correspondence
Theorem 2.13 Theorem 2.20

We provide proofs for all solid arrows, in particular this implies the dashed arrow,
the mirror symmetry statement for elliptic curves. We thus provide a complete and
very natural combinatorial proof of mirror symmetry for elliptic curves by means
of tropical geometry. We believe that our theorem and its consequences should be
viewed as a recommendation for tropical geometry tools for mirror symmetry.

While our method of proof may at the first glance seem similar to the method used
in [14] — a combinatorial hunt of monomials in a big generating function on one side,
and tropical covers on the other side — the details are very different in the situation
of an elliptic curve. Also, our tropical mirror symmetry statement provides more than
the proof of the right arrow — we generalize the statement to labeled tropical covers
and refined integrals. We were inspired by [14], but nevertheless our result is beyond
a mere generalization of this paper, and hopefully will shed more light on other more
adventurous situations of mirror symmetry. Note that our case is the first instance
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where tropical mirror symmetry is understood for a compact Calabi-Yau variety, and
for arbitrary genus Gromov-Witten invariants.

Furthermore, our study of Feynman integrals can be pursued in another direc-
tion related to number theory. In number theory, the study of modular forms and
quasimodular forms is of great interest. Let us just mention a few examples. In
VOA theory, 1-point functions are quasimodular [10]. Conversely, every quasimodu-
lar form can be written in terms of 1-point functions. Further examples occur in the
study of s`(n|n)∧ characters [6] or in curve counting problems on Abelian surfaces
(see e.g. [2]). Knowing modularity results presents one with deep tools, like Sturm’s
Theorem or the valence formula, to prove identities, congruences, or the asymptotic
behavior of arithmetically interesting functions. Most relevant for this paper is that
the generating function for Hurwitz numbers of elliptic curves is a quasimodular form
(see e.g. [9], [18]). Via mirror symmetry, this generating function equals a sum of
Feynman integrals, where each summand corresponds to a graph. To the best of our
knowledge, the quasimodularity of the individual summands has not been known. We
close this gap by proving the quasimodularity for each summand corresponding to a
graph, more precisely, for the summands IΓ,Ω as defined in Definition 2.5, Equation
(2.1):

Theorem 1.1. For all Feynman graphs Γ and orders Ω as in Definition 2.5, the
function IΓ,Ω is a quasimodular form.

For a precise formulation, see Theorem 3.2. Other Feynman integrals related to
mirror symmetry have been proved to be quasimodular forms, too [21].

Note that the Tropical Mirror Symmetry Theorem naturally gives an interpretation
of the generating function of Hurwitz numbers in terms of a sum over Feynman graphs
— we can sum over all tropical covers whose combinatorial type is a fixed Feynman
graph. In this way, our quasimodularity result becomes meaningful on the A-model
side as well: The generating function of Hurwitz numbers for a fixed combinatorial
type is quasimodular. We believe that this result is another major contribution of
our paper.

As a side product we also give a combinatorial characterization of graphs whose
corresponding Feynman integral is zero: we prove in Corollary 2.35 that a graph
yields a zero Feynman integral if and only if it contains a bridge.

Our theoretical results are complemented by a Singular package including several
procedures that can be used to compute Hurwitz numbers of the elliptic curve resp.
integrals over Feynman graphs.

We believe that it is a merit of the tropical approach that computations are of a
combinatorial flavor and easily accessible. We describe all constructions and com-
putations in this paper in a hands-on way that should be easy to follow using the
examples we give. All our computations can be reconstructed using our Singular
package. We consider it another important contribution of our paper that we made
mirror symmetry of elliptic curves computationally accessible.

Our paper is organized as follows. In Section 2.1 we define the invariants and state
the Mirror Symmetry Theorem 2.6, i.e., the top arrow in the triangle above. In Section
2.2 we define tropical Hurwitz numbers and state the Correspondence Theorem 2.13,
i.e., the left arrow in the triangle. We also state Theorem 2.14, the right arrow in the
triangle. In Section 2.3, we introduce the invariants involved in our generalization of
theorem 2.14: labeled tropical covers (tropical covers with some extra structure) and
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a more refined version of the Feynman integrals. In the same section, we can finally
also state our main result, the Tropical Mirror Symmetry Theorem 2.20 involving
labeled tropical covers and refined Feynman integrals. We also deduce Theorem 2.14
using Theorem 2.20. In Section 2.4, we take a closer look at the involved Feynman
integrals. A central statement is Theorem 2.22 that expresses the propagator as
a series in a special nice way. This helps us to boil down the computation of the
refined Feynman integrals (using a coordinate change and the residue theorem) to
a purely combinatorial hunt of monomials in a big generating function. The precise
statement of the monomial hunt can be found in Lemma 2.24. In Section 2.5 finally,
we establish our bijection relating labeled tropical covers and nonzero contributions
to refined Feynman integrals. The precise formulation can be found in Theorem 2.30,
Theorem 2.20 follows easily from this. Construction 2.31 gives a hands-on algorithm
how to produce a tropical cover given a tuple contributing to the integral, Lemmas
2.33 and 2.34 prove that this algorithm indeed produces a bijective map. In Section 3
we prove the quasimodularity of the summands of the generating function of Hurwitz
numbers corresponding to Feynman graphs. The proof relies on a statement deduced
in Section 2.4.

In part 4.1 of the Appendix, we prove the Correspondence Theorem 2.13. It could
be deduced from the Correspondence Theorem in [4], for the sake of completeness
however we include our own proof here which uses combinatorial methods involving
the symmetric group.

In part 4.2 of the Appendix, we describe our Singular package that can be used
to compute Hurwitz numbers of elliptic curves resp. Feynman integrals.

Acknowledgements. We would like to thank Arend Bayer, Erwan Brugallé, Albrecht
Klemm, Laura Matusevich and Rainer Schulze-Pillot for helpful discussions. Part of
this work was accomplished during the third and fourth author’s stay at the Max-
Planck-Institute for Mathematics in Bonn. We thank the MPI for hospitality. The
research of the second author was supported by the Alfried Krupp prize for young
University Teachers of the Krupp foundation and a grant by the ERC. The fourth
author is partially supported by DFG-grant MA 4797/3-2.

2. Tropical Mirror Symmetry for elliptic curves

2.1. Mirror Symmetry for elliptic curves. In this subsection, we define the rele-
vant invariants (i.e., Hurwitz numbers and Feynman integrals) and present a precise
statement of the top arrow of the triangle in the introduction.

Hurwitz numbers count branched covers of non-singular curves with a given rami-
fication profile over fixed points. In this paper, we consider covers of elliptic curves.
Hurwitz numbers are naturally topological invariants, in particular they do not de-
pend on the position of the branch points as long as these are pairwise different.
Moreover, since all complex elliptic curves are homeomorphic to the real torus, num-
bers of covers of an elliptic curve do not depend on the choice of the base curve. We
thus fix an arbitrary complex elliptic curve E .

Let C be a non-singular curve of genus g and φ : C → E a cover. We denote by d the
degree of φ, i.e., the number of preimages of a generic point in E . For our purpose,
it is sufficient to consider covers which are simply ramified, that is, over any branch
point exactly two sheets of the map come together and all others stay separate. In
other words, the ramification profile (i.e. the partition of the degree indicating the
multiplicities of the inverse images of a branch point) of a simple branch point is
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(2, 1, . . . , 1). It follows from the Riemann-Hurwitz formula (see e.g. [17], Corollary
IV.2.4) that a simply ramified cover of E has exactly 2g−2 branch points. Two covers
ϕ : C → E and ϕ′ : C′ → E are isomorphic if there exists an isomorphism of curves
φ : C → C′ such that ϕ′ ◦ φ = ϕ.

Definition 2.1 (Hurwitz numbers). Fix 2g − 2 points p1, . . . , p2g−2 in E . We define
the Hurwitz number Nd,g to be the weighted number of (isomorphism classes of)
simply ramified covers φ : C → E of degree d, where C is a connected curve of genus
g, and the branch points of φ are the points pi, i = 1, . . . , 2g− 2. We count each such
cover φ with weight |Aut(φ)|.

For more details on branched covers of elliptic curves and Hurwitz numbers, see
e.g. [25].

Remark 2.2. Note that by convention, we mark the branch points pi in this definition.
In the literature, you can also find definitions without this convention, leading to a
factor of (2g − 2)! when compared with our definition.

Definition 2.3. We package the Hurwitz numbers of Definition 2.1 into a generating
function as follows:

Fg(q) :=

∞∑
d=1

Nd,gq
2d.

The mirror symmetry statement relates the generating function Fg(q) to certain
integrals which we are going to define now. We start by defining the function which
we are going to integrate.

Definition 2.4 (The propagator). We define the propagator

P (z, q) :=
1

4π2
℘(z, q) +

1

12
E2(q2)

in terms of the Weierstraß-P-function ℘ and the Eisenstein series

E2(q) := 1− 24
∞∑
d=1

σ(d)qd.

Here, σ = σ1 denotes the sum-of-divisors function σ(d) = σ1(d) =
∑

m|dm.

The variable q above should be considered as a coordinate of the moduli space of
elliptic curves, the variable z is the complex coordinate of a fixed elliptic curve.

Definition 2.5 (Feynman graphs and integrals). A Feynman graph Γ of genus g is
a trivalent connected graph of genus g. For a Feynman graph, we throughout fix a
reference labeling x1, . . . , x2g−2 of the 2g−2 trivalent vertices and a reference labeling
q1, . . . , q3g−3 of the edges of Γ.

For an edge qk of Γ connecting the vertices xi and xj , we define a function

Pk := P (zi − zj , q),
where P denotes the propagator of Definition 2.4 (the choice of sign i.e., zi − zj or
zj − zi plays no role, more about this in Section 2.4). Pick a total ordering Ω of the
vertices and starting points of the form iy1, . . . , iy2g−2 in the complex plane, where
the yj are pairwise different small numbers. We define integration paths γ1, . . . , γ2g−2

by

γj : [0, 1]→ C : t 7→ iyj + t,
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such that the order of the real coordinates yj of the starting points of the paths equals
Ω. We then define the integral

IΓ,Ω(q) :=

∫
zj∈γj

3g−3∏
k=1

(−Pk) . (2.1)

Finally, we define

IΓ(q) =
∑

Ω

IΓ,Ω(q),

where the sum runs over all (2g − 2)! orders of the vertices.

The following is the precise statement of the top arrow in the triangle in the
introduction (see Theorem 3 of [9]):

Theorem 2.6 (Mirror Symmetry for elliptic curves). Let g > 1. For the definition
of the invariants, see 2.1 and 2.5. We have

Fg(q) =
∞∑
d=1

Nd,gq
2d =

∑
Γ

IΓ(q) · 1

|Aut(Γ)|
,

where Aut(Γ) denotes the automorphism group of Γ and the sum goes over all trivalent
graphs Γ of genus g.

2.2. Tropical covers and Hurwitz numbers. We give a proof of Theorem 2.6 by
a detour to tropical geometry and tropical mirror symmetry. We first relate Hurwitz
numbers to tropical Hurwitz numbers.

Definition 2.7 (Tropical curves). A (generic) tropical curve C (without ends) is a
connected, finite, trivalent, metric graph. Its genus is given by its first Betti number.
The combinatorial type of a curve is its homeomorphism class, i.e., the underlying
graph without lengths on the edges.

A tropical elliptic curve consists of one edge forming a circle of certain length. We
will fix a tropical elliptic curve E (e.g. one having length 1). Moreover, to fix notation,
in the following we denote by C a tropical curve of genus g and combinatorial type
Γ.

Definition 2.8 (Tropical covers). A map π : C → E is a tropical cover of E if it
is continuous, non-constant, integer affine on each edge and respects the balancing
condition at every vertex P ∈ C:

For an edge e of C denote by we the weight of e, i.e., the absolute value of the slope
of π|e. Consider a (small) open neighbourhood U of p = π(P ), then U combinatorially
consists of p together with two rays r1 and r2, left and right of p. Let V be the
connected component of π−1(U) which contains P . Then V consists of P adjeacent
to three rays). Then π is balanced at P if∑

R maps to r1

wR =
∑

R maps to r2

wR,

where R goes over the three rays adjacent to P and rays inherit their weights from
the corresponding edges.

The degree of a cover is the weighted number of preimages of a generic point: For
all p ∈ E not having any vertex of C as preimage we have

d =
∑

P∈C:π(P )=p

weP ,
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3
2

C

π

6

9

1

P 1

2

3

E

Figure 1. A tropical cover of degree 4 with genus 2 source curve.

where eP is the edge of C containing P . The images of the vertices of C are called
the branch points of π.

Example 2.9. Figure 1 shows a tropical cover of degree 4 with a genus 2 source
curve. The red numbers close to the vertex P are the weights of the corresponding
edges, the black numbers denote the lengths. The cover is balanced at P since there
is an edge of weight 3 leaving in one direction and an edge of weight 2 plus an edge
of weight 1 leaving in the opposite direction.

We can see that the length of an edge of C is determined by its weight and the length
of its image. We will therefore in the following not specify edge lengths anymore.

Definition 2.10 (Isomorphisms of curves and covers). An isomorphism of tropical
curves is an isometry of metric graphs. Two covers π : C → E and π′ : C ′ → E are
isomorphic if there is an isomorphism of curves φ : C → C ′ such that π′ ◦ φ = π.

As usual when counting tropical objects we have to weight them with a certain
multiplicity.

Definition 2.11 (Multiplicities). The multiplicity of a cover π : C → E is defined
to be

mult(π) :=
1

|Aut(π)|
∏
e

we,

where the product goes over all edges e of C and Aut(π) is the automorphism group
of π.

Definition 2.12 (Tropical Hurwitz numbers). Fix branch points p1, . . . , p2g−2 in the

tropical, elliptic curve E. The tropical Hurwitz number N trop
d,g is the weighted number

of isomorphism classes of degree d covers π : C → E having their branch points at
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the pi, where C is a curve of genus g :

N trop
d,g :=

∑
π:C→E

mult(π).

The following is the precise formulation of the left arrow of the triangle in the
introduction:

Theorem 2.13 (Correspondence Theorem). The algebraic and tropical Hurwitz num-
bers of simply ramified covers of an elliptic curve coincide (see Definition 2.1 and
2.12), i.e., we have

N trop
d,g = Nd,g.

This theorem could be proved by a mild generalization of the Correspondence
Theorem for Hurwitz numbers in [4]. For the sake of completeness, we give our own
proof, using more combinatorial methods involving the symmetric group. We present
it in the Appendix 4.1.

Using the Correspondence Theorem 2.13, it is obviously sufficient to prove the
following theorem in order to obtain a tropical proof of Theorem 2.6. This theorem
can be viewed as the right arrow in the triangle in the introduction.

Theorem 2.14 (Tropical curves and integrals). Let g > 1. For the definition of the
invariants, see Definitions 2.12 and 2.5. We have

∞∑
d=1

N trop
d,g q2d =

∑
Γ

IΓ(q) · 1

|Aut(Γ)|
,

where the sum goes over all trivalent graphs Γ of genus g.

2.3. Labeled tropical covers. To deduce Theorem 2.14, we prove a more general
statement that implies this theorem, namely our Tropical Mirror Symmetry Theorem
for elliptic curves 2.20. To state the result, we need to introduce labeled tropical
covers, and a refined version of the Feynman integrals from above. This more general
tropical mirror symmetry theorem is more natural on the tropical side, since the
combinatorics involved in the hunt of monomials contributing to the refined Feynman
integrals resp. in counting labeled tropical covers can be related very naturally.

Definition 2.15 (Labeled tropical covers). Let π : C → E be a tropical cover as in
Definition 2.8. Let Γ be the combinatorial type of the tropical curve C. We fix a
reference labeling x1, . . . , x2g−2 of the vertices and a reference labeling q1, . . . , q3g−3 of
the edges of Γ, as in Definition 2.5 for Feynman graphs. We then consider the labeled
tropical cover π̂ : C → E, where the source curve C is in addition equipped with
the labeling. The important difference between tropical covers and labeled tropical
covers is the definition of isomorphism: for a labeled tropical cover, we require an
isomorphism to respect the labels. As usual, we consider labeled tropical covers only
up to isomorphism.

The combinatorial type of a labeled tropical cover is the combinatorial type of the
source curve together with the labels, i.e., a Feynman graph.

Example 2.16. Figure 2 shows a labeled cover of degree 4. The edges labeled q2, q3

and q6 are supposed to have weight 1, edge q1 and q4 weight 2 and q5 weight 3. The
underlying Feynman graph is the one of Figure 3.

The definition of the generating series Fg(q) for Hurwitz numbers has to be refined
accordingly:
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p3

p2p1

p0

p4

q6

x1

x4

q4

q1

q5x2

x3

q2

q3

Figure 2. A labeled tropical cover of E.

Definition 2.17. We fix once and for all a base point p0 in E. For a tuple a =
(a1, . . . , a3g−3), we define N trop

a,g to be the weighted number of labeled tropical covers

π̂ : C → E of degree
∑3g−3

i=1 ai, where C has genus g, having their branch points at
the prescribed positions and satisfying

#(π̂−1(p0) ∩ qi) · wi = ai

for all i = 1, . . . , 3g − 3. Each labeled tropical cover is counted with multiplicity∏3g−3
i=1 wi. Here, wi denotes the weight of the edge qi. We call a the branch type of

the tropical cover at p0.
We also define for a Feynman graph Γ the number N trop

a,Γ to be the weighted number

of labeled tropical covers as above with source curve of type Γ.
We set

Fg(q1, . . . , q3g−3) =
∑
a

N trop
a,g q2·a.

Here, the sum goes over all a ∈ N3g−3 and q2·a denotes the multi-index power q2·a =

q2a1
1 · . . . · q2a3g−3

3g−3 .

Example 2.18. Choose for example g = 3 and a = (0, 2, 1, 0, 0, 1). Let Γ be the

Feynman graph depicted in Figure 3. Then N trop
a,Γ = 256. All labeled covers con-

tributing to N trop
a,Γ together with their multiplicities are depicted in Figure 4. The

number next to each label qi stands for the weight of the labeled edge. The white
dots are the points in the fiber of p0 under π.

Similarly, we refine the definition of the integrals of Definition 2.5:

Definition 2.19. Let Γ be a Feynman graph. As usual, the vertices are labeled with
xi and the edges with qi. For the edge qk of Γ connecting the vertices xi and xj , we
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q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

Figure 3. The Feynman graph Γ.

change the definition of the integrand to

Pk := P (zi − zj , qk),

where P denotes the propagator of Definition 2.4. For a total ordering Ω of the
vertices we then define the integral

IΓ,Ω(q1, . . . , q3g−3) :=

∫
zj∈γj

3g−3∏
1

(−Pk)

just as in Definition 2.5.
We also set

IΓ(q1, . . . , q3g−3) =
∑

Ω

IΓ,Ω(q1, . . . , q3g−3),

where the sum goes over all (2g − 2)! orders of the vertices.

We can now present the main result of our paper, the tropical mirror symmetry
theorem for elliptic curves in its refined version:

Theorem 2.20 (Tropical Mirror Symmetry for elliptic curves). Let g > 1. For the
definition of the invariants, see Definitions 2.15 and 2.19. We have

Fg(q1, . . . , q3g−3) =
∑
a

N trop
a,g q2·a =

∑
Γ

IΓ(q1, . . . , q3g−3).

More precisely, the coefficient of the monomial q2·a in IΓ(q1, . . . , q3g−3) equals

N trop
a,Γ .

The proof or Theorem 2.20 follows immediatly from Theorem 2.30.
Note that the Tropical Mirror Symmetry Theorem naturally gives an interpretation

of the Hurwitz number generating function Fg(q1, . . . , q3g−3) in terms of a sum over
Feynman graphs — we can write it as

Fg(q1, . . . , q3g−3) =
∑

Γ

(∑
a

N trop
a,Γ q2·a

)
,

and Theorem 2.20 implies that the equality to the Feynman integral holds on the
level of the summands for each graph. The same is true of course after setting qk = q
for all k, thus going back to (unlabeled) tropical covers and (unrefined) Feynman
integrals. This is particularly interesting since all statements that hold on the level
of graphs (such as the quasimodularity shown in Section 3) now become meaningful
on the A-model side (i.e., for the generating function of Hurwitz numbers.)

We now show how one can deduce Theorem 2.14 from this more refined version:
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mult(π) = 72

mult(π) = 36

mult(π) = 12

mult(π) = 4 mult(π) = 4

mult(π) = 12

mult(π) = 4

mult(π) = 36

mult(π) = 4

mult(π) = 72

x4

q1, 3

q4, 3

x1

x2

x3

x4

q6, 4q3, 1

q2, 2

q6, 1

q6, 1

q5, 3q3, 1

q1, 2

q4, 2
q2, 1

x1 x3

x2 x4

q5, 2
q4, 3

q1, 3
q6, 1

x2

x1

x4

x3

x2

x1

x3

q6, 1

x1 x3

x2 x4

q3, 1

q2, 2

q4, 1

q1, 1

q5, 2

x1

x2

q3, 1

q2, 2
q5, 2

q4, 3

q1, 3
q6, 1

x3

x4

q1, 3

q4, 3 x4x2

x1 x3

q6, 1

q5, 4

q2, 2

q3, 1

q6, 1

q5, 3q3, 1

q1, 2

q4, 2
q2, 1

x2 x4

x1 x3

q3, 1

q1, 2

q4, 2
q2, 1

q6, 1

q5, 1

x2

x1

x4

x3

q3, 1

q1, 2

q4, 2
q2, 1

x1 x3

x2 x4

q6, 1

q5, 1

q6, 1

q3, 1

q2, 2

q4, 1

q1, 1

q5, 2

q3, 1

q2, 2

Figure 4. All labeled tropical covers contributing to N trop
(0,2,1,0,0,1),Γ = 256.
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Proof of Theorem 2.14 using Theorem 2.20. For a fixed graph Γ, let N trop
d,Γ be the

number of (unlabeled) tropical covers of degree d as in Definition 2.12, where the
combinatorial type of the source curve is Γ. As in Definition 2.11, each cover π :
C → E is counted with multiplicity 1

|Aut(π)|
∏
ewe, where the product goes over all

edges e of Γ and we denotes the weight of the edge e. As usual for Feynman graphs,
we fix a reference labeling xi of the vertices and qi of the edges (see Definition 2.5).
There exists a forgetful map ft from the set of labeled tropical covers satisfying the
ramification conditions to the set of unlabeled covers by just forgetting the labels.
We would like to study the cardinality of the fibers of ft. Let π : C → E be an
(unlabeled) cover such that the combinatorial type of C is Γ. The automorphism
group of Γ, Aut(Γ), acts transitively on the fiber ft−1(π) in the obvious way. So, to
determine the cardinality of the set ft−1(π), we think of it as the orbit under this

action and obtain | ft−1(π)| = |Aut(Γ)|
|Aut(π)| , since the stabilizer of the action equals the

set of automorphisms of π. Each labeled cover in the set ft−1(π) is counted with the
same multiplicity

∏
ewe, where the product goes over all edges e in Γ.

Thus we obtain

∑
a|

∑
ai=d

N trop
a,Γ =

∑
π̂:C→E

∏
e

we =
∑

π:C→E

∑
π̂:C→E| ft(π̂)=π

∏
e

we

=
∑

π:C→E

|Aut(Γ)|
|Aut(π)|

∏
e

we = |Aut(Γ)| ·N trop
d,Γ ,

where the second sum goes over all labeled covers π̂ : C → E of degree d and genus g
satisfying the conditions and such that the combinatorial type of C is Γ, the third sum
goes analogously over all (unlabeled) covers π : C → E and over the labeled covers
in the fiber of the forgetful map, the third equality holds true because of the orbit
argument we just gave and the last equality since an (unlabeled) cover is counted
with multiplicity 1

|Aut(π)|
∏
ewe.

We conclude

∑
d

N trop
d,g q2d =

∑
d

∑
Γ

N trop
d,Γ q2d =

∑
d

∑
Γ

1

|Aut(Γ)|
∑

a|
∑
ai=d

N trop
a,Γ q2d

=
∑

Γ

1

|Aut(Γ)|
∑
d

∑
a|

∑
ai=d

N trop
a,Γ q2d.

Now we can replace N trop
a,Γ by the coefficient of q2·a in IΓ(q1, . . . , q3g−3) by Theorem

2.20. If we insert qk = q for all k = 1, . . . , 3g− 3 in IΓ(q1, . . . , q3g−3) we can conclude

that the coefficient of q2d in IΓ(q) equals
∑

a|
∑
ai=d

N trop
a,Γ . Thus the above expression

equals ∑
Γ

1

|Aut(Γ)|
IΓ(q),

and Theorem 2.14 is proved. �

Remark 2.21. From a computational point of view, it makes sense to introduce a base
point to the computations above. In terms of labeled tropical covers, we then count
covers as above which satisfy in addition the requirement that a fixed vertex, say e.g.
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x1, is mapped to a fixed base point p. In terms of integrals, we set the variable z1 = 0.
The analogous statement to Theorem 2.20 relating numbers of labeled tropical covers
sending x1 to p to coefficients of integrals where we set z1 = 0 holds true and can be
proved along the same lines as the proof of Theorem 2.20 presented here.

2.4. The propagator. In this subsection, we study the combinatorics of Feynman
integrals. We show that the computation of a Feynman integral can be boiled down
to a combinatorial hunt of monomials in a big generating function. We also express
the integrals in terms of a constant coefficient of a multi-variate series, an expression
that will become important in Section 3 proving the quasimodularity of Feynman
integrals. In order to compute the integrals of Definition 2.19, it is helpful to make
a change of variables xj = eiπzj for each j = 1, . . . , 2g − 2. Under this change of
variables, each integration path γj goes to (half) a circle around the origin. The
integral is then nothing else but the computation of residues. We start by giving a
nicer expression of the propagator after the change of variables:

Theorem 2.22 (The propagator). The propagator P (x, q) of Definition 2.4 with
x = eiπz equals

P (x, q) = − x2

(x2 − 1)2
−
∞∑
n=1

∑
d|n

d
(
x2d + x−2d

) q2n. (2.2)

Proof. The claim of the theorem follows by comparing Taylor coefficients of both
sides. To be more precise (see [20])

℘(z, q) = z−2 +
∞∑
k=2

(2k − 1)G2k(q)z
2k−2,

where G2k(q) is the classical weight 2k Eisenstein series, normalized to have a Fourier
expansion of the shape

G2k(q) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)q2n,

where ζ(s) denotes the Riemann zeta function and σ`(n) :=
∑

d|n d
` is the `th divisor

sum. Note that at even integers the ζ-funtion may be written in terms of Bernoulli
numbers, defined via its generating functions

t

et − 1
=

∞∑
m=0

Bm
m!

tm. (2.3)

To be more precise, we have

ζ(2k) = (−1)k+1 (2π)2k

2(2k)!
B2k.

We next determine the Taylor expansion of the right-hand side of (2.2). Differentiat-
ing (2.3) gives that

− e2πiz

(e2πiz − 1)2
=

1

(2πz)2
+

∞∑
m=0

m− 1

m!
Bm(2πiz)m−2.
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Moreover, in the second term we use the series expansion of the exponential function
to obtain

−
∞∑
n=1

∑
d|n

d
(
x2d + x−2d

)
q2n = −

∞∑
n=1

∑
d|n

d
∞∑
`=0

(
1 + (−1)`

) (2πidz)`

`!
q2n

= −2
∞∑
n=1

∑
d|n

d
∞∑
`=0

(2πidz)2`

(2`)!
q2n

= −2

∞∑
n=1

∞∑
`=0

(2πidz)2`

(2`)!

∑
d|n

d2`+1q2n

= −2
∞∑
n=1

( ∞∑
`=0

(2πidz)2`

(2`)!
σ2`+1(n)

)
q2n.

Now the claim follows by comparing coefficients of z2`.
�

Now let us go back to a fixed Feynman graph Γ and consider the function we
have to integrate. Denote the vertices of the edge qk of Γ by xk1 and xk2 . Since the
derivative of ln(xi) is 1

xi
, after the coordinate change we integrate the function

PΓ :=

3g−3∏
k=1

(
−P
(xk1
xk2

, qk

))
· 1

iπx1 · . . . · iπx2g−2
.

After the coordinate change, the integration paths are half-circles around the origin.
Since our function is symmetric (there are only even powers of x), we can compute this
integral as 1

2 times the integral of the same function along a whole circle. Since the
function has only one pole at zero (within the range of integration), we can compute
the integral along the whole circle as 2iπ times the residue at zero by the Residue
Theorem.

It follows that the integral equals the constant coefficient of

P ′Γ :=

3g−3∏
k=1

(
−P
(xk1
xk2

, qk

))
. (2.4)

Note that it follows from Theorem 2.22 that −P
(
x
y , q
)

= −P
( y
x , q
)
. This is obvious

for the (Laurent-polynomial) coefficients of qd with d > 0. For the constant coefficient,
it follows since (

x
y

)2((
x
y

)2 − 1
)2 =

x2y2

(x2 − y2)2
=

x2y2

(y2 − x2)2
=

( y
x

)2(( y
x

)2 − 1
)2 . (2.5)

Therefore it is not important which vertex of qk we call xk1 and which xk2 (this also
explains the independence of the sign zi − zj resp. zj − zi in Definition 2.5). To
compute the (in the xk) constant coefficient of P ′Γ, we have to express the (in qk)
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constant coefficient of each factor, (
xk1
xk2

)2

((
xk1
xk2

)2
− 1

)2 ,

as a series. Depending on whether
∣∣∣xk1xk2

∣∣∣ < 1 or
∣∣∣xk2xk1

∣∣∣ < 1, we can use the left or

the right expression of Equation (2.5) for the constant coefficient and expand the
denominator as product of geometric series. The following lemma shows how to
expand the constant coefficient as a series, depending on the absolute value of the
ratio of the two involved variables. This explains why different orders Ω can produce
different integrals IΓ,Ω(q1, . . . , q3g−3): the position of the integration paths determine
the series expansion of the constant coefficients.

Lemma 2.23. Assume |x| < 1. Then

x2

(x2 − 1)2 =
∞∑
w=1

w · x2w.

The proof follows easily after expanding the factors as geometric series.
The discussion of this subsection can be summed up as follows:

Lemma 2.24. Fix a Feynman graph Γ and an order Ω as in Definition 2.5, and
a tuple (a1, . . . , a3g−3) as in Definition 2.17. We express the coefficient of q2·a in
IΓ,Ω(q1, . . . , q3g−3) of Definition 2.19. Assume k is such that the entry ak = 0, and
assume the edge qk connects the two vertices xk1 and xk2. Choose the notation of the

two vertices xk1 and xk2 such that the chosen order Ω implies
∣∣∣xk1xk2

∣∣∣ < 1 for the starting

points on the integration paths. Then the coefficient of q2·a in IΓ,Ω(q1, . . . , q3g−3)
equals the constant term of the series

∏
k|ak=0

 ∞∑
wk=1

wk ·
(
xk1
xk2

)2wk

 · ∏
k|ak 6=0

∑
wk|ak

wk

((
xk1
xk2

)2wk

+

(
xk2
xk1

)2wk
) . (2.6)

The discussion above will also be important in Section 3 for proving the quasimod-
ularity of Feynman integrals. We sum it up in a way suitable for this purpose. We
insert qk = q for each k coming back to the integrals of Definition 2.5. For a Taylor
series

F (x1, . . . , xn) =
∑

1≤j≤n
αj≥0

α (a1, . . . , an)xa11 · · · · · x
an
n

we denote

coeff[xa11 ,...,xann ](F ) = α (a1, . . . , an) .

Moreover, for a fixed Feynman graph Γ and an order Ω as in Definition 2.5, let

PΓ,Ω :=

3g−3∏
k=1

(
−P

(
xk1
xk2

, q

))
,

where P as usual denotes the propagator of Definition 2.4 resp. Theorem 2.22.
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Lemma 2.25. For Γ and Ω as in Definition 2.5, we have

IΓ,Ω(q) = coeff[x01,...,x02g−2]
(PΓ,Ω) .

The claim follows immediatly from Equation (2.4).

2.5. The bijection. For a fixed Feynman graph Γ and tuple (a1, . . . , a3g−3), we are
now ready to directly relate nonzero contributions to the constant term of the series
given in (2.6) for each order Ω to tropical covers contributing to N trop

a,Γ , thus proving

Theorem 2.20.
We express the constant term as a sum over products containing one term of each

factor of the series in (2.6):

Definition 2.26. Fix Γ, Ω and (a1, . . . , a3g−3) as in Definition 2.5 resp. 2.17. Con-
sider a tuple of powers ak and terms of the series in (2.6)(

(ak, Tk)
)
k=1,...,3g−3

=

((
ak, wk ·

(xki
xkj

)2wk
))

k=1,...,3g−3

,

where i = 1 and j = 2 if ak = 0, and {i, j} = {1, 2} otherwise. We require the

product of the terms,
∏3g−3
k=1 Tk, to be constant in each xi, i = 1, . . . , 2g − 2.

We denote the set of all such tuples by Ta,Γ,Ω.

Obviously, each tuple yields a summand of the constant term of the series in (2.6)
(and thus, by Lemma 2.24, a contribution to the q2·a-coefficient of IΓ,Ω(q1, . . . , q3g−3)),
and vice versa, each summand arises from a tuple in Ta,Γ,Ω. Note that the contribution
of a tuple equals

3g−3∏
k=1

Tk =

3g−3∏
k=1

wk. (2.7)

Definition 2.27. Let π̂ : C → E be a labeled tropical cover as in Definition 2.15
contributing to N trop

a,Γ . We cut E at the base point p0 and flatten it to an interval

following clockwise orientation. We define an order of the vertices xi of C given by the
natural order of their image points on the interval. For a given order Ω as in Definition
2.5, we let N trop

a,Γ,Ω be the weighted number of labeled tropical covers as in 2.15 (i.e.,

of degree
∑3g−3

i=1 ai, where the source curve has combinatorial type Γ, having their
branch points at the prescribed positions and satisfying #(π̂−1(p0)∩qi)·wi = ai for all
i = 1, . . . , 3g−3, where wi denotes the weight of the edge qi), and in addition satisfying
that the above order equals Ω. As usual, each cover is counted with multiplicity∏3g−3
k=1 wk.

Note that obviously we have
∑

ΩN
trop
a,Γ,Ω = N trop

a,Γ , where the sum goes over all

(2g − 2)! orders Ω of the vertices.

Example 2.28. The cover in Figure 2 cut at p0 and flattened to an interval is
depicted in Figure 5. Its vertex ordering Ω is given by x1 < x2 < x3 < x4.

Example 2.29. Go back to Example 2.18 where we determined N trop
a,Γ for the Feyn-

man graph Γ in Figure 3 and a = (0, 2, 1, 0, 0, 1). Note that there are two orders Ω
that yield nonzero contributions, namely x1 < x3 < x4 < x2 (call it Ω1) and x2 <
x4 < x3 < x1 (call it Ω2). In Figure 4, the covers with order Ω1 appear in the left col-

umn, the covers with Ω2 in the right column. For both orders, we have N trop
a,Γ,Ωi

= 128,

i = 1, 2. Altogether, we have N trop
a,Γ = N trop

a,Γ,Ω1
+N trop

a,Γ,Ω2
= 128 + 128 = 256.
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q5

q4q1

x2 x3

x4q2

q3

q6

q6

x1 q2

q3

q6

q6

p1p0 p0p2 p3 p4

Figure 5. The cover of Figure 2 cut at p0.

Theorem 2.30. Fix a Feynman graph Γ, an order Ω and a tuple (a1, . . . , a3g−3) as
in Definition 2.5 resp. 2.17.

There is a bijection between the set of labeled tropical covers contributing to N trop
a,Γ,Ω

and the set Ta,Γ,Ω of tuples contributing to the q2·a-coefficient of IΓ,Ω(q1, . . . , q3g−3)
(see Definition 2.27 and 2.26).

The bijection identifies the coefficients wk of the terms Tk of a tuple with the weights
of the edges of the corresponding labeled tropical cover. In particular, the contribution
of a tuple to the coefficient of q2·a in IΓ,Ω(q1, . . . , q3g−3) equals the multiplicity of the

corresponding labeled tropical cover, with which it contributes to N trop
a,Γ,Ω.

Note that it follows immediatly from Theorem 2.30 that N trop
a,Γ,Ω equals the coef-

ficient of q2·a in IΓ,Ω(q1, . . . , q3g−3), hence the coefficient of q2·a in IΓ(q1, . . . , q3g−3)

equals N trop
a,Γ and Theorem 2.20 is proved.

To prove Theorem 2.30, we set up the map sending a tuple in Ta,Γ,Ω to a tropical
cover in Construction 2.31. The theorem then follows from Lemma 2.33 stating that
this construction indeed yields a map as required and Lemma 2.34 stating that it has
a natural inverse and therefore is a bijection.

As usual, let Γ, Ω and a be fixed as in Definition 2.5 resp. 2.17.

Construction 2.31. Draw an interval from p0 to p′0 that can later be glued to E
by identifying p0 and p′0, and a rectangular box above in which we can step by step
draw a cover of E following the construction (see Figure 6). The vertical sides of the
box are called L and L′ and represent points which (if they belong to the cover after
the construction) are pairwise identified and mapped to the base point.

Given a tuple

(
(ak, Tk)

)
k=1,...,3g−3

=

((
ak, wk ·

(xki
xkj

)2wk
))

k=1,...,3g−3

of Ta,Γ,Ω,
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p′0E

L′L

p0

Figure 6. Preparation to construct a tropical cover from a tuple.

• draw dots labeled x1, . . . , x3g−3 into the box, from left to right (and slightly
downwards, to keep some space to continue the picture), as determined by the
order Ω, one dot above each point condition pi ∈ E where we fix the branch
points;

• for the term Tk = wk ·
(
xki
xkj

)2wk
draw an edge leaving vertex xki to the right

and entering vertex xkj from the left — if ak = 0, let this edge be a straight
line connecting these two vertices, if ak 6= 0 let it first leave the box at L′ and
enter again at L, altogether ak

wk
times, before it enters xkj ;

• give the edges drawn in the item before weight wk. As always, the lengths of
the edges are then determined by the differences of the image points of the xi
and the weights.

Glue the corresponding points on L and L′ to obtain a cover of E.

Example 2.32. Let Γ be the Feynman graph of Figure 3 and let a = (0, 2, 2, 0, 1, 0).

Moreover, choose the ordering x1 < x3 < x4 < x2 and pick the terms T1 =
(
x1
x3

)2
,

T2 = 2 ·
(
x2
x1

)2·2
, T3 =

(
x1
x2

)2
, T4 =

(
x4
x2

)2
, T5 =

(
x4
x3

)2
and T6 = 2 ·

(
x3
x4

)2·2
from

the series in (2.6). When applying Construction 2.31 we obtain the picture shown in
Figure 7 before gluing.

Lemma 2.33. Construction 2.31 defines a map from Ta,Γ,Ω to the set of tropical

covers contributing to N trop
a,Γ,Ω (see Definition 2.27 and 2.26).

Proof. Since the integrand of Definition 2.19 is set up such that we have a term
containing a power of xi

xj
in the tuples in Ta,Γ,Ω if and only if there is an edge qk

connecting xi and xj , it is clear that we produce a cover whose source curve has
combinatorial type equal to the labeled Feynman graph Γ (see also Equation (2.4)).
It is also obvious that the vertices are mapped to the interval respecting the order Ω.
To see that it is a tropical cover at all, we have to verify the balancing condition at
each vertex xi. This follows from the fact that we require the product of all terms
to be constant in xi: since Γ is trivalent, we have three edges adjacent to xi, to
fix notation call them (without restriction) q1, q2, and q3. Assume (also without
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q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Figure 7. Applying Construction 2.31 in Example 2.32.

restriction) that the other vertex of qj , j = 1, . . . , 3 is xj . The only three terms in

the product
∏3g−3
k=1 Tk involving xi are then

w1 ·
(x1

xi

)2w1

, w2 ·
( xi
x2

)2w2

, and w3 ·
( xi
x3

)2w3

,

where we picked an arbitrary choice between a quotient such as x1
xi

and its inverse
in each term for now. This choice is again made without restriction, just to fix the
notation in the terms Tk of the given tuple. (Of course, in general, if some of the
aj ,j = 1, . . . , 3 are zero, the choice has to respect the order Ω.) In our fixed but
arbitrary choice the requirement that the product is constant in xi translates to the
equation

−2w1 + 2w2 + 2w3 = 0.

The construction implies that here, the edge q1 enters xi from the left with weight
w1 while q2 and q3 leave the vertex xi to the right with weight w2 and w3, hence
the balancing condition is fulfilled. Since the direction of the edges we draw in
the construction reflects the fact that the corresponding two vertices show up in
the numerator resp. denominator of the quotient, it is obvious that the instance for
which we fixed a notation generalizes to any situation; and the balancing condition
at xi is always equivalent to the requirement that the product is constant in xi. It
is clear from the construction that the labeled tropical cover we have built has its
branch points at the required positions. If ak = 0, the construction implies that
π̂−1(p0) ∩ qk = ∅ and thus #(π̂−1(p0) ∩ qk) · wk = 0 = ak as required. If ak 6= 0, we
draw ak

wk
points on L resp. L′ that are identified to give ak

wk
preimages of p0 in qk, thus

#(π̂−1(p0) ∩ qk) · wk = ak holds in general. In particular, the degree of the cover is∑3g−3
k=0 ak.
Obviously, the map identifies the coefficient wk of a term Tk with the weight of

the edge qk, therefore the contribution of a tuple to the q2·a-coefficient of the in-
tegral IΓ,Ω(q1, . . . , q3g−3) (given by Equation (2.7)) equals the contribution of the

corresponding tropical cover to N trop
a,Γ,Ω by Definition 2.27. The statement follows. �

Lemma 2.34. The map of Lemma 2.33 has a natural inverse and is a bijection.
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Proof. One can reverse Construction 2.31 in the obvious way. For any edge qk which
does not pass L resp. L′, we set ak = 0. Assume qk connects the two vertices xk1 and
xk2 and assume the order Ω satisfies xk1 < xk2 . Then it follows from Definition 2.5

that we have to pick integration paths satisfying
∣∣∣xk1xk2

∣∣∣ < 1 and thus using Lemma 2.23

the power series expansion of the corresponding constant term of the propagator (see

Theorem 2.22) then contains quotients
xk1
xk2

as required. We pick the term wk·
(
xk1
xk2

)2wk

for our tuple.
For any edge qk that passes lk times with weight wk through L resp. L′, we set ak =

wk ·lk. Obviously, wk is a divisor of ak and thus the term wk ·

((
xk1
xk2

)2wk
+
(
xk2
xk1

)2wk

)
shows up in the q2ak

k -coefficient of the propagator as required (see Theorem 2.22) and
we can pick the summand corresponding to the orientation of our arrow as term for
our tuple.

It is obvious that this inverse construction produces a bijection. �

Corollary 2.35. A Feynman graph Γ satisfies N trop
a,Γ = 0 for every a, or (by Theorem

2.20) equivalently, IΓ(q1, . . . , q3g−3) = 0 if and only if Γ contains a bridge.

Proof. One can view a tropical cover as a system of rivers flowing into each other
without any source or sink, since the weights of the edges are positive and the bal-
ancing condition is satisfied. A graph with a bridge must have zero flow on the bridge,
and thus cannot be the source of a tropical cover.

Alternatively, to get a nonzero contribution to the coefficient of q2·a in the integral
IΓ(q1, . . . , q3g−3) = 0, we must be given an order Ω and a tuple in Ta,Γ,Ω. But by
Lemma 2.33 such a tuple only exists if the balancing condition is satisfied at every
vertex, thus the argument we just gave shows the coefficient is zero for a graph with
a bridge.

Vice versa, we have to show that there exists a cover for every graph without a
bridge. To see this, we give an algorithm below how to construct for a given bridgeless
graph an orientation of the edges that satisfies the following: there is no cut into two
connected components Γ1 and Γ2 for which all cut edges are oriented from Γ1 to
Γ2. It is easy to see that for such an orientation, we can insert positive weights for
the edges such that the balancing condition is satisfied at every vertex (we just add
enough water to the system of rivers). Thus the statement follows from Construction
2.36 and Lemma 2.37 below.

�

Construction 2.36. Let Γ be a bridgeless graph.

(1) Choose an arbitrary cycle and orient its edges in one direction. Also choose a
reference vertex V on the cycle. Let K denote the set of vertices on the cycle,
this is the set of “known vertices” that we will enlarge in the following steps.

(2) Let U1, . . . , Us denote the connected components of the subgraph induced on
the vertex set of Γ minus K. If s ≥ 1, choose an arbitrary vertex W ∈ U1.
Since Γ is connected, there is a path from V to W and we can choose it such
that it respects our so far fixed orientations for the edges. At some point, the
path must leave the “known part” and enter U1, call this edge E1. Since E1

is not a bridge, there must be at least a second edge E2 connecting the known
part to U1. We go along E1 into U1 until we reach W , and then continue until
we hit via E2 the known part again. We orient the edges we follow on the
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way. We add the set of vertices we meet on the way to K and start again at
(2).

(3) At each step described above, we increase the vertex set of the known part.
If all vertices are known, we orient the remaining edges arbitrarily.

Lemma 2.37. Given a bridgeless graph Γ, we can use Construction 2.36 to orient
the edges such that the following is satisfied:

(1) Every vertex is contained in an oriented cycle that also contains the reference
vertex V .

(2) There is no cut into two connected components Γ1 and Γ2 such that all cut
edges are oriented from Γ1 to Γ2.

Proof. The first statement is obvious from the construction: we start with a cycle
containing V and add oriented “handles”. For the second statement, assume there
was such a cut, and assume without restriction that V is in Γ1. Choose an arbitrary
vertex W in Γ2. By (1), there is an oriented cycle containing W and V . This cycle
must contain at least two cut edges which are thus oriented in opposite direction. �

3. Quasimodularity

In this section, we prove the quasimodularity of the individual Feynman integrals.
More precisely, the Mirror Symmetry Theorem 2.6 implies

Fg(q) =
∑
d

Nd,gq
2d =

∑
Γ

1

|Aut(Γ)|

(∑
Ω

IΓ,Ω

)
,

where the sum runs over all Feynman graphs Γ and orders Ω as in Definition 2.5.
It is known that Fg(q) is a quasimodular form [9, 18]. Here, we prove that already
the individual summands IΓ,Ω(q) are quasimodular forms. We start by recalling the
necessary definitions.

Definition 3.1. A function f : H → C (where H denotes the complex upper half
plane) is called an almost holomorphic modular form of weight k ∈ Z if ∀

(
a b
c d

)
∈

SL2(Z), we have

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

and f has the shape (τ = u+ iv)

f(τ) =

r∑
j=0

fj(τ)

vj
(3.1)

with fj holomorphic in H∪{∞}. The constant term f0 is called a quasimodular form
and r is called the depth of f . Note that

f0(τ) = lim
τ→∞

f(τ),

if we view τ and τ̄ as independent variables.

The goal is to show the following theorem.

Theorem 3.2. For all Feynman graphs Γ and orders Ω as in Definition 2.5, the
function IΓ,Ω is a quasimodular form of weight 6g − 6.
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From Lemma 2.25 we know that IΓ,Ω is the constant term of a function whose
modular behavior we can easily determine.

Remember that

PΓ,Ω :=

3g−3∏
k=1

(
−P

(
xk1
xk2

, q

))
where P (x, q) is the propagator (see Definition 2.4 and Theorem 2.22) and the two
vertices of an edge qk of Γ are denoted xk1 and xk2 .

To prove Theorem 3.2, we explicitly construct the associated almost holomorphic
modular form. For this, we consider the following slight modification of the propaga-
tor of Definition 2.4; we set

P̂ (z, τ) :=
1

4π2
℘(z, τ) +

1

12
E2(τ) +

1

4πv
,

where, as before, τ = u+ iv. Obviously

lim
τ→∞

P̂ (z, τ) = P (x, q)

with x = e2πiz. Note that in this proof we use a different normalization than in the
rest of this paper since this is more natural in the theory of modular forms.

Note that P̂ (z, τ) and its relation to P (z, τ) has been used by other authors, see
e.g. [21].

Here ℘(z, τ) = ℘(x, q) and E2(τ) := E2

(
q2
)

by abuse of notation. Moreover, set

ÎΓ,Ω(τ) := coeff[x01,...,x02g−2]

(
P̂Γ,Ω (z1, . . . z2g−2, τ)

)
,

where

P̂Γ,Ω (z1, . . . z2g−2, τ) :=

3g−3∏
k=1

(
−P̂ (zk1 − zk2 , τ)

)
.

From Lemma 2.25 we get

IΓ,Ω = lim
τ→∞

ÎΓ,Ω(τ).

Theorem 3.2 follows directly from the following

Proposition 3.3. The function ÎΓ,Ω is an almost holomorphic modular form of weight
6g − 6.

Proof. We start by proving the transformation law. Clearly

ÎΓ,Ω(τ + 1) = ÎΓ,Ω(τ).

Thus it is enough to show that

ÎΓ,Ω

(
−1

τ

)
= τ6g−6ÎΓ,Ω(τ).

For this, we use the following transformation laws

℘

(
z

τ
,−1

τ

)
= τ2℘(z, τ),

E2

(
−1

τ

)
= τ2E2(τ) +

6τ

πi
,

Im

(
−1

τ

)
=

v

|τ |2
.
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They imply

P̂

(
z,−1

τ

)
= τ2P̂ (zτ, τ).

From this, we get

P̂Γ,Ω

(
z1, . . . , z2g−2,−

1

τ

)
=

3g−3∏
k=1

τ2
(
−P̂ (zk1τ − zk2τ, τ)

)
= τ6g−6P̂Γ,Ω (z1τ, . . . , z2g−2τ, τ) .

Thus

ÎΓ,Ω

(
−1

τ

)
= τ6g−6coeff[x01,...,x02g−2]

(
P̂Γ,Ω (z1τ, . . . , z2g−2τ, τ)

)
= τ6g−6ÎΓ,Ω(τ),

where we used that for A ∈ C
coeff[x0]

(
f
(
xA
))

= coeff[x0] (f(x)) .

To finish the proof, we are left to show that ÎΓ,Ω has the shape (3.1) with fj
holomorphic on H ∪ {∞}. Everything is obvious, but the holomorphy in ∞. To see
this, recall (see [11]) that

℘(z, t) =

∞∑
n=0

az(n)e2πiτ = O(az(0)) = O

(
e2πiz + 10 + e−2πiz

e2πiz − 2 + e−2πiz

)
as τ → i∞. Now the claim follows since E2 is bounded in i∞. �

Remark 3.4. If Γ is of genus g > 1, by Theorem 3.2, IΓ(q) =
∑

Ω IΓ,Ω(q) is a quasi-
modular form of weight 6g − 6. Hence IΓ(q) ∈ Q[E2, E4, E6], where E2, E4, E6 are
the Eisenstein series of weight 2, 4 and 6, writing, by abuse of notation, Ei=Ei(q

2).
Hence

IΓ(q) =
∑

2i+4j+6k=6g−6
i,j,k∈N0

ci,j,kΓ · Ei2E
j
4E

k
6

with ci,j,kΓ ∈ Q. As described in Appendix 4.2, Theorem 2.20 gives an algorithm for
computing the series

IΓ(q) =
∑

a
N trop
a,Γ q2|a|.

Determining IΓ(q) up to sufficiently high order yields a linear system of equations for

the coefficients ci,j,kΓ which admits a unique solution. In this way, we can use our Sin-
gular package to compute the respresentation of IΓ(q) in terms of Eisenstein series.
A concrete example is presented in Example 3.5. Note that we can compute more
orders than necessary, thus yielding an overdetermined system of linear equations.
Theorem 3.2 predicts that such an overdetermined system still has a unique solution.
For our example below, we verified this statement computationally.

Example 3.5. For the Feynman graph Γ1 as depicted in Figure 3, we compute

IΓ1(q) = 32q4 + 1792q6 + 25344q8 + 182272q10 + 886656q12 +O(q14).

This determines a unique solution for the coefficients

c0,0,2
Γ1

, c0,3,0
Γ1

, c1,1,1
Γ1

, c2,2,0
Γ1

, c3,0,1
Γ1

, c4,1,0
Γ1

, c6,0,0
Γ1

of the weight 12 monomials, which corresponds to the quasi-modular representation

IΓ1(q) =
16

1492992

(
4E2

6 + 4E3
4 − 12E2E4E6 − 3E2

2E
2
4 + 4E3

2E6 + 6E4
2E4 − 3E6

2

)
.
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Figure 8. Feynman graph Γ2 of genus 3.

In the same way, for the graph Γ2 as in Figure 8 we obtain

IΓ2(q) = 1152q6 + 20736q8 + 165888q10 + 843264q12 +O(q14)

leading to the representation

IΓ2(q) =
24

1492992

(
3E3

4 − 9E2
2E

2
4 + 9E4

2E4 − 3E6
2

)
.

Since Γ1 and Γ2 are the only Feynman graphs of genus g = 3 without bridges,
this yields the total generating function F3(q) for the Hurwitz numbers Nd,3 as the
|Aut(Γi)|−1-weighted sum of IΓ1(q) and IΓ2(q):

F3(q) =
1

16
IΓ1(q) +

1

24
IΓ2(q)

=
1

1492992

(
4E2

6 + 7E2
4 − 12E2E4E6 − 12E2

2E
2
4 + 4E3

2E6 + 15E4
2E4 − 6E6

2

)
.

This agrees with the formula for F3(q) given in [9, Section 3] (up to a factor of 4!
explained by the choice of convention mentioned in Remark 2.2).

4. Appendix

4.1. Correspondence theorem. In this part of the Appendix, we prove Theorem
2.13. We do this by cutting covers of E at the preimages of the base point p0, thus
producing a (possibly reducible) cover of the tropical line TP1 := R∪{−∞}∪{∞} as in
[7]. We use the Correspondence Theorem of [7] relating the numbers of tropical covers
to certain tuples of elements of the symmetric group that correspond to algebraic
covers of P1. We study “gluing factors” that relate the tropical multiplicity of a cover
of E to the tropical multiplicity of the cut cover. These factors equal the number of
ways to produce a tuple of elements of the symmetric group corresponding to a cover
of an elliptic curve E from a tuple corresponding to a cover of P1.

By pairing a cover of E with a monodromy representation, the Hurwitz number
Nd,g of Definition 2.1 equals the following count of tuples of permutations:

Remark 4.1 (cf. [25]). The Hurwitz numbers Nd,g of Definition 2.1 are given by 1
d!

times the number of tuples (τ1, . . . , τ2g−2, α, σ) of permutations in Sd such that

(1) the τi are transpositions for all i = 1, . . . , 2g − 2,
(2) the equation τ2g−2 ◦ . . . ◦ τ1 ◦ σ = α ◦ σ ◦ α−1 holds,
(3) the subgroup 〈τ1, . . . , τ2g−2, σ, α〉 acts transitively on {1, . . . , d}.
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σ

α

E

σ

τ1 τ2 τ2g−2

· · ·
p2g−2p1 p2

α

Figure 9. The generators of the fundamental group π1(E \ p1, . . . , p2g−2).

Condition (2) is explained by Figure 9 sketching the generators of the funda-
mental group π1(E \ p1, . . . , p2g−2): The rectangle represents the elliptic curve as
a torus, the left side is identified with the right side and the top with the bottom.
Clearly α and σ belong to the two generators of π1(E). The loops around the branch
points p1, . . . , p2g−2 induce the permutations τ1, . . . , τ2g−2 of sheets on the source
curve. Obviously going around all branch points simultaneously is homotopic to the
composition of the paths around each of the points in order p1, . . . , p2g−2, on the
one hand, and on the other hand it is homotopic to the path that goes clockwise
around the rectangle. This identity has to “lift” to the source curve, implying that
τ2g−2 ◦ . . . ◦ τ1 = α ◦ σ ◦ α−1 ◦ σ−1.

Let ∆ be a partition of d. A permutation σ has cycle type ∆ if after decomposition
into a disjoint union of cycles ∆ equals the partition of the lengths of the cycles. The
conjugacy classes of Sd are the sets of permutations with same cycle type ∆. Thus σ
and α ◦ σ ◦ α−1 have the same cycle type for any σ and α.

Given a tuple as in Remark 4.1 we now construct an associated tropical cover. As
before, we fix the base point p0 and the 2g − 2 branch points p1, . . . , p2g−2 (ordered
clockwise) in E.

Construction 4.2. Given a tuple as in Remark 4.1 we construct a tropical cover of
E with branch points p1, . . . , p2g−2 as follows:

(1) For each cycle c of σ of length m draw an edge of weight m over p0 and label
it with the corresponding cycle.

(2) For i = 1, . . . , 2g − 2, successively cut or join edges over pi according to the
effect of τi on τi−1 ◦ . . . ◦ τ1 ◦ σ. Label the new edges as before.

(3) Glue the outcoming edges attached to points over p2g−2 with the edges over
p0 according to the action of α on the cycles of σ. More precisely: Glue the
edge with the label α ◦ c ◦ α−1 over p2g−2 to the edge with label c over p0.

(4) Forget all the labels on the edges.

Note that for a cycle c = (n1 . . . nl) of length l ≥ 2 we have α ◦ c ◦ α−1 =
(α(n1) . . . α(nl)). We use the same convention for cycles of length 1.

Example 4.3. Let g = 2 and d = 4 and consider the tuple of permutations

(τ1, τ2, τ3, τ4, α, σ) = ((1 3), (2 4), (1 2), (1 3), (2 3 4), (2 3))
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(1 3 2 4)
(1 3 2)

(4)
(4)(2)

(2)

(1)

(3 4)

(1 3 4)
(1)

(2 3)

p0p1p2p3p4p′0

(1 3)(2 4)(1 2)(1 3)

1

2

3

1

2

3

Figure 10. The cover of TP1 associated to a tuple of permutations.

p3

p2p1

p4

p0

p3

p2p1

p4

p0

Figure 11. Two different gluings of the same cover of the line.

in S4. We see that σ = (2 3) = (1)(2 3)(4) has cycle type (2, 1, 1). Moreover α ◦ σ ◦
α−1 = (1)(2)(3 4) = τ4 ◦ . . . ◦ τ1 ◦ σ is fulfilled, so the tuple contributes to the count
of N4,2. Figure 10 sketches the construction of Remark 4.2 up to the gluing step (the

object can be considered as a cover of the tropical line TP1 as described below).
In the gluing step the vertices p0 and p′0 are going to be identified. Since we have

α ◦ (1) ◦ α−1 = (1)

∧ α ◦ (2 3) ◦ α−1 = (3 4)

∧ α ◦ (4) ◦ α−1 = (2),

the ends of the source curve are glued according to the red numbers in Figure 10. The
result is the cover of E depicted on the left in Figure 11. Note that choosing α = (2 4)
yields the same gluing, while α′ = (1 2 4) also fulfills α′ ◦ σ ◦ α′−1 = τ4 ◦ . . . ◦ τ1 ◦ σ,
but since

α′ ◦ (1) ◦ α′−1 = (2)

∧ α
′ ◦ (2 3) ◦ α′−1 = (3 4)

∧ α′ ◦ (4) ◦ α′−1 = (1),

it provides a different gluing, sketched on the right side of Figure 11. In particular
the combinatorial types of the source curves are different.
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Now we describe how to cut tropical covers of E in general, thus producing covers
of a line. As usual, we neglect edge lengths — to be precise, they have to adapted
accordingly.

Construction 4.4. To every cover π : C → E of degree d we associate a (possibly

disconnected) tropical cover π̃ : C̃ → TP1 of the line TP1 of the same degree, by
cutting E at p0 and the source curve C at every preimage of p0.

For the definition of (connected) tropical covers of TP1, see [7]. This definition can
easily be generalized by allowing the source curve to be disconnected, and adapting
the multiplicity accordingly as follows. Notice that the multiplicity of a single edge of
weight m covering TP1 is 1

m (this case is not taken care of in [7] where it is implicitly
assumed that every source curve contains at least one vertex). The multiplicity of a

cover π̃ : C̃ → TP1 is

mult(π̃) :=
∏
K

1

wK
· |Aut(π̃)| ·

∏
e

we, (4.1)

where the first product goes over all connected components K of C̃ that just consist
of one single edge mapping to TP1 with weight wK and the second product goes
over all bounded edges e of C̃, with we denoting their weight. Note that in [7], the

factor |Aut(π̃)| is simplified to 1
2

l1+l2 , where l1 denotes the number of balanced forks
(i.e., adjacent ends of the same weight) and l2 denotes the number of wieners (i.e.
pairs of bounded edges of the same weight sharing both end vertices). Since we allow
disconnected covers, we will have other contributions to the automorphism group:
connected components consisting of single edges of the same weight as above can be
permuted. So we get a contribution of 1

r! to |Aut(π̃)| if for a certain weight m there
are exactly r copys of connected components consisting of a single edge of weight m.

For a cover π : C → E, we denote by ∆ the partition of d given by the weights of
the edges over p0. For the cut cover π̃ (see Construction 4.4) these are exactly the
ramification profiles over −∞ and ∞.

Example 4.5. The two covers of E depicted in Figure 11 cut at p0 both give a cover
of the line as sketched in Figure 10 (where we dropped the labels on the edges). The
multiplicity of the cover of the line equals the product of the weight of the bounded
edges, i.e., 32 · 4, since there are no automorphisms.

Example 4.6. Figure 12 shows a disconnected cover π̃ of the line of degree 17 with
6 (simple) ramifications and profiles (4, 4, 4, 1, 1, 1, 1, 1) over the ends. Its multiplicity
equals

mult(π̃) =

(
1

2

)2

· 1

2
· 1

2!
· 1

3!︸ ︷︷ ︸
=|Aut(π̃)|

· 1

4 · 4 · 1 · 1 · 1︸ ︷︷ ︸
=
∏
K

1
wK

· 4 · 2 · 2 · 2 · 2︸ ︷︷ ︸
=
∏
e we

=
1

24
,

where the first factor contributing to the automorphisms comes from the two balanced
forks, the second from the wiener and the other two from two single-edge components
of weight 4 and three single-edge components of weight 1 respectively.

The Correspondence Theorem in [7] matches tropical covers of TP1 as above with
algebraic covers of P1 having two ramifications of profile ∆ over 0 and∞ respectively
and only simple ramifications else.

Similar to Remark 4.1, the associated Hurwitz numbers can be written in terms of
tuples of elements of the symmetric group.
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TP1

2

2
2

2
4

1
1
1
4
4
4

1

1

4
4
1

1
1
1

1

4

π̃

−∞ p1 p2 p3 p4 p5 p6 ∞

Figure 12. A (disconnected) tropical cover of the line.

Remark 4.7. The double Hurwitz number Hd,g(P1,∆,∆) counting the number of

(isomorphism classes of) covers φ : C → P1 of degree d (each weighted with 1
|Aut(φ)|),

where C is a possibly disconnected curve such that the sum of the genera of its
connected components equals g, having ramification profile ∆ over 0 and∞ and only
simple ramifications else, equals 1

d! times the number of tuples (τ1, . . . , τ2g−2, σ, σ
′) in

Sd such that

• σ and σ′ are permutations of cycle type ∆,
• the τi are transpositions for all i = 1, . . . , 2g − 2,
• the equation σ′ ◦ τ2g−2 ◦ . . . ◦ τ1 ◦ σ = idSd holds.

Note that as in Definition 2.1, it follows from the Riemann-Hurwitz formula that the
number of simple ramifications is 2g− 2. The condition σ′ ◦ τ2g−2 ◦ . . . ◦ τ1 ◦ σ = idSd
reflects the fact that the fundamental group π1(P1) is trivial. We do not include a
condition about transitivity here, since we allow also disconnected covers.

As in Construction 4.2, we can associate a tropical cover of the line to a tuple as
in Remark 4.7. The procedure is the same, we just drop the gluing step (3). The
statement of the Correspondence Theorem 5.28 in [7] is that for a fixed tropical cover

π̃ : C̃ → TP1, the tropical multiplicity equals 1
d! times the number of tuples that yield

π̃ under the above procedure.
We now relate the tuples in Remarks 4.1 and 4.7. resp. the multiplicities of a

tropical cover π : C → E and the cut cover π̃ : C̃ → TP1 of Construction 4.4.

Definition 4.8. Given a cover π : C → E and the cut cover π̃ : C̃ → TP1 of
Construction 4.4, we choose a tuple (τ1, . . . , τ2g−2, σ, σ

′) that yields π̃ when applying
Construction 4.2 (minus the gluing in step (3)). We define nπ̃,π to be the number of
α ∈ Sd satisfying α ◦ σ ◦ α−1 = σ′ and, when labeling π̃ with cycles according to our
choice of tuple (τ1, . . . , τ2g−2, σ, σ

′) and performing step (3) and (4) of Construction
4.2 (gluing and forgetting the cycle labels), we obtain π.

Note that nπ̃,π is well-defined (i.e., does not depend on the choice of the tuple
(τ1, . . . , τ2g−2, σ, σ

′)). This is true since any other representative (τ̄1, . . . , τ̄2g−2, σ̄, σ̄
′)
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h

E

Γ

Figure 13. A tropical elliptic cover with a long wiener. The two
wiener-edges (i.e., the red and the green edge) have the same weight.

is a conjugate of (τ1, . . . , τ2g−2, σ, σ
′) and therefore the desired ᾱ are in one-to-one

correspondence to the desired α.

Proposition 4.9. For a cover π : C → E with partition ∆ = (m1, . . . ,mr) over the
base point, the number nπ̃,π of Definition 4.8 is given by

nπ̃,π = m1 · . . . ·mr ·
|Aut(π̃)|
|Aut(π)|

.

Proof. As in the definition of nπ̃,π (see Definition 4.8), fix a tuple of permutations
(τ1, . . . , τ2g−2, σ, σ

′) that yields π̃ when applying Construction 4.2 minus the gluing
step (3).

The set of α such that α ◦ σ ◦ α−1 = σ′ is a coset of the stabilizer of σ with
respect to the operation of Sd on itself via conjugation: (α, σ) 7→ α ◦σ ◦α−1. Assume
that ∆ consists of ki weights wi for i = 1, . . . , s, then this stabilizer is isomorphic
to the semidirect product

∏s
i=1C

ki
wi o

∏s
i=1 Ski of cyclic groups Cwi of length wi and

symmetric groups Ski . This can be seen as follows: for each weight wi (i.e., length
of a cycle of σ) we can choose an element of Ski permuting the cycles of length wi in
σ. Assume the cycle c1 of σ is mapped to the cycle c2 by this permutation. Then we
consider permutations α′ in the group of bijections of the entries of c2 to the entries
of c1 that satisfy α′ ◦ c1 ◦ α′−1 = c2, there are wi such α′ (and they form a cyclic
group). Since the cycles of σ are disjoint, the choices for α′ for each pair of cycles
(c1, c2) where c1 is mapped to c2 under the permutations in Ski that we choose for
each i can be combined to a unique α in the stabilizer of σ.

We label the edges of C̃ with cycles as given by the choice of our tuple. Transferred
to our situation, the argument above shows that when searching for α that satisfy
both requirements of Definition 4.8, we always get the contributions from the Cwi ,

(leading to a factor of
∏s
i=1w

ki
i = m1 · . . . ·mr). To prove the lemma, it remains to
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Figure 14. Two ways to glue a fork to two distinguishable ends.

see that |Aut(π̃)|
|Aut(π)| equals the number of ways to choose permutations of the cycles of

the same length (resp. permutations of the ends of C̃) that correspond to a gluing of
π̃ equal to π when applying Construction 4.2, step (3).

So let us now analyze the automorphism groups and compare the quotient of their
sizes to the possibilities to glue the cover π̃ (with labeled ends) to π.

The automorphism group of π̃ is, as mentioned above, a direct product of symmet-
ric groups each corresponding to a wiener, a balanced fork or the set of connected
components consisting of a single edge of fixed weight. The automorphism group
of π is a direct product of symmetric groups of size two corresponding to wieners.
Notice that we can have long wieners as in Figure 13, where the two edges of the
same weight are curled equally. Clearly automorphisms that come from wieners that
are not cut cancel in the quotient and we can thus disregard them. Since therefore
all contributions to the automorphism groups we have to consider come from ends of
C̃, and the possibilities to glue the cover π̃ to π also only depend on the ends of C̃,
we can analyze the situation locally on the level of the involved ends.

We say that an end of C̃ is distinguishable if it is not part of a balanced fork and
not an end of a component consisting of a single edge. Distinguishable ends do not
contribute to the automorphisms of π̃.

We have to consider several cases. We first consider cases not involving connected
components consisting of a single edge.

(1) If we glue two distinguishable ends of C̃ to get back C, there are no choices
for different gluings. Since distinguishable ends do not contribute to the
automorphisms, the equality of contributions from these ends holds.

(2) Assume that an edge of C is cut in such a way that one of the ends is part of
a balanced fork and the other is distinguishable. Then obviously there are 2
ways to glue, see Figure 14. The balanced fork contributes with a factor 2 to
|Aut(π̃)|. After gluing, the fork is not part of a wiener, so the contribution to
|Aut(π)| is 1. Again, we see that the contributions coming from these ends
to the quotient of the sizes of the automorphism groups on the one hand and
to the possibilities of gluing on the other hand coincide.

(3) If two balanced forks are glued, we obtain a wiener. The contribution to
|Aut(π̃)| and |Aut(π)| is 4 and 2 respectively. The ways to glue the forks to
a wiener is 2, as illustrated in Figure 15.

Now we have to consider cases involving ends of connected components consisting
of a single edge, say of weight m. Assume there are l components consisting of a
single edge of weight m. These ends contribute a factor of l! to |Aut(π̃)|.

(4) Assume that l0 of the components are not part of a long wiener after gluing.
They do not contribute to the automorphisms of π. Note that the components
nevertheless might be attached to balanced forks. In this case the fork is either
part of a pseudo-wiener in π (i.e., two edges sharing the same end vertices
and having the same weight, but curled differently, see Figure 16) or the two
edges of the fork have different end vertices.
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Figure 15. Gluing two balanced forks to a wiener.

Figure 16. A cover with a pseudo-wiener.

Let us now determine the number of ways to glue these ends of C̃ to get
back C. We can choose l0 of the l single-edge-components, and distribute
them to l0 distinguishable places. Also, we get a factor of 2 for each balanced
fork involved. The result is

(
l
l0

)
· l0! · 2f , where f is the number of balanced

forks involved.
The remaining l− l0 components must be part of long wieners in π. Let n

be the number of long wieners in π, giving a contribution of 2n to |Aut(π)|,
then 2n balanced forks from π̃ are involved in the gluing process contributing
with a factor of 22n to |Aut(π̃)|. The number of ways to glue is the number
of ways to distribute the l− l0 components to l− l0 gluing places and a factor
of 2 for every wiener we get, just as in Figure 15. Altogether the contribution
to the number of gluings providing the desired cover equals(

l

l0

)
· l0! · 2f · (l − l0)! · 2n = l! · 2f · 2n.

The contribution to the quotient of the sizes of the automorphism groups
equals

l! · 2f · 22n

2n
.

Obviously, the two expressions coincide and we are done.

�

We are now ready to prove the Correspondence Theorem 2.13, that is the equality
of tropical and algebraic Hurwitz numbers of simply ramified covers of elliptic curves.

Proof of Theorem 2.13. By Remark 4.1

Nd,g =
1

d!
·# {(τ1, . . . , τ2g−2, α, σ)} ,

where α, σ, τi ∈ Sd, the τi are transpositions, the equality τ2g−2◦. . .◦τ1◦σ = α◦σ◦α−1

holds and 〈τ1, . . . , τ2g−2, σ〉 acts transitively on the set {1, . . . , d}. We can group the
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tuples in the set according to the tropical cover π : C → E they provide under
Construction 4.2 and write the sum above as

1

d!
·
∑
π

# {(τ1, . . . , τ2g−2, α, σ) yielding the cover π} .

For a fixed cover π, instead of counting tuples yielding π, we can count tuples
(τ1, . . . , τ2g−2, σ, σ

′) yielding the cut cover π̃ from Construction 4.4 and then mul-
tiply with the number of appropriate α, i.e., with nπ̃,π (see Definition 4.8):

1

d!
·
∑
π

#
{

(τ1, . . . , τ2g−2, σ, σ
′) that provide the cover π̃

}
· nπ̃,π.

By [7] (see also Remark 4.7) the count of the tuples yielding a cover π̃ divided by
d! coincides with its tropical multiplicity mult(π̃) = 1

|Aut(π̃)| ·
∏
K

1
wK
·
∏
ẽwẽ where

the first product goes over all components K consisting of a single edge of weight
wK and the second product goes over all bounded edges ẽ of C̃ and wẽ denotes
their weight (see (4.1)). Using Proposition 4.9, the number nπ̃,π can be substituted

by
∏
e′ w

ce′
e′ ·

|Aut(π̃)|
|Aut(π)| where the product goes over all edges e′ of C that contain a

preimage of the base point p0 of E and ce′ denotes the number of preimages in e′,
ce′ = #(π−1(p0) ∩ e′). We obtain

Nd,g =
∑
π

1

|Aut(π̃)|
·
∏
ẽ

wẽ ·
∏
K

1

wK
·
∏
e′

w
ce′
e′ ·
|Aut(π̃)|
|Aut(π)|

.

An edge e′ of C of weight we′ having ce′ preimages over the base point provides
exactly ce′ − 1 single-edge-components of weight we′ in the cut cover π̃. Vice versa,
each such component comes from an edge with multiple preimages over the base
point. Therefore the expression

∏
K

1
wK
·
∏
e′ w

ce′
e′ simplifies to

∏
e′ we′ . We obtain

Nd,g =
∑
π

1

|Aut(π)|
∏
e

we = N trop
d,g

and the theorem is proved. �

4.2. Implementation in Singular. Theorem 2.20 yields a method for computing
tropical Hurwitz numbers of an elliptic curve via path integrals. By the Correspon-
dence Theorem 2.13 these numbers coincide with the classical Gromov-Witten invari-
ants. We have implemented the resulting algorithm for computing Gromov-Witten
invariants in the package ellipticcovers.lib [5] for the computer algebra system
Singular [8]. Given a Feynman graph Γ of genus g, the key function of the package

computes the numbers N trop
a,Γ ∈ N associated to a given branch type a ∈ N3g−3

0 .

In this section, we illustrate the algorithm and the implementation by an example:
Our package can be loaded in Singular by

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Sept 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> LIB "ellipticcovers.lib";

Consider the graph Γ of genus 3 as depicted in Figure 3. In Singular it can be
created by specifying lists of vertices and edges:
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> graph Gamma = makeGraph(list(1,2,3,4),

list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));

> Gamma;

[[1, 3], [1, 2], [1, 2], [2, 4], [3, 4], [3, 4]]

Graph with 4 vertices and 6 edges

We create the polynomial ring R = Q(x1, . . . , x4)[q1, . . . , q6] with one rational variable
xi for each vertex and one polynomial variable qi for each edge of Γ:
> ring R = (0,x(1..4)),q(1..6),dp;

The propagator coefficient associated to an edge {x, y} of degree d with vertices x
and y is

P{x,y},d =


xy

(x2−y2)2
for d = 0.∑

j|d

j x
4j+y4j

(xy)2j
for d > 0

This formula is implemented in the function propagator. As shown in Theorem
2.22, it yields the degree 2d coefficient of the propagator series −P (xy , q) in the formal

variable q as a rational function of x and y. Technically, propagator returns a
Singular number, that is, an element of the coefficient ring Q(x1, . . . , x4) of R:
> propagator(list(x(1),x(2)),0);

(x(1)^2*x(2)^2)/(x(1)^4-2*x(1)^2*x(2)^2+x(2)^4)

> propagator(list(x(1),x(2)),3);

(3*x(1)^12+x(1)^8*x(2)^4+x(1)^4*x(2)^8+3*x(2)^12)/(x(1)^6*x(2)^6)

The function propagator can also be applied to a graph Γ and a list a of integers.
Here ai is the degree of the i-th edge ei in the list Gamma.edges of edges of Γ over a
fixed base point. For this input, the function returns the product

Pa,Γ =
∏
iPei,ai

of the propagator factors corresponding to the edges:
> number P = propagator(Gamma, list(0,0,0,0,1,1));

To obtain the path integral, we have to compute the residue of P
x1x2x3x4

with respect

to all variables in all possible orderings. Computing the residue of P
x1

with respect
to x1 amounts to computing the constant coefficient of the Laurent series of P in x1.
For example, the first two steps with respect to the ordering (x3, x1, x2, x4) can be
done by
> number P3 = computeConstant(P, x(3));

> computeConstant(P3, x(1));

(2*x(4)^6)/(x(2)^6-2*x(2)^4*x(4)^2+x(2)^2*x(4)^4)

The evaluation of the path integral for a specific ordering of the variables (by applying
computeConstant iteratively) is available in the function evaluateIntegral:
> evaluateIntegral(P, list(x(3),x(1),x(2),x(4)));

4

The sum of this over all possible orderings of variables is the Gromov-Witten invariant
N trop
a,Γ , which is obtained from the rational function P by the command:

> gromovWitten(P);

8

In our example, there are only two non-zero contributions corresponding to the or-
derings (x3, x1, x2, x4) and (x4, x2, x1, x3). The function gromovWitten can also be
applied directly to the graph G and the list a:
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> gromovWitten(Gamma, list(0,0,0,0,1,1));

8

As the sum of Na,Γ over all partitions of d into non-negative summands corresponding
to the edges of Γ, we obtain

|Aut(Γ)| ·N trop
d,Γ =

∑
|a|=dN

trop
a,Γ

by the following command:
> gromovWitten(Gamma,2);

32

The contributions of the different branch types a can be read off from the truncated
multigraded generating function ∑

|a|≤dN
trop
a,Γ · q

a

which is returned by the following command:
> generatingFunction(Gamma,2);

8*q(1)^2+8*q(2)*q(3)+8*q(4)^2+8*q(5)*q(6)

For the Feynman graph of genus 2 with 2 vertices and 3 edges, we compute the
multigraded generating function up to degree 3:
> graph Gamma = makeGraph(list(1,2),

list(list(1,2),list(1,2),list(1,2)));

> ring R = (0,x(1..2)),q(1..3),dp;

> generatingFunction(Gamma,3);

24*q(1)^3+20*q(1)^2*q(2)+20*q(1)*q(2)^2+24*q(2)^3+20*q(1)^2*q(3)

+20*q(2)^2*q(3)+20*q(1)*q(3)^2+20*q(2)*q(3)^2+24*q(3)^3

+4*q(1)^2+4*q(1)*q(2)+4*q(2)^2+4*q(1)*q(3)+4*q(2)*q(3)+4*q(3)^2
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