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Abstract. In this paper we construct a lifting map from a vector space of generalized
Jacobi cusp forms to a certain subspace of elliptic cusp forms and vice versa such that
both mappings are adjoint with respect to the Petersson scalar products.

1. Introduction and statement of results

In their paper “Heegner points and derivatives of L-series II ” [GKZ], Gross, Kohnen,
and Zagier constructed certain lifting maps in the dimension 1 case of Jacobi forms, to
obtain deep formulas relating height pairings of Heegner points to coefficients of Jacobi
forms. This work raises many natural questions. In particular: To what extent do
coefficients of generalized Jacobi forms interpolate arithmetic quantities such as height
pairings and values of L-functions of modular forms? The present paper is a first step in
this direction. We consider Jacobi forms of several toric variables, and we relate them
to spaces of elliptic modular forms. Armed with this result, following the approach of
[EZ], one should then be able to develop a theory of newforms and hopefully use the
Eichler-Shimura trace formula for elliptic cusp forms to compare the Hecke actions on
these spaces in a nice compatible way. As an application one expects explicit formulas
that express the central critical values of Hecke L-functions of elliptic Hecke eigenforms
as squares of Fourier coefficients of generalized Jacobi forms, as in the classical case.

Here we construct lifting maps from the vector space of Jacobi cusp forms with respect
to the generalized Jacobi group ΓJ

g := SL2(Z) n
(
Z(g,1) × Z(g,1)

)
to a certain subspace

of elliptic modular forms.
In the following let n, k, g ∈ N, where k ≥ g+3

2
, and g ≡ 1 (mod 8); moreover let m be

a positive definite symmetric half-integral g× g matrix (the last two conditions imply in

particular that 1
2
det(2m) is an integer), r ∈ Z(1,g), D0 := − det

(
2n0 r0
rt
0 2m

)
< 0 such

that D0 is a a square (mod 1
2
det(2m)) and a fundamental discriminant. Moreover, if p

divides both det(2m) and D0, p
2 must not divide det(2m) if p 6= 2, p3 must not divide

det(2m) if p = 2 and D0

4
is odd, and p4 must not divide det(2m) is p = 2 and D0

4
is even.

Moreover if p 6= 2,
∏

i=1
i6=j

mi has to be assumed to be a square (mod p), where the mi
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are choosen such that ∃U ∈ GLg(Z/pZ) with (2m)[U ] ≡
(
m1 . . . mg

)
(mod p), p|mj

(for the existence of such an U see [Ca]). Quadratic forms with the above conditions
indeed exist (for an example see [Br1]). The last three conditions can easily be shown
to be satisfied if det(2m) · D0 is squarefree. Moreover it can be shown that for g = 1
the conditions are equivalent to the conditions given in [GKZ]. Let us denote by J cusp

k,m

the vector space of Jacobi cusp forms with respect to ΓJ
g , and by Sk(

1
2
det(2m))− the

subspace of elliptic cusp forms with respect to Γ0(
1
2
det(2m)) that have eigenvalue −1

under the Fricke involution.

Definition 1.1. For φ ∈ J cusp

k+ g+1
2

,m
we define

SD0,r0(φ)(w) := 21−g

∞∑
n=1

∑
d|n

(
D0

d

)
dk−1cφ

(
n2

d2
n0,

n

d
r0

) e2πinw (w ∈ H),

where cφ(n, r) is the (n, r)−th Fourier coefficient of φ, and where
(

D0

d

)
denotes the usual

Kronecker symbol.

Definition 1.2. For f ∈ S2k(
1
2
det(2m))− we define for (τ, z) ∈ H× C(g,1)

S∗D0,r0
(f)(τ, z) :=

(
i

det(2m)

)k−1 ∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

rk, 1
2

det(2m),D0D,r0(2m)∗rt,D0
(f)e2πi(nτ+rz),

where D := −
(

2n r
rt 2m

)
, and where rk, 1

2
det(2m),D0D,r0(2m)∗rt,D0

(f) is a certain cycle

integral, defined in Section 2.

We prove the following theorem.

Theorem 1.3. If φ is an element of J cusp

k+ g+1
2

,m
, then the function SD0,r0(φ)(w) is an

element of S2k(
1
2
det(2m))−.

If f ∈ S2k(
1
2
det(2m))−, then the function S∗D0,r0

(f)(τ, z) is an element of
J cusp

k+ g+1
2

,m
.

The maps

SD0,r0 : J cusp

k+ g+1
2

,m
→ S2k(

1

2
det(2m))−

and

S∗D0,r0
: S2k(

1

2
det(2m))− → J cusp

k+ g+1
2

,m

are adjoint maps with respect to the Petersson scalar products.
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For the proof we follow the same method as in [GKZ] and define a function
Ωk,m,D0,r0(w; τ, z) that can easily be shown to be a holomorphic kernel function for the
map S∗D0,r0

. To prove the theorem we have to show that Ωk,m,D0,r0(w; τ, z) is also a
holomorphic kernel function for the map SD0,r0 . Using the Petersson coefficient formula
for Jacobi cusp forms, we have to show that Ωk,m,D0,r0(w; τ, z) has a Fourier expansion,
where the Fourier coefficients are certain linear combinations of Jacobi-Poincaré series.
Therefore we have to manipulate certain higher dimensional congruences and compute
sums of multi-variable Kloosterman sums.

Remark. This paper is a condensed version of a part of the authors Ph.D. thesis super-
vised by Prof. Dr. W. Kohnen.
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2. General facts about quadratic forms, the generalized genus
character, and Jacobi cusp forms

First we recall some facts about quadratic forms, the generalized genus character, and
Jacobi cusp forms. For details, we refer the reader to [BK], [Br1],[Br2], [EZ], and [GKZ].
For a, b, c ∈ Z let us define the integral binary quadratic form

[a, b, c](x, y) := ax2 + bxy + cy2.

The group SL2(Z) acts on these forms in the usual way by

[a, b, c] ◦
(
α β
γ δ

)
(x, y) := [a, b, c](αx+ βy, γx+ δy) (x, y ∈ Z).

Let ∆ ∈ Z be a discriminant and let us denote by D∆ the set of integral binary quadratic
forms with discriminant ∆. Furthermore, let us abbreviate for l ∈ N by Dl,∆ ⊂ D∆ the
set of all quadratic forms with the additional condition that a ≡ 0 (mod l). Moreover
let us define for integers ρ (mod 2l) with ∆ ≡ ρ2 (mod 4l) the set

Dl,∆,ρ := {[a, b, c] ∈ D∆| a ≡ 0 (mod l) , b ≡ ρ (mod 2l)} .
Then the sets Dl,∆ and Dl,∆,ρ are Γ0(l) invariant.
Now let D0 be a fundamental discriminant that divides ∆ such that both D0 and ∆/D0

are squares (mod 4l). Then we define for Q = [al, b, c] ∈ Dl,∆ the following generalized
genus character:

χD0(Q) :=

{ (
D0

n

)
if (a, b, c,D) = 1

0 otherwise.

Here n is an integer coprime to D0 represented by the form [al1, b, cl2] for some decom-
position l = l1l2 , li > 0 (i = 1, 2). It is easy to show that such an n always exists and
that the value of

(
D0

n

)
is independent of the choice of l1, l2, and n.
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Lemma 2.1. The function χD0 is Γ0(l)−invariant and has the following properties:

P1 (Multiplicativity):

χD0([al, b, c]) = χD0([a1l, b, ca2])χD0([a2l, b, ca1]) if a = a1a2, (a1, a2) = 1.

P2 (Invariance under the Fricke involution):

χD0([al, b, c]) = χD0([cl,−b, a]).
P3 (Explicit formula):

χD0([al, b, c]) =

(
D1

l1a

)(
D2

l2c

)
for any splitting D0 = D1D2 of D0 into coprime fundamental discriminants and l = l1l2
of l into positive factors such that (D1, l1a) = (D1, l2c) = 1, χD0([al, b, c]) = 0 if no such
splitting exists.

Next we define certain kernel functions for geodesic cycle integrals

fk,l,∆,ρ,D0(z) :=
∑

Q∈Dl,∆,ρ

χD0(Q)

Q(z, 1)k
(z ∈ H).

Then it is known from [GKZ] that the series fk,l,∆,ρ,D0(z) is absolutely and locally uni-
formly convergent for k > 1 and is an element of S2k(l)

−.

Lemma 2.2. The Fourier expansion of fk,l,∆,ρ,D0(z) (k ≥ 1) is given by

fk,l,∆,ρ,D0(z) =
∞∑

m=1

c±k,l(m,∆, ρ,D0)e
2πimz,

where
c±k,l(m,∆, ρ,D0) := ck,l(m,∆, ρ,D0) + (−1)k+1ck,l(m,∆,−ρ,D0),

where ± = (±1)k+1, and where

ck,l(m,∆, ρ,D0) = ik · (−1)−
1
2 · (2π)k

(k − 1)!
· (m2/∆)

k−1
2 ·
[
|D0|−

1
2 · εl(m,∆, ρ,D0)

+ik+1 · π ·
√

2 ·
(
m2/∆

) 1
4 ·
∑
a≥1

(la)−
1
2 · Sla(m,∆, ρ,D0) · Jk−1/2

(
πm

√
∆

la

)]
.

Here

εl(m,∆, ρ,D0) :=

{ (
D0

m/f

)
if ∆ = D2

0 · f 2 (f > 0), f |m, D0f ≡ ρ (mod 2l)

0 otherwise
,

Sla(m,∆, ρ,D0) =
∑
b(2la)

b≡ρ(2l)

b2≡∆(4la)

χD0

([
al, b,

b2 −∆

4la

])
· e2la(mb),
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and Jk−1/2(t) is the Bessel function of order k − 1/2.

Moreover we define for f ∈ S2k(l) and Q = [a, b, c] ∈ Dl,∆,ρ

rk,l,Q(f) :=

∫
γQ

f(z) ·Q(z, 1)k−1 dz,

where γQ is the image in Γ0(l)\H of the semicircle a|z|2 + bx + c = 0 (x = Re(z)),

orientated from −b−
√

∆
2a

to −b+
√

∆
2a

if a 6= 0 or if a = 0 of the vertical line bx + c = 0,
orientated from − c

b
to i∞ if b > 0 and from i∞ to − c

b
if b < 0. Then we can easily show

that the above definition makes sense (i.e., the integral is invariant with respect to the
subgroup of Γ0(l) perserving Q) and depends only on the Γ0(l) equivalence class of Q.
Furthermore, we define

rk,l,∆,ρ,D0(f) :=
∑

Q∈Dl,∆,ρ/Γ0(l)

χD0(Q) · rk,l,Q(f).

Theorem 2.3. For f ∈ S2k(l)
− we have

〈f, fk,l,∆,ρ,D0〉 = π ·
(

2k − 2

k − 1

)
· 2−2k+2 ·∆−k+1/2 · rk,l,∆,ρ,D0(f),

where < ·, · > denotes the usual Petersson scalar product for elliptic cusp forms with
respect to Γ0(l).

To finish, we want to repeat some facts about Jacobi cusp forms. The Jacobi group
ΓJ

g acts on H×C(g,1) in the usual way by((
a b
c d

)
, (λ, µ)

)
◦ (τ, z) :=

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
.

Let k be an integer, m be a positive definite symmetric half-integral g × g matrix,

γ =

((
a b
c d

)
, (λ, µ)

)
∈ ΓJ

g , and φ : H×C(g,1) → C. Then we define the following

action

φ|k,mγ(τ, z) := (cτ + d)−k · e(−c(cτ + d)−1m[z + λτ + µ] +m[λ]τ + 2λtmz))

· φ(γ ◦ (τ, z)),

where e(z) := e2πiz (∀ z ∈ C) . A holomorphic function φ : H×C(g,1) → C is called a Ja-
cobi cusp form of weight k and index m with respect to ΓJ

g , if φ|k,mγ(τ, z) = φ(τ, z)∀ γ ∈
ΓJ

g , and if it has a Fourier expansion of the form

φ(τ, z) =
∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

c(n, r)e (nτ + rz) .
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Let us denote by J cusp
k,m the vector space of these Jacobi cusp forms.

For φ and ψ ∈ J cusp
k,m we define

< φ, ψ >:=

∫
ΓJ

g \H×C(g,1)

φ(τ, z) · ψ(τ, z) · vk · exp
(
−4πm[y] · v−1

)
dV J

g ,

where dV J
g = v−g−2 dudvdxdy, and where we have written τ = u+ iv, z = x+ iy.

For this vector space of Jacobi cusp forms one can define certain Poincaré series
Pk,m;(n,r)(τ, z) as in [BK] for k > g + 2 and in [Br1] or [Br2] for k = g + 2. These series
satisfies the following Petersson coefficient formula

Lemma 2.4. Let φ ∈ J cusp
k,m . Then we have〈

φ, Pk,m;(n,r)

〉
= λk,m,D · cφ(n, r),(2.1)

where cφ(n, r) denotes the (n, r)-th Fourier coefficient of φ and

λk,m,D := 2(g−1)(k−g/2−1)−g · Γ (k − g/2− 1) · π−k+g/2+1 · (detm)k−(g+3)/2 · |D|−k+g/2+1.

Lemma 2.5. The function Pk,m;(n,r) has a Fourier expansion of the form

Pk,m;(n,r)(τ, z) =
∑
n′∈Z

r′∈Z(1,g)

4n′>m−1[r′t]

g±k,m;(n,r)(n
′, r′)e(n′τ + r′z),

where ± = (±1)k, where

g±k,m;(n,r)(n
′, r′) := gk,m;(n,r)(n

′, r′) + (−1)kgk,m;(n,r)(n
′,−r′),

where

gk,m;(n,r)(n
′, r′) := δm(n, r, n′, r′) + 2πik · (det(2m))−1/2 · (D′/D)k/2−g/4−1/2

×
∑
c≥1

e2c(r
′m−1rt) ·Hm,c(n, r, n

′, r′) · Jk−g/2−1

(
2π
√
D′D

det(2m) · c

)
· c−g/2−1,

and where

δm(n, r, n′, r′) :=

{
1 if D′ = D, r′ ≡ r (mod Z(1,g) · 2m)
0 else

and

Hm,c(n, r, n
′, r′) :=

∑
x(c)

y(c)∗

ec((m[x] + rx+ n)ȳ + n′y + r′x),

where x and y run over a complete set of representatives for Z(g,1)/cZ(g,1) and
(Z/cZ)∗, respectively, where ȳ denotes an inverse of y (mod c).
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3. Construction of the lifting maps

Our aim of this section is the proof of Theorem 1.3. For details we refer the reader to
[Br1]. Before we can prove the theorem we have to show that Definition 1.2 is allowed.
For this it is due to the assumptions given on m and D0 in the introduction enough to
show that

DD0 ≡
(
r0(2m)∗rt

)2
(mod pν)(3.1)

∀ pν with pν |2 det 2m. For the proof of (3.1) we change

(
2n0 r0
rt
0 2m

)
into(

2n0 r0
rt
0 2m

)[(
1 0
0 U

)]
, with U ∈ GLg(Z/pνZ) for a suitabel choice of U . It can

be shown that by doing so, congruence (3.1) is changed in an equivalent congruence.
Moreover none of the assumptions made for D0 and m is needed for the proof of the
new congruence. We want to regard the cases p 6= 2 and p = 2 separately.
Since for p 6= 2 a quadratic form over the ring of p−adic numbers Zp is equivalent to a
sum of forms lx2 with l ∈ Zp (cf [Ca]) we may assume that in case p 6= 2 the matrix 2m
is a diagonal matrix with diagonal elements m1, . . . ,mg. Moreover we can easily show
that p divides exactly one mi (1 ≤ i ≤ g). Inserting this in both sides of congruence
(3.1) we can show that this congruence holds for p 6= 2.
Since for p = 2 a quadratic form over the ring of p−adic numbers Zp is equivalent
to a sum of forms l · x2, 2ν · xy and 2ν · (x2 + xy + y2), where l ∈ Z2 and ν ∈ N0

(cf. [Ca]), we may assume that 2m is a block-diagonal matrix with blocks from the set{
2l, 2ν

(
2
1

1
2

)
, 2ν
(

0
1

1
0

)}
. Morover we can easily show that the type 2l occurs exactly

once and that ν = 0. Inserting this in both sides of (3.1) we can show that this congru-
ence holds for p = 2.

Now we can come to the proof of Theorem 1.3. For this let us define

Ωk,m,D0,r0(w; τ, z) := ck,m,D0 ·
∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

|D|k−1/2 · fk, 1
2

det(2m),D0D,r(2m)∗rt
0,D0

(w)

·e2πi(nτ+rz),

where

ck,m,D0 :=
(−2i)k−1 · |D0|k−1/2(

1
2
det(2m)

)k−1 · π ·
(
2k−2
k−1

) .
One can see easily, using the Fourier expansion of fk, 1

2
det(2m),D0D,r(2m)∗rt

0,D0
(w), that the

series Ωk,m,D0,r0(w; τ, z) is absolutely convergent. As a function of w it is an element of
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S2k

(
1
2
det(2m)

)−
. Moreover we can show the following identity by using Theorem 2.3

S∗D0,r0
(f)(τ, z) = 〈f,Ωk,m,D0,r0(·;−τ̄ ,−z̄)〉

(
∀ f ∈ Sk

(
1

2
det(2m)

)−)
.

Next we want to show that

SD0,r0(φ)(ω) = 〈φ,Ωk,m,D0,r0(−ω̄, ·, ·)〉
(
∀φ ∈ J cusp

k+ g+1
2

,m

)
.

Since Ωk,m,D0,r0(−τ̄ ,−z̄;w) = Ωk,m,D0,r0(τ, z;−w̄) we have due to the Petersson coeffi-
cient formula to prove that

(3.2) Ωk,m,D0,r0(w; τ, z) = ck,m,D0 ·
ik−1 · (2π)k

(k − 1)!

×
∑
l≥1

lk−1

(∑
dd′=l

(
D0

d

)
· d′k · Pk+ g+1

2
,m,(n0d′2,r0d′)(τ, z)

)
e2πilw.

For this we expand both sides of (3.2) in double Fourier series and compare Fourier
coefficients. Using the Fourier expansion of fk, 1

2
det(2m),D0D,r(2m)∗rt

0,D0
(w) and of

Pk+ g+1
2

,m,(n0d′2,r0d′), it can be seen directly that we have to show

(3.3)

lk−1 · (D/D0)
k/2 · ε 1

2
det(2m)(l, D0D, r(2m)∗rt

0, D0) + ik+1 · (D/D0)
k/2−1/4 · lk−1/2 · π

× 2(det(2m))−1/2 ·
∑
a≥1

a−1/2 · S 1
2

det(2m)a(l, D0D, r(2m)∗rt
0, D0)

· Jk−1/2

(
2π · l

det(2m) · a
·
√
D0D

)
= lk−1 ·

∑
d|l

(
D0

d

)
· (l/d)k · δm

((
l

d

)2

n0,
l

d
r0, n, r

)
+2 · ik+(g+1)/2

×(D/D0)
k/2−1/4 · lk−1/2 · π · (det 2m)−1/2·

∑
d|l

(
D0

d

)
· d−1/2

∑
c≥1

e2c(rm
−1rt

0l/d)

×Hm,c

(
l2

d2
n0,

(
l

d

)
r0, n, r

)
· Jk−1/2

(
2π · l

det(2m) · c · d
·
√
D0D

)
· c−g/2−1.

We first want to show that the first terms of (3.3) agree with each other. For this we
have to show the following
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Lemma 3.1. We have

(3.4) (D/D0)
k/2 · ε 1

2
det(2m)(l, D0D, r(2m)∗rt

0, D0)

=
∑
d|l

(
D0

d

)
· (l/d)k · δm

((
l

d

)2

n0,
l

d
r0, n, r

)
.

Proof. The left-hand side of (3.4) is zero unless D = D0f
2 for some f ∈ N with

f |l and D0f ≡ r(2m)∗rt
0 (mod det(2m)). Using D0 = r0(2m)∗rt

0 − 2n0 det(2m) (which
follows directly from the Jacobi decomposition of D0) we see that this congruence is
equivalent to r0(2m)∗rt

0f ≡ r(2m)∗rt
0 (mod det(2m)). In this case the left-hand side of

(3.4) is equal to
(

D0

l/f

)
· fk.

The right-hand side of (3.4) is zero unless D = D0(l/d)
2 and r ≡ r0l/d (mod Z(1,g) ·2m).

Setting f = l/d, we see that in this case it has the value
(

D0

l/f

)
· fk.

Thus we have to show that under the assumptions for m and D0 the following congru-
ences are equivalent:

(r − r0f)(2m)∗rt
0 ≡ 0 (mod det(2m)),(3.5)

r − r0f ≡ 0 (mod Z(1,g) · 2m).(3.6)

One directly sees that if r is a solution of (3.6), then r is also a solution of (3.5). Moreover
it can be shown easily that (3.6) is equivalent to the following condition

The congruence λ · 2m ≡ r − r0f (mod Z(1,g) · det(2m)) is solvable.(3.7)

Now we let p be a prime, ν ∈ N such that pν divides det(2m) and consider the congru-
ences:

(r − r0f)(2m)∗rt
0 ≡ 0 (mod pν),(3.8)

λ · 2m ≡ r − r0f (mod Z(1,g) · pν),(3.9)

and show that every solution r of (3.8) gives a solution λ of (3.9). For this we again

change

(
2n0 r0
rt
0 2m

)
into

(
2n0 r0
rt
0 2m

)[(
1 0
0 U

)]
with U as before and show the

claim in the case that 2m a diagonal matrix if p 6= 2 and a block diagonal matrix if p = 2.
We just have to be careful about using the restrictions given for m and D0 since these are
changed by this substitution (For example the assumption about the common divisors of
D0 and det(2m) is changed). Let us abbreviate (s1, . . . , sg)

t := r− r0Uf, (r′1, . . . , r
′
g)

t :=
r0, and (λ1, . . . , λg)

t := λ. For the proof we treat the cases p 6= 2 and p = 2 separately.
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In the case p 6= 2 congruence (3.8) is equivalent to

g∑
i=1

(∏
j 6=i

mj

)
sir

′
i ≡ 0 (mod pν)(3.10)

and congruence (3.9) is equivalent to the solvability of the congruences

λi ·mi ≡ si (mod pν) (1 ≤ i ≤ g).(3.11)

Moreover it can be shown easily that p divides exactly one mi (1 ≤ i ≤ g) and that the
other mj are coprime to p. We may without loss of generality assume that p divides

m1. Using
(∏g

j=2mj, p
)

= 1 and (r′1, p) = 1 (which can be seen from the Jacobi

decomposition of

(
2n0 r0
rt
0 2m

)
) congruence (3.10) is equivalent to s1 ≡ 0 (mod pν).

Thus the claim follows since the congruences λi · mi ≡ si (mod pν) (2 ≤ i ≤ n) are

solvable due to
(∏g

j=2mj, p
)

= 1.

In the case p = 2 we get with the same abbreviations as before (and without loss of
generality assuming that the block 2l occurs at the first position) that (3.8) has the form

s1r
′
1 ≡ 0 (mod 2),(3.12)

and (3.9) is equivalent to the solvability of the system of congruences

s1 ≡ 0 (mod 2),

λ3 ≡ s2 (mod 2),

λ2 ≡ s3 (mod 2),
...

λg−1 ≡ sg (mod 2).

Clearly the last g− 1 congruences are solvable. Moreover we obtain as in the case p 6= 2
that 2 - r′1. Thus (3.12) is equivalent to s1 ≡ 0 (mod 2), i.e., we have proved Lemma
3.1. �
Thus the first terms in (3.3) agree. Next we have to show that the second terms in (3.3)
agree. In the second term on the right-hand side of (3.3) we substitute cd = a to get,
using g ≡ 1 (mod 8),

ik+1 · (D/D0)
k/2−1/4 · lk−1/2 · 2π · (det(2m))−1/2 ·

∑
a≥1

∑
d|(a,l)

(
D0

d

)
· d−1/2 · e2a(rm

−1rt
0)

×H±
m,a/d

(
l2

d2
n0,

l

d
r0, n, r

)
· Jk−1/2

(
2π · l

det(2m) · a
·
√
D0D

)
· (a/d)−g/2−1.

Thus it is sufficient to show
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Lemma 3.2. For l ≥ 1, n ≥ 0, and r ∈ Z(1,g) we have

S 1
2

det(2m)a(l, DD0, r0(2m)∗rt, D0)

=
∑

d|(a,l)

(
D0

d

)
· (a/d)g/2 · e2a/d(rm

−1rt
0) ·Hm,a/d

(
l2

d2
n0,

l

d
r0, n, r

)
.

Proof. If we insert the definitions of S 1
2

det(2m)a and Hm,a/d and multiply both sides

with e2a(−r0m−1rt), then we see that we have to show∑
b(a det(2m))

b≡r0(2m)∗rt(det(2m))

b2≡DD0(2 det(2m)a)

χD0

([
a

2
det(2m), b,

b2 −DD0

2 det(2m)a

])
· ea

(
b− r0(2m)−1r

det(2m)
l

)

=
∑

d|(a,l)

(
D0

d

)
· (a/d)−(g+1)/2 ·

∑
ρ(a/d)∗
λ(a/d)

ea/d

((
m[λ] +

l

d
r0λ+

l2

d2
n0

)
ρ̄+ nρ+ rλ

)
.

Since both sides are periodic in l with period a, it is sufficient to show that their Fourier
transforms are equal, i.e., we have to show that for every h′ ∈ Z /aZ we have

1

a
·

∑
b(a det(2m))

b≡r0(2m)∗rt(det 2m)

b2≡DD0(2 det(2m)a)

∑
l(a)

χD0

([
a

2
det(2m), b,

b2 −DD0

2 det(2m)a

])

× ea

((
b− r0(2m)−1rt

det(2m)
− h′

)
l

)

(3.13) =
1

a
·
∑
l(a)

∑
d|(a,l)

(
D0

d

)
· (a/d)−(g+1)/2 ·

∑
ρ(a/d)∗
λ(a/d)

× ea/d

((
m[λ] +

l

d
r0λ+

l2

d2
n0

)
ρ+ nρ+ rλ− h′

l

d

)
.

Setting h = det(2m)h′ + r0(2m)∗rt we see the left-hand side of (3.13) is equal to

1

a
·

∑
b(a det(2m))

b≡r0(2m)∗rt(det(2m))

b2≡DD0(2 det(2m)a)

χD0

([
a

2
det(2m), b,

b2 −DD0

2 det(2m)a

])
·
∑
l(a)

ea

(
l

det(2m)
(b− h)

)

=

{
χD0

([
a1

2
det(2m), h, h2−DD0

2 det(2m)a

])
if h2 ≡ DD0 (mod 2a det(2m))

0 otherwise
.



12 KATHRIN BRINGMANN

For the right-hand side of (3.13) we obtain, after replacing l by ld and then (λ, l) by
(ρλ, ρl),

1

a
·
∑
d|a

(
D0

d

)
· (d/a)(g+1)/2 ·

∑
ρ(a/d)∗
λ,l(a/d)

ea/d

(
ρ
(
m[λ] + r0lλ+ n0l

2 + rλ− h′l + n
))
.

Thus it is left to prove the following

Lemma 3.3. Suppose that b ≡ r(2m)∗rt
0 (mod det(2m)). Let

F (x, y) := m[x] + r0xy + n0y
2 + rx+ sy + n (x ∈ Z(g,1), y ∈ Z),

where

s = r(2m)−1rt
0 −

b

det(2m)
,

and where

Fc(m, r0, n0, r, s, n) := Fc := c−(g+1)/2 ·
∑
λ(c)∗

∑
x,y(c)

ec(λF (x, y)).

Then we have for any a ≥ 1

1

a
·
∑
d|a

(
D0

d

)
· Fa/d =

{
χD0

([
a
2
det(2m), b, b2−DD0

2 det(2m)a

])
if a| b2−DD0

2 det(2m)

0 otherwise
.(3.14)

Proof. For the proof we need the following formulas for Gauss sums

Lemma 3.4. Let a, b ∈ Z, ν ∈ N0, and let p be a prime number.
Define G(a, b, pν) :=

∑
x(pν) epν (ax2+bx). Let α := νp(a), where a = pαa′ with (a′, p) = 1.

(1) For α ≥ ν we have G(a, b, pν) =

{
pν if b ≡ 0 (mod pν)
0 otherwise

.

(2) For 0 ≤ α < ν and b 6≡ 0 (mod pα) we have G(a, b, pν) = 0.
(3) If p 6= 2 and b ≡ 0 (mod pα), 0 ≤ α < ν, we have

G(a, b, pν) = p
α+ν

2 · ε(pν−α) ·
(
a/pν

pν−α

)
· epν+α

(
−b2 4a

pα

)
,

where 4a
pα is an inverse of 4a

pα (mod pν+α), and where ε(x) = 1 or i according as

x ≡ 1 or 3 (mod 4).

(4) The sum G(a, b, 2ν) is equal to 2ν if ν − α = 1 and b 6≡ 0 (mod 2), has the value

2
ν+α

2 · (i+ 1) ·
(
−2ν+α

a/2α

)
· ε(a/2α) · e2ν+α

(
− a

2α

b2

4

)
if ν − α > 1 and b ≡ 0 (mod 2α+1), and is 0 otherwise. Here a/2α is an inverse
of a/2α (mod pν+α+2).
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Lemma 3.5. Let p 6= 2 be a prime, c be a p-power, A ∈ Z with p|A. Then we have

∑
λ(c)

(
λ

p

)
· epc(λA) =

{
ε(p) · c√

p
·
(

A/c
p

)
if c|A

0 otherwise
.

Proof of Lemma 3.3. For the proof we set C := b2−DD0

2 det(2m)
. Since both sides of (3.14)

can be shown to be multiplicative functions in a we may assume that a is a p−power,
where p is a prime number. Moreover, using Lemma 2.1, it can be shown that for the
proof of Lemma 3.3 it is sufficient to show that

1

a
·
∑
d|a

(
D0

d

)
· Fa/d =


0 if a - C(

D0

a

)
if a|C and p - D0(

D0/p∗

a

)(
1
2

det(2m)C/a

p

)
if a|C and p|D0,

(3.15)

where p∗ is the prime discriminant divisor of D divisible by p. For the proof of (3.15) we

again want to change

(
2n0 r0
rt
0 2m

)
into

(
2n0 r0
rt
0 2m

)[(
1 0
0 U

)]
with U as before.

We can show that by doing so we neither change the left- nor the right-hand side of
(3.15). Nevertheless we again have to be careful since we again change the assumptions
made on D0 and m. Let us abbreviate (r1, . . . , rg) := r, and(r′1, . . . , r

′
g) := r0. We now

want to treat the cases p 6= 2 and p = 2 separately.
In case p 6= 2 we may assume that m is a diagonal matrix with entries m1, . . . ,mg. We
can show with the same arguments as before that (mi, p) = 1 (1 ≤ i ≤ g) if p - det(2m)
and p divides mi for exactly one mi (1 ≤ i ≤ g) if p| det(2m). Morover we have

D = det(2m)/2 · (
∑g

i=1 r
2
i /mi − 4n) ,

D0 = det(2m)/2 ·
(∑g

i=1 r
′2
i /mi − 4n0

)
,

b = det(2m)/2 · (
∑g

i=1 rir
′
i/mi − 2s) .

(3.16)

Furthermore in this case the sum Fc has the form

Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ)
∑
y(c)

ec

((
n0y

2 + sy
)
λ
)

×
g∏

i=1

∑
xi(c)

ec

((
mix

2
i + (yr′i + ri)xi

)
λ
)
.

(3.17)
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Let us first assume p - det(2m). Applying Lemma 3.4 and using g ≡ 1 (mod 4) leads to

Fc = c−1/2 · ε(c) ·
( 1

2
det(2m)

c

)
·
∑
λ(c)∗

(
λ

c

)
· ec

(
λ

(
n−

g∑
i=1

r2
i /(4mi)

))
∑
y(c)

ec

((
λ

(
n0 −

g∑
i=1

r′2i /(4mi)

)
y2 +

(
s−

g∑
i=1

r′iri/(2mi)

)
y

))

= c−1/2 · ε(c) ·
∑
λ(c)∗

(
λ

c

)
· ec(−λD)

∑
y(c)

ec(−D0λy
2 − 2bλy),

where for the last identity we have replaced λ by 2 det(2m) · λ and have used (3.16) We
now proceed, treating the cases p - D0 and p|D0, separately. In the case p - D0 we have,
again using Lemma 3.4 and (3.16)

Fc =

(
D0

c

)
·
∑
λ(c)∗

ec

(
λ(b2 −DD0)/D0

)
=

(
D0

c

)
·
∑
λ(c)∗

ec(λC),

where for the last identity we have replaced λ by λ ·D0 · 2 det(2m), where 2 det(2m) is
an inverse of 2 det(2m) (mod c). Thus we obtain∑

d|a

(
D0

d

)
· Fa/d =

(
D0

a

)∑
λ(a)

ea(λC) =

{ (
D0

a

)
· a if a|C

0 otherwise
.

In the case p|D0 we obtain, using Lemma 3.4, that Fc vanishes if p - b (which is equivalent
to p - C) and otherwise has the value

Fc = p1/2 · ε(p) ·
(
D0/p

∗

c/p

)
·
∑
λ(c)∗

(
λ

p

)
· ec

(
λ
(
b2 −DD0

)
/D0

)
= p1/2 · ε(p) ·

(
D0/p

∗

c/p

)
·
( 1

2
det(2m)

p

)
·
(
D0/p

p

)
·
∑
λ(c)∗

(
λ

p

)
· ec(λC/p),

where for the last identity we have replaced λ by 2 det(2m) ·D0/p · λ, where 2 det(2m)
is an inverse of 2 det(2m) (mod c). Thus we obtain in case c|C, using Lemma 3.5,

Fc = c ·
(
D0/p

∗

c

)
·
( 1

2
det(2m)C/c

p

)
.(3.18)

Othervise the sum vanishes. Clearly expression (3.18) is zero if p|(C/c). Therefore the
sum on the left-hand side of (3.15) is reduced to a single term Fa.
Now let us assume that p| det(2m). Then we can show that p divides exactly one mi

(1 ≤ i ≤ g) of order ν = νp(det 2m). Without loss of generality we may assume p|mg.
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In the case pν |c we have, again using Lemma 3.4 and g ≡ 1 (mod 4)

Fc = c−1/2 · pν/2 · ε(c/pν) ·

(∏g−1
i=1 mi

c

)
·
(
mg/p

ν

c/pν

)
·
∑
λ(c)∗

ec

((
n−

g∑
i=1

r2
i /(4mi)

)
λ

)
(

λ

c/pν

)
·

∑
y(c)

yr′g+rg≡0(pν )

ec

(
λ

(
y2

(
n0 −

g∑
i=1

r
′2
i /(4mi)

)
+ y

(
s−

g∑
i=1

rir
′
i/(2mi)

)))
.

= c−1/2 · pν/2 · ε(c/pν) ·

(∏g−1
i=1 mi

c

)
·
(
mg/p

ν

c/pν

)
·
(

2 det(2m)/pν

c/pν

)
×
∑
λ(c)∗

(
λ

c/pν

)
· ec(−λD/pν)

∑
y(c)

yr′g+rg≡0(pν )

ec

(
λ
(
−y2D0/p

ν − 2b/pνy
))
,

where for the last identity we have replaced λ by 2 det(2m)
p

· λ. Using p - D0 we can

show with the same arguments as before that (r′g, p) = 1. Thus we can replace y by

−rgr′g+pνy, where r′g is an inverse of r′g (mod c), and where the new y runs (mod c/pν).

Moreover we can easily show that
(Qg−1

i=1 mi

p

)
= 1. Thus we obtain

Fc = c−1/2 · pν · ε(c/p) ·
∑
λ(c)∗

(
λ

c/pν

)
· ec

(
λ
(
−D/pν −D0/p

ν ·
(
rgr′g

)2
+ 2b/pν

(
rgr′g

)))
×
∑

y(c/pν)

ec

(
λ
(
−pνy2D0 + 2y

(
D0rgr′g − b

)))
.

Due to (3.16) we have D0rgr′g − b ≡ 0 (mod pν), i.e., we get, using Lemma 3.4, p - D0

and
(

D0

p

)
= 1

Fc =
∑
λ(c)∗

ec

(
λ(b2 −DD0)

pνD0

)
=
∑
λ(c)∗

ec(Cλ),(3.19)

where for the last identity we have changed λ intoD0·2 det(2m)/pν ·λ, where 2 det(2m)/pν

denotes an inverse of 2 det(2m)/pν (mod c).
The case pν - c is treated similarly and gives the same value for Fc.
Thus we infer that∑

d|a

(
D0

d

)
· Fa/d =

∑
λ(c)

ea(λC) =

{
a if a|C
0 otherwise

.

Therefore formula (3.15) is proved in the case p 6= 2.
In the case p = 2 we only prove (3.15) in case that D0 is odd since the case that D0 is
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even can be treated with the same arguments. In the case that D0 is odd we may assume
with the same arguments as before that m is a block diagonal matrix with blocks from

the set
{
l,
(

1
1
2

1
2
1

)
,
(

0
1
2

1
2
0

)}
, where the type l occurs exactly once. Let the type

(
1
1
2

1
2
1

)
occur g1 times and the type

(
0
1
2

1
2
0

)
occur g2 times, i.e., g = 1 + 2g1 + 2g2. Let us set

I := {2, 4, . . . , 2g1}, and J := {2g1 + 2, 2g1 + 4, . . . , g − 1} ⊂ N. Then we have

D =
1

2
det(2m) ·

(
−4n+

r2
1

l
+

4

3
·
∑
i∈I

(
r2
i − riri+1 + r2

i+1

)
+ 4 ·

∑
i∈J

riri+1

)
,

D0 =
1

2
det(2m) ·

(
−4n0 +

r
′2
1

l
+

4

3
·
∑
i∈I

(
r
′2
i − r′ir

′
i+1 + r

′2
i+1

)
+ 4 ·

∑
i∈J

r′ir
′
i+1

)
,

b =
1

2
det(2m) ·

(
−2s+

r1r
′
1

l
+

2

3
·
∑
i∈I

(
2rir

′
i + 2ri+1r

′
i+1 − r′iri+1 − r′i+1ri

)
+2 ·

∑
i∈J

(
r′iri+1 + rir

′
i+1

))
,(3.20)

and

C =
1

2
det(2m) ·

((
−s+

r1r
′
1

2l
+

1

3
·
∑
i∈I

(
2r′iri − r′iri+1 − r′i+1ri + 2r′i+1ri+1

)
+
∑
i∈J

(
r′iri+1 + r′i+1ri

))2

(3.21) −

(
−2n+

r2
1

2l
+

2

3
·
∑
i∈I

(r2
i − riri+1 + r2

i+1) + 2 ·
∑
i∈J

riri+1

)

×

(
−2n0 +

r2
1

2l
+

2

3
·
∑
i∈I

(
r′2i − r′ir

′
i+1 + r′2i+1

)
+ 2 ·

∑
i∈J

r′ir
′
i+1

))
.

Moreover we have

(3.22) Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ)
∑
y(c)

ec

((
n0y

2 + sy
)
λ
)∑

x1(c)

ec

((
lx2

1 + (yr′1 + r1)x1

)
λ
)

×
∏
i∈I

∑
xi(c)

xi+1(c)

ec

(
λ
(
x2

i + xixi+1 + x2
i+1 + (r′iy + ri)xi +

(
r′i+1y + ri+1

)
xi+1

))
×
∏
i∈J

∑
xi(c)

xi+1(c)

ec

(
λ
(
xixi+1 + (r′iy + ri)xi +

(
r′i+1y + ri+1

)
xi+1

))
.
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We now want to determine the different types of sums over the xi that can appear. For
this we need Lemma 3.4. We only compute the sums in the case c 6= 2 since the case
c = 2 is treated quite similarly. If r′1y + r1 ≡ 0 (mod 2) we obtain, using Lemma 3.4
and (l, 2) = 1, that the first type of sum equals

c1/2 ·
(
−c
λl

)
· ε(lλ) · (1 + i) · ec

(
−λ (r′1y + r1)

2
/(4l)

)
.

Otherwise the sum has the value 0. Moreover we have, again using Lemma 3.4, that the
second type of sum is equal to∑

xi+1(c)

xi+1+r′
i
y+ri≡0(2)

ec

(
λ
(
x2

i+1 +
(
r′i+1y + ri+1

)
xi+1

))
· c1/2

(
−c
λ

)
· ε(λ) · (1 + i)

× ec

(
−λ(xi+1 + r′iy + ri)

2

4

)
= c ·

(
−c
3

)
· (−1) · ec

(
3̄λ
(
riri+1 − r2

i − r2
i+1

)
+ y2

(
r′ir

′
i+1 − r′2i − r′2i+1

)
+y
(
r′iri+1 + r′i+1ri − 2r′iri − 2r′i+1ri+1

))
,

where for the last identity we have replaced xi+1 by −r′iy− ri +2xi+1, with the new xi+1

running (mod c/2) and have used that ε(λ) · ε(3λ) = i . The third type of sum is equal
to

c · (−1) ·
(
−c
−1

)
· ec

(
−λ
(
y2r′ir

′
i+1 + y

(
r′iri+1 + r′i+1ri

)
+ riri+1

))
.

Thus we obtain by changing λ into 1
2
det(2m) ·λ, by using that g ≡ 1 (mod 4), equation

(3.20), and ε(l · det(2m) · λ) = ε(λ)

Fc = c−1/2 · (1 + i) ·
∑
λ(c)∗

(
−c
λ

)
· ε
(
l · 1

2
det(2m)λ

)
· ec (−λD/4)

×
∑
y(c)

r′1y+r1≡0(2)

ec(λ(−D0/4y
2 − b/2y))

= c−1/2 · (1 + i) ·
∑
λ(c)∗

(
−c
λ

)
· ε(λ) · ec

(
λ
(
−D/4−D0/4(r1r̄1)

2 + b/2r1r′1
))

×
∑

y(c/2)

ec

(
λ
(
−D0y

2 +
(
D0r1r′1 − b

)
y
))
,

where for the last identity we have replaced y by 2y − r1r′1, where r′1 is an inverse of r1
(mod c), and where the new y runs (mod c/2). Due to D0 · r1 · r′1 − b ≡ 0 (mod 2) we
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obtain, using Lemma 3.4 and ε(λ) · ε(−D0λ) = i,

Fc =

(
c

D0

)
·
∑
λ(c)∗

ec

(
λ
(
b2/(4D0)−D/4

))
=

(
c

D0

)
·
∑
λ(c)∗

ec(λC),

where for the last identity we have changed λ into det(2m)/2 ·D0 · λ, where det 2m/2 is
an inverse of det 2m/2 (mod c). We now can proceed similarly as in the case p 6= 2. �
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