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Abstract

We use Rademacher’s method to obtain asymptotic expressions for
some restricted partition functions. For fixed positive integers m > 1
and [, we consider the number p,,(n) of partitions of n into summands not
divisible by m, and the number pl, (n) of partitons of n with the further
restriction that any integer occurs at most [ times as a summand.

1 Introduction

Let n,m,[ be positive integers, with m > 1. As usual, p(n) denotes the number
of distinct partitions of n with positive integral summands. We introduce the
number p,,(n) of partitions of n with the restriction that no summand is a mul-
tiple of m , and the number p{, (n) of partitions of n into summands not divisible
by m and with the further restriction that no integer occurs more than [ times
as a summand. We will investigate the asymptotic behaviour of these partition
functions.

For any subset A C N, let ps(n) be the number of partitions of n with sum-
mands restricted to A. Nathanson ([9]) proved the asymtotic formula

2
logpa(n) ~ my/gon,

whenever ggT(A) = 1, where ggT(A) denotes the greatest common divisor of
A and the density a = lim,, M exists. When we choose A = {n €

N | mtn}, we get @ =1— = and

2(m —1)n
3m

(1)

log pm(n) ~ m



Transferring a proof of Meinardus ([8]), one can show that

Pm(n) = (m—1)12713 7 im in i vim (14+0 (n™%), (2)
with some d > 0.
Hagis ([4],[5],[6]) developed an asymptotic formula for p,,(n) in the case that

m is prime. With this restriction, he even got exact formulas, analogous to
Rademacher’s exact formula for p(n).

Our aim in this paper is to improve existing asymptotic formulas for p,,(n). We
will get rid of Hagis’ restriction that m is prime, and we will develop asymptotic
formulas for p! (n). The proofs of the main results (Theorems 4 and 5) use the
circle method of Hardy and Littlewood; they are based on Rademacher’s work
on p(n) (see [12], [13] and chapter 4 in [11]).

This paper is a condensed version of my diploma thesis at the University of Wiirzburg
in 2002 which was supervised by Professor G. Kohler.

2 Generating functions and transformation equa-
tions

The generating functions for p(n), p,(n) and p!,(n) are

o o0

F(g) = Y pm)g" =] —-q"",

n=0 n=1
00 o0

Fn(q) = me(n)qn = H (1-4") 1’
n=0 n=1
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respectively. They are holomorphic functions of ¢ in the unit disc D.
A well known result is (see for example [2] where the formula can be found in a slightly
different version)

Theorem 1 The generating function F of p(n) satisfies the transformation equation

2mih 27z Tz T 2mih! 2w
F (eXp< K T)) = w(h Wz e (~ 150 + 135) F (eXp< K E)) )




in which k > 0, (h,k) = 1, h' satisfies hh' = —1 (mod k), z € C with R(z) > 0, and
the square root has positive real part. Furthermore, let w(h,k) := exp (wio(h,k)) with

o(h, k) := Eﬁ;% (%) ((%)) a Dedekind Sum and ((x)) defined for z € R as

Jaz-|z]-% forzeR\Z
(($))_{ 0 forx eZ
From this one can conclude:

Theorem 2 Let L = ( a b
c d

as usual: Lot = ?:Ig With ' = LT one has

> € SLy(Z) operate on H, the complex upper half-plane,

Fp(exp (2miT)) = Fp(exp (2mit’)), for c :'O.

1 e
\/T_lwm(—d, c) exp (12m1c((m1 —di)a— (m — 1)md)
—127:11 ((m = 1)myt + (m1 — dl)Tl)) G¢, (exp (Tiﬁzc(mlg —a)+ fn—ﬁfr'))
forc#0
Here (m,c) = dy, m = dymq, ¢ = dycy, ¢' satisfies mihg' = —1 (mod c¢;). Furthermore

Fxzm1 2mir
let wm(h,c) = %, Gt (z) == (x F?;I;l()dl ) , with v satisfying h' = m1g’ +rey.

Proof. Due to the identity

T CILL, A=¢™)  Flg)
H 1-a)"= 2, (1—q")  F(gm)

one can use Theorem 1 in case ¢ # 0 (one may choose ¢ > 0 and set k = ¢,h’ = a,

h = —d,z = —i(d + c¢7) in order to satisfy the assumptions of Theorem 1). In case
¢ = 0 the theorem follows immediately.

In the same way one gets

a b

Theorem 3 Let L = ( . d ) € SLo(Z); for T € H, 7' = L7 one has

1. F! (exp (2mit)) = F},(exp (2mit")), ifc=0

VA () i
2. F! (exp (2mir)) = mwfn(—d, c) exp (m(d(m —Dim(l+1)

+a((m —d) (1 +1) — (m — d3)d3)) +
~((m = d}) (I +1) = (m — d3)d3)7"))
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m (exp mlmglgc (m3 29 G) + m1m312’r )) ’

m((m —Dim(l+ )7

if ¢ #0.



Here (h,c) =1, ¢ >0, (m,c) =dy, m =mydy, c=c1dy, ([ +1,¢) = da,

I+ 1 =dsla, c = cody, (c2,m) =ds, cog = dsc3, m = dsmg, g* is defined by mslohg* =
Ge, m3ly oxp( 2mA

~1 (mod c3), wh,(h,¢) = =8 L (z) = Gk p(m1d3)), with X\ defined by

wm(l2h,c2) ~~m G2 (zm1d2)

m1g’ = m3lag* + Ac3.

Proof. Due to the identity
o
Fr(q) =

v=1
miv

1—-¢"+  Fo(q)
1—¢¥ B Fm(ql+1)

one obtains Theorem 3 from Theorem 2 by making the same substitutions as before

l1 ;
g e (25— ) = (281 02),

3 Asymptotic formulas

Having transformation formulas, one is able to prove the asymptotic formulas for p,,(n)
and pl, (1)
Theorem 4 Let m € N, m > 2; for py,(n) one has the asymptotic formula
1 1 1
2(m —1)14/3 — 1+ 24n)2 —1)2
pm(n) = (m—1)tvs 5 €Xp m(m — 14 24n) (m — 1) (1+O(n‘%)).
ma(m — 1+ 24n)4 6y/m

Proof.  Using Cauchy’s formula for the generating function F,(g) and substituting
g = e?™7 leads to

w

Pm(n) = /Fm(exp(ZmT))exp(—2n7rz'7')d7',
l

where [ is the horizontal line of length 1 in the upper half space with parametrization
I(t) = t+ie,—5 < t < 3, with 0 < € < §. We subdivide [ into three parts: /; (with
¢ running from —% to —\/_), lo (whith ¢ running from —+/2¢ to v/2¢) and I3 (whith
t running from \/ﬂ to 3). In order to estimate the integrals over 1 and I3 one can
use Theorem 2 by choosing for L € SLs(Z) the matrix that transforms a fixed 7 :=
T + 1y € l; Ul3 to the standard fundamental domain F := {z € H: |z > 1, |Rz| < 1}.
Using ¢/ = m with y' = S(7'), 7" = L7 one gets |cT +d| < 1, which makes the case
¢ = 0 impossible. Therefore by applying Theorem 2 and using G¢,(0) = 1 one obtains
2mwy’

| o (exp(2miT))| < exp (%((m — 1)ymay + (my — ) Z la&()e ™,

1m1

with G¢,(q) = >0, a%,(v)g” for |¢| < 1. Now we distinguish two cases.
First case: mi < dj.
Duetoy:e<%undy’2§>0. one gets

| Fo, (exp(2miT))| = O(1).
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Second case: m1 > d;.

We first want to show that |c| > 2 i.g ¢ ¢ {0,+1}.

If ¢ = 0 we get the contradiction d = 0 due to |cr + d|?> = 5 < 1.
So let us assume |c| = 1. Then we have with y = e:

i_|c7'—i-d|2_($:|:d)2
vy e

€,

which leads to
2

> +e>2

Q| =

€
if d = 0 using |z| > v/2¢ and
1 1
— > — 2
" _46+6>

if d # 0, a contradiction to y' > @ This leads to the estimation

| Py (exp(2miT))| = O <exp (%)) .

Therefore in both cases the integral over [} Ul3 is O (exp <2n7r6 + ”E&; 61))) . Now set

vm—1 - d .« . .
= er to minimize the error term.
€= Womn T

0

Using Theorem 2 again with L = ( 1

(using wp,, (0,1) = 1)

_01 ) € Sl3(Z) (choosing ¢' = 0) one gets

vm

with GL(q) = S50%al,(v)g” for |g| < 1. Setting N := [2=!| and using y < %

v=0""m 87

|z| < +/2¢ for T =z + iy € Iy one gets

pm(n) = im f:a}n(u)/exp (—mlT <2n + ml—;l) — % (2y - ml_gl» dr

v=0

vo (o (AET)).

In order to calculate the integral one changes the path of integration (as Rademacher
did in the case of p(n)) as shown in the following figure, where
0<d < V2.

The estimations of the integrand on l4, 5, lg, l7 are easy and therefore left to the reader.

]- ) - ]. > s m—
F,,(exp(2miT)) = ——exp (—W) Za}n(y)e_m(Z”_Tl)’
v=0



We substitute z = i7 and let § tend to 0. Then we get

i) = ﬁz”/ (e (Tt o) - 2 () )

. N
= NGl ()2 B T (m=t
= mZam(u)%m Res|,=0 exp( wz( 12 +2n> po ( D 21/))

v=0
+0 (exp (Wi':"/(;n_m_l))) .

One may assume that mz—zl ¢ N (otherwise the associated summand is holomorphic
and can be omitted). Developing the exponential function in a power series gives the
searched for residue as

m—1 T (m-—1
_ —mz | —— 2 ) - — [ —2
Res|,=0 exp ( TZ ( 12 + n) p ( B u))

(m—1 —241/)% 7 w(m —1 —|—24n)%(m— 1 —241/)%
vm(m — 1+ 24n)3 6y/m. ’

z)21+1

with I(z) = >°2, l'i(lT)' a modified Bessel function of first kind. Using the well known

asymptotic formula for the Bessel function
I(z) = 2ew r (1+0 (%)) for z € R, |z| — oo one gets the desired asymptotic formula
e

z)2

for pp,(n):



=

SNl 27r(m—1—241/)% 212,/(m — 1+ 24n)(m — 1 — 24v) -
7/ (m — 1+ 24n)(m — 1 — 24v)
exp 6/m

6+4/m m/(m —1)n
(1+O(W\/(m—1+24n)(m—1—241/)>>+O<exp< Voem ))

N
SNl 2v/3(m — 1 — 24v) ox m/(m — 1+ 24n)(m — 1 — 24v)
=2 ’”()m%(m—1+24n) p( 6+/m )

(1+o(n3))+0 (exp (@))

[l ST

v=0

Viém

\/_m— i my/ (m — n){(m — 1
:m%z(m3£1+121n)%exp< V( 1;/3711 )( 1)) (1+o(n ))

due to al,(0) = 1.
One can also develop an asymptotic formula for p!, (n)

Theorem 5 Letm > 2,1 > 1; for pin(n) one has the asymptotic formula

! () = 2(m — 1)1y/314 o <7r(24n—(m—1)1)%(m—1)$\/i)
bm I+ 10 imi@in— (m-10ni " 6+/m(l +1)
(1+0 (n—))

Proof. Since the proof of Theorem 5 is very similar to that of Theorem 4 (though a
little bit more complicated), some of the details are left to the reader; the notations
and symbols are kept the same. One has

pﬁn(n) = /F,ln(exp(27rz'7'))exp(—2n7rz'7')d7'.
!

For 7 € [; Ul3 one obtains, after mapping 7 to the fundamental domain

Ph(exp rir))| < Y exp (g (m =1 2) = (m = )))

r\/gv

o0
Do lo, ()] mamatz,
v=0

with H} (z) = Y00 b, (v)z” for |z| < 1.
As in Theorem 4 we have ¢ # 0. Therefore
1 _ Jer+df?

J ” >’y = e > did3e



egy < i, due to dadslc.
In order to obtain an optimal error term, one has to distinguish two cases.
First case: [ # 1 or m ¢ {2,3}. We then get

|FL (exp (2miT))| = O <exp (”(gn:) F o (;r+ m)) 0 (exp (ﬂ((mﬁlg’rrlel(l-l-l_l:;c)E + 4))) .

Second case: [ =1 and m € {2,3}:
We now have to consider several cases:
If ¢ is odd we have do = 1. Therefore we get

|Eg@xpmww»|ZC)Gmp<E%%;g@>):=C>Gmp(f%%i£l)).

Now let ¢ be even. If m { § we have d3 = 1 which leads to an error term O(1). (We
have an negative exponent in this case).

Now let m|5. We now consider the cases m = 2 and m = 3.

If m = 2 we have d; = d3 = 2 and therefore 3y’ < %66. So we get

|F (exp(2miT))| = O (exp (qgl» —0 (exp (é)) .

. If m = 3 we have d; = d3 = 3. Therefore

I exp(zmin) = 0 (exn (T2 ) ) < 0 (exp (575 ) < 0 (e (TE2 ) )

. . —1)(I+1)+4 . (m—1)
Choosing € in the first case as € := VIm DD o4 in the second case as € :=
44/6m(l+1)n 8v3mn ’

if we are not in the case m = 2,¢ =0 mod 4 and € = ﬁ in the left case. One gets that

the integral along Iy Ul3 is O (exp(4nme)) . Applying Theorem 3 with L = ( (1) —01 )
€ Sly(Z) leads to

-1 _ (m—1)im
F! (exp(27iT)) = exp (m(172T) Z B (v)e gy (25 ),
v=0

with H. (z) = 3252, bl (v)z¥ for |z| < 1. with H! (z) =350 bl (v)z” for |z| < 1.

v=0"m v=0"m

Setting N = | {m_Lim l)lmj one gets

153

_”71') (21/ _ w» dr + O (exp (4nme)) -



Changing the path of integration the same way as in Theorem 4 and substituting z = 47,
we obtain

al (m — 1)l
pl.(n) = zz bl (v)2miRes|,— exp <—7rz <2n - 7>
v=0

12
™ (m —1)Im
Ry ( D — 21/) + O (exp (4n7r6))> .
As in Theorem 4 we get

N 1

L) — iy 2n((m — 1)lm — 24v)2
Pm(r) z:% m T+ 1m(24n — (m — 1))2
7/ (24n — (m — 1)I)((m — 1)Im — 24v)
I ( P > + O (exp (4nme))

B 2V/3(m — 1)1l1 o, [T/ @0 = (m = D) (m — 1]
B (l—l—l)%m%(%n—(m—l)l)% P 6y/m(l + 1)

(r+0(D)
due to B, (0) = 1.

As in the proof of Theorem 4 one thus gets the desired asymptotic formula. [

Thanks

I want to thank Prof. G. Kohler for proof-reading and helpfull advises.
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