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Abstract. In this paper, we explore a method for associating L-series to weakly holomor-
phic modular forms, and then proceed to study their L-values. As our main application, we
prove a very curious limiting theorem which relates three “periods” of a mock modular form
and its shadow to the ratio of their non-critical L-values. Critical L-values are then shown
to fit nicely within the framework of period polynomials and an extended Eichler-Shimura
theory recently studied by Guerzhoy, Ono, and the first and third author.

1. Introduction and statement of results

Special values of L-series have been the subject of intense study in arithmetic algebraic
geometry and analytic number theory. In particular, Kohnen and Zagier [13] and many
others [6, 11] have pursued and made use of an underlying algebraic theory of special values
of L-series associated to (holomorphic) modular forms. On the other hand, such values
are central objects in the deep conjectures posed by Birch-Swinnerton-Dyer, Beilinson, and
Bloch-Kato (see e.g. [1, 5, 7, 10, 14, 15, 19, 20, 21]).
Here we consider special values of L-series associated to weakly holomorphic modular forms

(those meromorphic modular forms whose only poles are supported at the cusps). The very
existence of such values has proven elusive in the past due to the fact that the classical
definitions in terms of infinite summation or integrals taken along the positive imaginary
axis of the complex plane are divergent in this more general setting.
To precisely describe the problem we address in this paper, we briefly introduce the clas-

sical setting. Let f(z) =
∑∞

m=1 af (m)qm ∈ Sk (q := e2πiz as usual) be a holomorphic cusp
form of weight k ∈ 2N on SL2(Z). Then for Re(s) � 0, the L-series associated to f is defined
by

(1.1) Lf (s) :=
∞∑

m=1

af (m)

ms
.

It is known that Lf (s) satisfies a functional equation under s �→ k − s and has an analytic
continuation to the complex plane (which by abuse of notation we also denote by Lf (s)).
The special values of Lf (s) are those at integral arguments. In particular, the critical values,
those special values of Lf (s) that lay within the critical strip 0 < Re(s) < k, coincide with
certain period integrals of f as follows:

(1.2) Lf (n) =
(2π)n

(n− 1)!

∫ ∞

0

f(iy)yn−1 dy for n = 1, 2, . . . , k − 1.
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Moreover, when f is a Hecke eigenform, Manin’s Periods Theorem [16] states that the critical
values are essentially algebraic integers. To be more precise, there exist two nonzero complex

numbers ω±
f , known as periods for f , such that the quotient L∗

f (n)/ω
sgn((−1)n+1)
f is an algebraic

integer for n = 1, 2, . . . , k − 1.
Now consider f(z) =

∑
m≥m0

af (m)qm ∈ S!
k (with m0 throughout the smallest integer s.t.

af (m0) �= 0), where S!
k denotes the space of weight k weakly holomorphic cusp forms (i.e.,

those weakly holomorphic modular forms satisfying af (0) = 0). In [2], Guerzhoy, Ono, and
the first and third authors made many observations regarding critical values of holomorphic
cusp forms by extending the classical theory of periods to the much larger space S!

k. Clearly
(1.1) and (1.2) are no longer well-defined for general forms in S!

k due to their possible pole
at i∞ and the growth of their coefficients. To get around this issue, the authors of [2] use
the formal Eichler integral given by

(1.3) Ef (z) :=
∑

m≥m0

af (m)

mk−1
qm

rather than a period integral to develop their theory. In the case when f ∈ Sk, we have that

(1.4) Ef (z)− zk−2Ef
(−1

z

)
=

k−2∑
n=0

Lf (n+ 1)

(k − 2− n)!
· (2πiz)k−2−n.

In general, the left hand side of (1.4) is always defined for f ∈ S!
k and always a polynomial

in z. Therefore, as an interesting side effect, this suggests the existence of an L-series for
weakly holomorphic cusp forms.
Indeed, in §2, we introduce a way to regularize the period integrals in (1.2) so that they

are well-defined for all forms in S!
k. In doing so, we are able to define L-series for f ∈ S!

k and
t0 > 0 by

Lf (s) :=
(2π)s

Γ(s)
L∗
f (s) with

L∗
f (s) :=

∑
m≥m0

af (m)Γ(s, 2πmt0)

(2πm)s
+ ik

∑
m≥m0

af (m)Γ
(
k − s, 2πm

t0

)
(2πm)k−s

.

(1.5)

Here the incomplete gamma function, Γ(s, z) is given by the analytic continuation (to an
entire function with respect to s and fixed z �= 0) of

∫∞
z

e−t ts−1 dt.

Remarks. (1) For cusp forms the L-series L∗
f (s) has been defined in the shape of (1.5)

by Kohnen and Zagier [13] in order to carry out numerical calculations.
(2) Absolute convergence of L∗

f (s) is guaranteed since Γ(s, x) ∼ xs−1e−x as x → ∞ and
the Circle Method implies that

(1.6) af (m) 	 m
1
2(k− 3

2)e4π
√
m0m.

(3) Using the modularity of f , it is not hard to see that (1.5) is independent of t0.
Moreover, we find in Theorem 2.2 that L∗

f (s) satisfies a functional equation under
s �→ k − s and has an integral representation.
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Armed now with the L-series for f ∈ S!
k, we are in a position to study their special values

and their associated periods. In §2, we give a detailed account of regularized integration and
how it relates to Lf (s) and the formal Eichler integrals (1.3) of [2].
To state our first main result, we require harmonic weak Maass forms. The theory of

harmonic weak Maass forms [3], for example explains Ramanujan’s mock theta functions
[22, 23, 24]. Every harmonic weak Maass form F(z) has a unique natural decomposition

F(z) = F−(z) + F+(z),

where F− (resp. F+) is nonholomorphic (resp. holomorphic) on the complex upper-half
plane. The holomorphic part F+ has a Fourier expansion

F+(z) =
∑

m≥m0

c+F(m)qm

which, following Zagier, we call a mock modular form. The nonholomorphic part has an
expansion in incomplete gamma functions. The differential operatorsDk−1 with D := 1

2πi
· ∂
∂z
,

and ξ2−k := 2iy2−k · ∂
∂z
, which play a central role in the theory, only see the holomorphic and

nonholomorphic parts, respectively, of such forms. Furthermore, in [3, 4] it is shown that
they define surjective maps

ξ2−k :

{
H2−k � M !

k

H∗
2−k � Sk,

and Dk−1 :

{
H2−k −→ M !

k

H∗
2−k −→ S!

k,

where M !
k denotes the space of weight k weakly holomorphic modular forms, H2−k is the

space of harmonic weak Maass forms of weight 2 − k, and H∗
2−k ⊆ H2−k is the subspace of

harmonic weak Maass forms of weight 2− k whose image under ξ2−k maps onto Sk.
Following Proposition 5.1 of [4], we are always able to find a harmonic weak Maass form

F ∈ H∗
2−k which is good for a normalized Hecke eigenform g ∈ Sk (see §3 for the definition).

In general, the coefficients of the corresponding F+ appear to be transcendental. However,
in [9], Guerzhoy, Ono, and the third author proved that the coefficients of the corrected
form, Dk−1(F+) − c+F(1)g, are in Kg (where Kg = Q(ag(1), ag(2), . . . )). This coefficient
c+F(1) of F+, is considered to be a third period associated to the eigenform g ∈ Sk. It turns
out (see Corollary 4.4) that there is a nice relation between the L-series from Dk−1(F) and
ξ2−k(F) inside the critical strip. Numerical computations show that such a result is not
true at integers outside the critical strip. However, surprisingly, the quotient of the two
L-values has some interesting limiting behavior as n → ∞ which relates the three periods of
an eigenform g ∈ Sk.

Theorem 1.1. Let g ∈ Sk be a normalized Hecke eigenform with periods ω±
g chosen such

that 〈g, g〉 = ω+
g ω

−
g , where 〈g, g〉 is the usual Peterson inner product. Let F ∈ H∗

2−k be good
for g. Then for δ = 0 or 1 we have that

lim
n→∞

n≡δ (mod 2)

LDk−1(F)(n)

Lξ2−k(F)(n)
=

(
c+F(1) + (−1)δc+F(−1)

)
ω+
g ω

−
g .

Remarks. (1) By a theorem of Kohnen and Zagier (p. 202 of [12]), we may always choose
ω±
g such that 〈g, g〉 = ω+

g ω
−
g for a normalized Hecke eigenform g ∈ Sk.

(2) One can prove an analogous result for twisted L-series as defined in (1.7).
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As our other application, we extend a result of [2] which shows that forms F ∈ H∗
2−k

encode the critical values of L-functions arising from Sk to the weakly holomorphic setting.
We also define twisted L-series associated to forms in S!

k. We first recall the situation for
cusp forms f ∈ Sk. For a Dirichlet character χ with conductor c, we define the L-series of f
twisted by χ by

Lf (χ, s) :=
∞∑

m=1

χ(m)af (m)

ms
.

We define the associated twisted L-series, for t0 > 0, by

Lf (χ, s) :=
(2π)s

Γ(s)
L∗
f (χ, s)

with

(1.7) L∗
f (χ, s) :=

∑
m≥m0

χ(m)af (m)Γ (s, 2πmt0)

(2πm)s
+ ikck−2s

∑
m≥m0

χ(−m)af (m)Γ
(
k − s, 2πm

c2t0

)
(2πm)k−s

.

Moreover, for each γ = ( a b
c d ) ∈ SL2(Z), we define the γ-mock modular period function for

F+ by

(1.8) P
(F+, γ; z

)
:=

(4π)k−1

(k − 2)!

(F+ −F+|2−kγ
)
(z),

where for any function g : H → C, we let g|�γ(z) := (cz+d)−�g
(
az+b
cz+d

)
. For a positive integer

c, let ζc := e2πi/c, and for 0 ≤ d < c, let γc,d ∈ SL2(Z) be any matrix satisfying γc,d := ( ∗ ∗
c′ d′ ).

Here the integers 0 ≤ d′ < c′ are chosen so that d
c
= d′

c′ in lowest terms. We then obtain

Theorem 1.2. Let F ∈ H2−k such that f := ξ2−k(F) ∈ S!
k. Then we have that

P (F+, γ1,0; z) =
k−2∑
n=0

Lf (n+ 1)

(k − 2− n)!
(2πiz)k−2−n.

Moreover, if χ is a Dirichlet character with conductor c, then

1

c

∑
� (mod c)∗

χ(	)
c−1∑
d=0

ζ�dc · P
(
F+, γc,d; z − d

c

)
=

k−2∑
n=0

Lf (χ, n+ 1)

(k − 2− n)!
(2πiz)k−2−n,

where the sum on 	 runs over those integers coprime to c.

Remark. Theorem 1.2 was proven in [2] is the special case when ξ2−k(F) ∈ Sk.

In §2, we define regularized L-series and show that they have an integral representation.
We also show (see Theorem 2.4) that the error of modularity of an Eichler integral may be
viewed as the generating function of critical L-values. We also prove certain vanishing results
for a subclass of weakly holomorphic forms. In §3, we recall basic facts regarding the theory
of harmonic weak Maass forms and the extended Eichler-Shimura theory of [2]. In §4, we
discuss various ways to twist the L-series and derive related results including Theorem 1.2.
In §5, we prove Theorem 1.1.
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2. Regularized L-series for S!
k

In this section we describe how to associate L-series to weakly holomorphic cusp forms.
Let us start by recalling what is known for classical cusp forms.

Theorem 2.1. If f ∈ Sk, we have for s � 0 the integral representation

L∗
f (s) =

∫ ∞

0

f(iy)ys−1dy.

Furthermore L∗
f has a holomorphic continuation to C and we have the functional equation

L∗
f (k − s) = ikL∗

f (s).

To generalize these results to the setting of weakly holomorphic forms, we require certain
regularized integrals. For this, consider a continuous function f : H → C. Assume that
there is a c ∈ R+ such that

(2.1) f(z) = O
(
ec Im(z)

)
uniformly in Re(z) as Im(z) → ∞. Then, for each z0 ∈ H, the integral∫ i∞

z0

euiwf(w) dw

(where the path of integration lies within a vertical strip) is convergent for u ∈ C with
Re(u) � 0. If this integral has an analytic continuation to u = 0, we define the regularized
integral by

R.

∫ i∞

z0

f(w) dw :=

[∫ i∞

z0

euiwf(w) dw

]
u=0

,

where the right hand side means that we take the value at u = 0 of the analytic continuation
of the integral. Similarly, we define integrals at other cusps a. Specifically, suppose that
a = σa(i∞) for a scaling matrix σa ∈ SL2(Z). If f(σaz) satisfies (2.1), then we define

R.

∫ a

z0

f(w) dw := R.

∫ i∞

σ−1
a z0

f
∣∣
2
σa(w) dw.

For cusps a, b, we set

(2.2) R.

∫ b

a

f(w) dw := R.

∫ b

z0

f(w) dw +R.

∫ z0

a

f(w) dw

for any z0 ∈ H. It is not hard to see that this integral is independent of z0 ∈ H. We now
prove an analogue to Theorem 2.1 which will also appear in the second author’s thesis.

Theorem 2.2. Assume that f ∈ S!
k. We have the identity

(2.3) L∗
f (s) = R.

∫ ∞

0

f(iy)ys−1dy.

Furthermore, L∗
f (s) satisfies the functional equation

L∗
f (k − s) = ikL∗

f (s).
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Proof: To prove (2.3), we split the integral into two ranges. Inserting the Fourier expansion
of f(z) =

∑
m≥m0

af (m)qm yields that, for arbitrary t0 > 0, we have

R.

∫ ∞

t0

f(iy)ys−1dy =
∑

m≥m0

af (m)

[∫ ∞

t0

e−2πmy−tyys−1dy

]
t=0

=

[ ∑
m≥m0

af (m)

(t+ 2πm)s

∫ ∞

2πmt0+tt0

e−yys−1dy

]
t=0

=
∑

m≥m0

af (m)

(2πm)s
Γ(s, 2πmt0).

Similarly we compute that

R.

∫ t0

0

f(iy)ys−1dy = i−k
∑

m≥m0

af (m)Γ
(
k − s, 2πm

t0

)
(2πm)k−s

.

This directly yields (2.3). Moreover the functional equation follows directly from the inde-
pendence of t0. �
Recalling the Eichler integral (1.3), we find that if f ∈ Sk then it is not hard to see that

Ef (z) = c−1
k

∫ i∞

z

f(τ)(z − τ)k−2dτ,

where ck := − (k−2)!
(2πi)k−1 . We show that a similar result holds when f ∈ S!

k.

Lemma 2.3. For f ∈ S!
k, we have

Ef (z) = c−1
k R.

∫ i∞

z

f(τ)(τ − z)k−2dτ.

Proof: In the range of integration, the integrand has only a possible pole when τ → i∞.
Thus we compute, writing f(z) =

∑
m≥m0

af (m)qm,

R.

∫ i∞

z

f(τ)(τ − z)k−2dτ =

[∫ i∞

z

eiuτf(τ)(τ − z)k−2dτ

]
u=0

=
∑

m≥m0

af (m)

[∫ i∞

z

eiuτ+2πimτ (τ − z)k−2dτ

]
u=0

=
∑

m≥m0

af (m)qm
[∫ i∞

0

eiτ(u+2πm)τ k−2dτ

]
u=0

.

The integral now converges at u = 0 and inserting the integral representation of the gamma
function yields the claim. �
We next consider the “error of modularity” of Eichler integrals. To be more precise, let

r(f ; z) := ck

(
Ef (z)− Ef (z)

∣∣∣
2−k

S
)

with S := ( 0 −1
1 0 ). It is known [2, 12] that r(f ; z) satisfies period relations, i.e.,

r(f ; z) ∈ W :=
{
P ∈ Vk−2 : P + P

∣∣∣
2−k

S = P + P
∣∣∣
2−k

U + P
∣∣∣
2−k

U2 = 0
}
,

where U := ( 1 −1
1 0 ), and Vk−2 denotes the space of polynomials of degree at most k − 2.

We next prove that the period polynomial r(f ; z) represents the generating functions for
L-values inside the critical strip (see [2] for the case of classical cusp forms).
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Theorem 2.4. We have that for f ∈ S!
k

r(f ; z) =
k−2∑
n=0

i1−n

(
k − 2

n

)
L∗
f (n+ 1)zk−2−n.

Proof: Making the change of variables τ → − 1
τ
in the second summand defining r(f ; z) and

applying Lemma 2.3 easily gives that

r(f ; z) = R.

∫ i∞

0

f(τ)(τ − z)k−2dτ.

Now the claim follows using the binomial expansion, (1.5) and (2.3). �
As an application, we next turn to some simple vanishing results of regularized L-values

associated to forms in Dk−1
(
M !

2−k

)
which play an important role in the Hecke theory for

weakly holomorphic forms [19].

Theorem 2.5. If f ∈ Dk−1
(
M !

2−k

)
, then we have for 2 ≤ n ≤ k − 2 that

Lf (n) = 0.

Moreover Lf (1) = Lf (k − 1) = 0 if and only if f ∈ Dk−1
(
S!
2−k

)
.

Proof: Assume f = Dk−1(F ) with F ∈ M !
2−k. We have that

Ef = F + c,

where c is the negative of the constant term of F . Using that F ∈ M !
2−k gives that

Ef (z)− zk−2Ef
(
−1

z

)
= c

(
1− zk−2

)
.

¿From this we obtain the claim by Theorem 2.4. �

3. Harmonic weak Maass forms

We let z = x + iy ∈ H, with x, y ∈ R, and suppose throughout that k ≥ 4 is even. The
weight 2− k hyperbolic Laplacian is defined by

Δ2−k := −y2
(

∂2

∂x2
+

∂2

∂y2

)
+ i(2− k)y

(
∂

∂x
+ i

∂

∂y

)
.

A harmonic (weak) Maass form of weight 2−k is any smooth function F : H → C satisfying:

(i) F(z) = F |2−kγ(z) for all γ = ( a b
c d ) ∈ SL2(Z);

(ii) Δ2−k(F) = 0;
(iii) The function F has at most linear exponential growth at infinity.

We denote the space of such forms by H2−k. Moreover, we let H∗
2−k ⊂ H2−k be the subspace

of forms that are mapped to Sk under ξ2−k.
Every harmonic Maass form F has two natural associated period polynomials, one coming

from ξ2−k(F) and one fromDk−1(F). The next theorem from [2] shows that these are related.
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Theorem 3.1. If F ∈ H2−k, then we have that

r (ξ2−k(F); z) ≡ − (4π)k−1

(k − 2)!
· r (Dk−1(F); z) (mod zk−2 − 1)

where equivalence modulo zk−2−1 means that the difference of the two functions is a constant

multiple of zk−2 − 1. Moreover, there is a function F̂ ∈ H2−k for which ξ2−k(F̂) = ξ2−k(F)
and

r (ξ2−k(F); z) = − (4π)k−1

(k − 2)!
· r

(
Dk−1

(
F̂
)
; z
)
.

This directly relates the L-values associated to the two pieces of a harmonic Maass form.

Corollary 3.2. If F ∈ H2−k, then for integers 0 < n < k − 2, we have that

Lξ2−k(F)(n+ 1) = (−1)n
(4π)k−1

(k − 2)!
LDk−1(F)(n+ 1).

Finally we need the notation of good. We say that a harmonic Maass form F ∈ H2−k

is good for the normalized Hecke eigenform g(z) :=
∑∞

n=1 ag(n)q
n ∈ Sk if it satisfies the

following:

(1) The principal part of F at the cusp i∞ belongs toKg[q
−1] whereKg := Q(ag(1), ag(2), . . .).

(2) We have that ξ2−k(F) = g
〈g,g〉 .

4. Twisted L-series

Throughout this section, we let χ be a Dirichlet character with conductor c. We require,
as an auxiliary function, a regularized L-series asscociated to f(z) =

∑
m≥m0

af (m)qm ∈ S!
k

twisted by roots of unity. To be more precise, for (d, c) = 1, we define, for t > 0

Lf

(
ζdc , s

)
:=

(2π)s

Γ(s)
L∗
f

(
ζdc , s

)
with

L∗
f

(
ζdc , s

)
:=

∑
m≥m0

af (m)ζdmc Γ(s, 2πmt0)

(2πm)s
+ ikck−2s

∑
m≥m0

af (m)ζ−am
c Γ

(
k − s, 2πm

c2t0

)
(2πm)k−s

,

where a is defined by ad ≡ 1 (mod c). As before we can see that this definition is independent
of t0. A straightforward calculation allows us to write the L-series twisted by χ in terms of
the above defined L-series.

Lemma 4.1. We have that

L∗
f (χ, s) =

1

c

∑
� (mod c)∗

χ(	)
c−1∑
d=0

ζ−�d
c L∗

f

(
ζdc , s

)
.

A calculation completely analogous to that of Theorem 2.2 yields the following

Theorem 4.2. Assume that f ∈ S!
k. We have the integral representation

L∗
f

(
ζdc , s

)
= i−sR.

∫ i∞

d
c

f(w)

(
w − d

c

)s−1

dw.
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Moreover it satisfies the functional equation

L∗
f

(
ζdc , k − s

)
= ikc2s−kL∗

f

(
ζ−a
c , s

)
.

Clearly, by Lemma 4.1 we also obtain an integral representation and functional equation
for the twisted L-series. Our next result concerns a twisted analogue of Corollary 3.2, relating
the two L-functions naturally associated to a harmonic Maass form.

Theorem 4.3. Let F ∈ H2−k with ξ2−k(F), Dk−1(F) ∈ S!
k. Then we have for 0 < n < k− 2

Lξ2−k(F)

(
ζdc , n+ 1

)
= (−1)n

(4π)k−1

(k − 2)!
LDk−1(F) (ζdc , n+ 1).

Combining this theorem with Lemma 4.1 immediately gives us the following

Corollary 4.4. Let F ∈ H2−k with ξ2−k(F), Dk−1(F) ∈ S!
k. Then we have for 0 < n < k−2

Lξ2−k(F) (χ, n+ 1) = (−1)n
(4π)k−1

(k − 2)!
LDk−1(F) (χ−, n+ 1),

where χ−(m) := χ(−m).

Proof of Theorem 4.3: Define

G(z) := −(2i)1−kR.

∫ i∞

−z

ξ2−k(F)c(w)(z + w)k−2dw + c−1
k R.

∫ i∞

z

Dk−1(F)(w)(z − w)k−2dw,

where gc(z) :=
∑

m≥m0
ag(m)qm for g(z) =

∑
m≥m0

ag(m)qm ∈ S!
k. We show that G and F

are identical up to a constant term. A direct calculation gives us that

ξ2−k(G) = ξ2−k(F).

Moreover, using Lemma 2.3, we obtain that

Dk−1(G) = Dk−1
(EDk−1(F)

)
= Dk−1(F).

It follows that

G = F + p,

where p is a polynomial of degree at most k − 2. Because G and F are both translation
invariant, we have that p = a0 is constant. Using the modularity of F with γ = ( a b

c d ) ∈
SL2(Z) we have that

0 = F
∣∣∣
2−k

(1− γ)

(
z − d

c

)
= F1

∣∣∣
2−k

(1− γ)

(
z − d

c

)
+ F2

∣∣∣
2−k

(1− γ)

(
z − d

c

)
−a0

∣∣∣
2−k

(1− γ)

(
z − d

c

)
,

(4.1)

where

F1(z) := −(2i)1−kR.

∫ i∞

−z

ξ2−k(F)c(w)(z + w)k−2dw,

F2(z) := c−1
k R.

∫ i∞

z

Dk−1(F)(w)(z − w)k−2dw.

9



Clearly we have

a0

∣∣∣
2−k

(1− γ)

(
z − d

c

)
= a0

(
1− (cz)k−2

)
.

Moreover, a direct calculation shows that

F1(z)
∣∣∣
2−k

γ = −(2i)1−kR.

∫ d
c

−z

ξ2−k(F)c(w)(z + w)k−2dw,

F2(z)
∣∣∣
2−k

γ = c−1
k R.

∫ − d
c

z

Dk−1(F)(w)(z − w)k−2dw.

Thus

(2i)1−kR.

∫ i∞

d
c

ξ2−k(F)c(w)

(
z − d

c
+ w

)k−2

dw

≡ c−1
k R.

∫ i∞

− d
c

Dk−1(F)(w)

(
z − d

c
− w

)k−2

dw (mod 1− (cz)k−2).

Inserting the binomial expansion and using Theorem 4.2 then gives

c−1
k

k−2∑
n=0

i1−n

(
k − 2

n

)
L∗
Dk−1(F)

(
ζ−d
c , n+ 1

)
zk−2−n

≡ (2i)1−k

k−2∑
n=0

i1−n

(
k − 2

n

)
L∗
ξ2−k(F)c

(
ζdc , n+ 1

)
(−z)k−2−n (mod 1− (cz)k−2).

The claim now follows by comparing coefficients and using the fact that for integers 0 ≤ n ≤
k − 2 we have

(4.2) L∗
fc

(
ζdc , n+ 1

)
= L∗

f (ζ
−d
c , n+ 1).

�
Proof of Theorem 1.2: Let F ∈ H2−k with f = ξ2−k(F) ∈ S!

k. By definition

P
(F+, γc,d; z

)
= − (4π)k−1

(k − 2)!

(F− −F−|2−kγc,d
)
(z).

As in the proof of Theorem 4.3, we obtain

P

(
F+, γc,d; z − d

c

)
= −(2πi)k−1

(k − 2)!

k−2∑
n=0

(
k − 2

n

)
in+1L∗

fc

(
ζdc , n+ 1

)
zk−2−n.

Next we use (4.2) to find that

P

(
F+, γc,d; z − d

c

)
=

(2πi)k−1

(k − 2)!

k−2∑
n=0

(
k − 2

n

)
i−n−1L∗

f

(
ζ−d
c , n+ 1

)
zk−2−n

=
k−2∑
n=0

Lf

(
ζ−d
c , n+ 1

)
(k − 2− n)!

(2πiz)k−2−n.

Finally, we apply Lemma 4.1 to obtain the result.
�
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5. Proof of Theorem 1.1

We begin by recalling some basic facts regarding the incomplete gamma function (see
Section 8 of [17] for more details). For s ∈ C with Re(s) > 0, we define the incomplete
gamma function by

(5.1) Γ(s, x) :=

∫ ∞

x

e−t ts
dt

t
.

We note that the usual gamma function is given for Re(s) > 0 by Γ(s) := Γ(s, 0). Integrations
by parts gives the following recurrence relation

Γ(s+ 1, x) = e−x xs + s Γ(s, x).

There is an analytic continuation of Γ(s, x) to an entire function with respect to s for fixed
x �= 0 (see Section 8.2 of [17]). Note that (5.1) also holds for x > 0 and s ∈ C. Moreover for
n ∈ N, we require the following representation

(5.2)
Γ(n, x)

(n− 1)!
= e−x

n−1∑
m=0

xm

m!

and

(5.3) Γ(−n, x) = (−1)n
Γ(0, x)

n!
+

(−1)n+1e−x

n!x

n−1∑
m=0

(−1)mm!

xm
.

A main step in the proof of Theorem 1.1 is the following.

Proposition 5.1. Let δ = 0 or 1, and f(z) =
∑

m≥m0
af (m)qm ∈ S!

k. Then

lim
n→∞

n≡δ (mod 2)

(2πm1)
n

(n− 1)!
L∗
f (n) = af (m1) + (−1)δaf (−m1),

where m1 ∈ N is minimal with

af (m1) + (−1)δaf (−m1) �= 0.

Proof: We consider the individual pieces of the L-series (1.5) for f and choose t0 = 1. First
we show that

lim
n→∞

∑
m≥m0

af (m)
Γ(k − n, 2πm)

(2πm)k−n
= lim

n→∞

∑
m≥m0

af (m)Γ(−n, 2πm)(2πm)n

exists. This then clearly gives that the corresponding contribution to the limit is 0 since for
all x

(5.4) lim
n→∞

xn

n!
= 0.

Firstly we split off all negative indexed terms. For this, we show that for |x| > 1 the function
Γ(−n, x)xn is bounded. Using (5.3), we estimate∣∣∣Γ(−n, x)xn

∣∣∣ 	 |x|n
n!

n−1∑
m=0

m!

|x|m =
n−1∑
m=0

(
n

m

)−1 |x|n−m

(n−m)!
≤

n∑
m=1

|x|m
m!

< ex.

Here all bounds depend on x.
11



We next show that

(5.5) lim
n→∞

∑
m≥1

af (m)Γ(−n, 2πm)(2πm)n = 0.

Using (1.6) gives that the sum on m for some c > 0 may be bounded against

	
∑
m≥1

(2πm)n+
1
2(k− 3

2)ec
√
2πmΓ(−n, 2πm) 	

∫ ∞

2π

Γ(−n, x)xn+ 1
2(k− 3

2)ec
√
xdx

=

∫ ∞

2π

x
1
2(k− 3

2)ec
√
x

∫ ∞

1

e−txt−n−1dt dx.

(5.6)

Using integration by parts, the inner integral may be estimated against

e−x

n
− x

n

∫ ∞

1

e−txt−ndt 	 e−x

n
+

xe−x

n

∫ ∞

0

e−txdt 	 e−x

n
.

Thus (5.6) can be bounded by

1

n

∫ ∞

2π

e−x+c
√
xdx 	 1

n

n→∞→ 0

giving (5.5).

We next show that for M > 2c2

π
we have that

(5.7)
∑
m≥M

af (m)Γ(n, 2πm)

(2πm)n
	 (n− 2)!

(πM)n
.

Picking M > 2m1 then gives that the corresponding contribution to the limit vanishes. To
see (5.7) we use again (1.6) to bound the left-hand side against

	 (2π)−n
∑
m≥M

m
1
2(k− 3

2)−nec
√
2πm

∫ ∞

2πm

e−ttn−1dt 	 (2π)−n
∑
m≥M

m
1
2(k− 3

2)−n

∫ ∞

2πm

e−
t
2 tn−1dt

	 (2π)−n
∑
m≥M

m
1
2(k− 3

2)−n

∫ ∞

0

e−
t
2 tn−1dt 	 π−n(n− 1)!

∑
m≥M

m
1
2(k− 3

2)−n 	 (n− 2)!

(πM)n

as claimed.
For the remaining terms, we combine the m-th and the −m-th term. For n ≡ δ (mod 2)

we have that

(2πm1)
n

(n− 1)!

(
af (m)

Γ(n, 2πm)

(2πm)n
+ af (−m)

Γ(n,−2πm)

(−2πm)n

)
=

(m1

m

)n
(
af (m)

Γ(n, 2πm)

(n− 1)!
+ (−1)δaf (−m)

Γ(n,−2πm)

(n− 1)!

)
.

(5.8)

Using the fact (which easily follows from (5.2)) that for all real x,

lim
n→∞

Γ(n, x)

(n− 1)!
= 1

12



we then obtain for m ≥ m0

lim
n→∞

n≡δ (mod 2)

(2πm1)
n

(n− 1)!

(
af (m)

Γ(n, 2πm)

(2πm)n
+ af (−m)

Γ(n,−2πm)

(−2πm)n

)
=

(
af (m) + (−1)δaf (−m)

)
lim
n→∞

n≡δ (mod 2)

(m1

m

)n

=

{
af (m1) + (−1)δaf (−m1) if m = m1,

0 otherwise.

For 0 < m < m1, we have

(−1)δaf (−m) = −af (m)

by hypothesis. Using this reduces (5.8) to

(5.9) af (m)
(m1

m

)n Γ(n, 2πm)− Γ(n,−2πm)

(n− 1)!
.

To finish the proof, it suffices to show that (5.9) vanishes as n → ∞. To see this, we bound
for x > 1

Γ(n, x)− Γ(n,−x) =

∫ −x

x

e−ttn−1dt 	 xn.

Thus (5.9) may be estimated against

	
(m1

m

)n (2πm)n

(n− 1)!

n→∞→ 0

again using (5.4). �
Making use of Proposition 5.1 and (5.4), we immediately obtain the following three corol-

laries.

Corollary 5.2. If f ∈ S!
k, f �≡ 0, then

lim
n→∞

∣∣∣L∗
f (n)

∣∣∣ = ∞.

Corollary 5.3. For f ∈ S!
k, f �≡ 0, at most finitely many values L∗

f (n) vanish for n ∈ N.

Corollary 5.4. Let f, g ∈ S!
k with g �≡ 0 and q-expansions given by f(z) =

∑
m≥m0

af (m)qm

and g(z) =
∑

m≥m0
ag(m)qm. For δ = 0 or 1 we have that

lim
n→∞

n≡δ (mod 2)

L∗
f (n)

L∗
g(n)

=
af (m1) + (−1)δaf (−m1)

ag(m1) + (−1)δag(−m1)
,

where m1 is the smallest positive integer such that at least one of the numerator or denomi-
nator in the right hand side is nonzero.

Remark. In the limit above, the right hand side is taken to be infinity whenever the denom-
inator is zero.

The proof of Theorem 1.1 is now almost immediate.
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Proof of Theorem 1.1: Since F ∈ H∗
2−k is good for g, the q-expansion of ξ2−k(F) is given

by

ξ2−k(F)(z) = 〈g, g〉−1

∞∑
m=1

ag(n)q
m

with ag(1) = 1. Moreover, by Corollary 5.4, it follows that

lim
n→∞

n≡δ (mod 2)

LDk−1(F)(n)

Lξ2−k(F)(n)
= lim

n→∞
n≡δ (mod 2)

L∗
Dk−1(F)

(n)

L∗
ξ2−k(F)(n)

=
(
c+F(1) + (−1)δc+F(−1)

) 〈g, g〉.
The result may now be concluded since we have 〈g, g〉 = ω+

g ω
−
g .

�
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L-functions, Proc. Sympos. Pure Math. (1979), 313–346.
[7] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225–320.
[8] P. Guerzhoy, Hecke operators for weakly holomorphic modular forms and supersingular congruences,

Proc. of the AMS 136 (2008), 3051–3059.
[9] P. Guerzhoy, Z. Kent, and K. Ono, p-adic coupling of mock modular forms and shadows, Proc. of the

Ac. of Sc. (USA), 107 (2010), 6169–6174.
[10] H. Iwaniec, On the order of vanishing of modular L-functions at the critical point, Sem. Ther. Nombres

Bordeaux 2 (1990), 365–376.
[11] N. Koblitz, Non-integrality of the periods of cusp forms outside the critical strip, Funkcional. Anal. i

Prilozen. 9 (1975), 52–55.
[12] W. Kohnen and D. Zagier, Modular forms with rational periods. Modular forms (Durham, 1983), 197–

249, Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984.
[13] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip,

Invent. Math. 64 (1981), 175–198.
[14] V. Kolyvagin, Finiteness of E(Q) and X(E/Q) for a subclass of Weil curves, Izv. Akad. Nauk. USSR,

ser. Matem. 52 (1988), 522–540.
[15] M. Kontsevich and D. Zagier, Periods, Mathematics unlimited-2001 and beyond (2001), 771–808.
[16] Y. Manin, Periods of cusp forms, and p-adic Hecke series, Mat. Sb. (N.S.) 92 (1973), 378–401.
[17] Digital Library of Mathematical Functions, National Institute of Standards and Technology from

http://dlmf.nist.gov/, (2011).
[18] K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Proc. of the

2008 Harvard-MIT Current Developments in Mathematics, Int. Press., Somerville, Ma., 2009, 347–454.
[19] K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms modulo �, Ann. of

Math. (2) 147 (1998), 453–470.
[20] K. Ono and C. Skinner, Nonvanishing of quadratic twists of modular L-functions, Invent. Math. 134

(1998), 651–660.
[21] N. Schappacher and A. Scholl, Beilinson’s theorem on modular curves, Beilinson’s conjectures on special

values of L-functions, Perspect. Math. 4 (1988), 273–304.
14



[22] D. Zagier, Ramanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-
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