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ASYMPTOTIC EXPANSIONS FOR PARTITIONS GENERATED BY INFINITE

PRODUCTS

WALTER BRIDGES, BENJAMIN BRINDLE, KATHRIN BRINGMANN, AND JOHANN FRANKE

Abstract. Recently, Debruyne and Tenenbaum proved asymptotic formulas for the number of
partitions with parts in Λ ⊂ N (gcd(Λ) = 1) and good analytic properties of the corresponding zeta
function, generalizing work of Meinardus. In this paper, we extend their work to prove asymptotic
formulas if Λ is a multiset of integers and the zeta function has multiple poles. In particular, our
results imply an asymptotic formula for the number of irreducible representations of degree n of
so(5). We also study the Witten zeta function ζso(5), which is of independent interest.

1. Introduction and statement of results

1.1. The Circle Method. In analytic number theory and combinatorics, one uses complex analy-
sis to better understand properties of sequences. Suppose that a sequence (c(n))n∈N0 has moderate
growth and the generating function

f(q) :=
∑

n≥0

c(n)qn,

is holomorphic in the unit disk with radius of convergence 1. Via Cauchy’s integral formula one
can then recover the coefficients from the generating function

c(n) =
1

2πi

∫

C

f(q)

qn+1
dq, (1.1)

for any closed curve C contained in the unit disk that surrounds the origin exactly once counter-
clockwise. The so-called Circle Method uses the analytic behavior of f(q) near the boundary of
the unit circle to obtain asymptotic information about c(n). For instance, if the c(n) are positive
and monotonically increasing, it is expected that the part close to q = 1 provides the dominant
contribution to (1.1). These parts of the curve are the major arcs and the complement are the
minor arcs. To obtain an asymptotic expansion for c(n), one then evaluates the major arc to some
degree of accuracy and bounds the minor arcs. Depending on the function f(q), both of these tasks
present a variety of difficulties.

In the present paper, we are interested in infinite product generating functions of the form

f(q) =
∏

n≥1

1

(1− qn)a(n)
.

Such generating functions are important in the theory of partitions, but also arise, for example, in
representation theory. If a(n) is a “simple” sequence of nonnegative integers and f is “bounded”
away from q = 1, then Meinardus [28] proved an asymptotic expression for c(n). Debruyne and
Tenenbaum [15] eliminated the technical growth conditions on f by adding a few more assumptions
on the a(n), which made their result more applicable. Our main results, Theorems 1.4 and 4.4,
yield asymptotic expansions given mild assumptions on a(n) and have a variety of new applications.
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1.2. The classical partition function. Let n ∈ N. A weakly decreasing sequence of positive
integers that sum to n is called a partition of n. The number of partitions is denoted by p(n). If
λ1 + . . . + λr = n, then the λj are called the parts of the partition. The partition function has
no elementary closed formula, nor does it satisfy any finite order recurrence. However, setting
p(0) := 1, its generating function has the following product expansion

∑

n≥0

p(n)qn =
∏

n≥1

1

1− qn
, (1.2)

where |q| < 1. In [21], Hardy and Ramanujan used (1.2) to show the asymptotic formula

p(n) ∼ 1

4
√
3n
e
π
√

2n
3 , n→ ∞, (1.3)

which gave birth of the Circle Method. With Theorem 1.4 we find, for certain constants Bj and
arbitrarily N ∈ N,

p(n) =
e
π
√

2n
3

4
√
3n



1 +
N
∑

j=1

Bj

n
j

2

+ON

(

n−
N+1

2

)



 .

Similarly, one can treat the cases for k-th powers (in arithmetic progressions), see [15].

1.3. Plane partitions. Another application is an asymptotic formula for plane partitions. A plane
partition of size n is a two-dimensional array of non-negative integers πj,k for which

∑

j,k πj,k = n,
such that πj,k ≥ πj,k+1 and πj,k ≥ πj+1,k for all j, k ∈ N. We denote the number of plane partitions
of n by pp(n). MacMahon [23] proved that

∑

n≥0

pp(n)qn =
∏

n≥1

1

(1− qn)n
.

Using Theorem 1.4, we recover Wright’s asymptotic formula [35]

pp(n) =
C

n
25
36

eA1n
2
3



1 +

N+1
∑

j=2

Bj

n
2(j−1)

3

+ON

(

n−
2(N+1)

3

)



 ,

where the constants Bj are explicitly computable,

C :=
ζ(3)

7
36 eζ

′(−1)

2
11
36

√
3π

, A1 :=
3ζ(3)

1
3

2
2
3

with ζ the Riemann zeta function.

1.4. Partitions into polygonal numbers. The n-th k-gonal number is given by (k ∈ N≥3)

Pk(n) :=
1

2

(

(k − 2)n2 + (4− k)n
)

.

The study of representations of integers as sums of polygonal numbers has a long history. Fermat
conjectured in 1638 that every n ∈ N may be written as the sum of at most k k-gonal numbers
which was finally proved by Cauchy. Let pk(n) denotes the number of partitions of n into k-gonal
numbers. We have the generating function

∑

n≥0

pk(n)q
n =

∏

n≥1

1

1− qPk(n)
.
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The pk(n) have the following asymptotics.1

Theorem 1.1. We have, for all 2 N ∈ N,

pk(n) =
C(k)eA(k)n

1
3

n
5k−6
6(k−2)



1 +
N
∑

j=1

Bj,k

n
j

3

+ON

(

n−
N+1
3

)



 ,

where the Bj,k can be computed explicitly and

C(k) :=
(k − 2)

6−k
6(k−2)Γ

(

2
k−2

)

ζ
(

3
2

)
k

3(k−2)

2
3k−2
2(k−2)

√
3π

4k−9
3(k−2)

, A(k) :=
3

2

(√

π

k − 2
ζ

(

3

2

))
2
3

.

1.5. Numbers of finite-dimensional representations of Lie algebras. The special unitary
group su(2) has (up to equivalence) one irreducible representation Vk of each dimension k ∈ N.
Each n-dimensional representation

⊕∞
k=1 rkVk corresponds to a unique partition

n = λ1 + λ2 + · · ·+ λr, λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1 (1.4)

such that rk counts the number of k in (1.4). As a result, the number of representations equals
p(n). It is natural to ask whether this can be generalized. The next case is the unitary group su(3),
whose irreducible representationsWj,k indexed by pairs of positive integers. Note that (see Chapter

5 of [20]) dim(Wj,k) =
1
2jk(j+ k). Like in the case of su(2), a general n-dimensional representation

decomposes into a sum of these Wj,k, again each with some multiplicity. So analogous to (1.2), the
numbers r

su(3)(n) of n-dimensional representations, have the generating function

∑

n≥0

r
su(3)(n)q

n =
∏

j,k≥1

1

1− q
jk(j+k)

2

,

again with r
su(3)(0) := 1. In [31], Romik proved that, as n→ ∞,

r
su(3)(n) ∼

C0

n
3
5

exp
(

A1n
2
5 +A2n

3
10 +A3n

1
5 +A4n

1
10

)

,

with explicit constants3 C0, A1, . . . , A4 expressible in terms of zeta and gamma values. Two of the
authors [7] improved this to an analogue of formula (1.3), namely, for any N ∈ N0, we have

r
su(3)(n) =

C0

n
3
5

exp
(

A1n
2
5 +A2n

3
10 +A3n

1
5 +A4n

1
10

)



1 +

N
∑

j=1

Cj

n
j

10

+ON

(

n−
N
10

− 3
80

)



 , (1.5)

as n → ∞, where the constants Cj do not depend on N and n and can be calculated explicitly.

The expansion (1.5) with improved error term ON (n−
N+1
10 ) and explicit values for Aj (1 ≤ j ≤ 4)

and C0, can also be obtained using Theorem 4.4.
This framework generalizes to other groups. For example, one can investigate the Witten zeta

function for so(5), which is (for more background to this function, see [25] and [26])

ζ
so(5)(s) :=

∑

ϕ

1

dim(ϕ)s
= 6s

∑

n,m≥1

1

msns(m+ n)s(m+ 2n)s
, (1.6)

where the ϕ are running through the finite-dimensional irreducible representations of so(5). We
prove the following; for the more precise statement see Theorem 5.14.

1Note that asymptotics for polynomial partitions were investigated in a more general setting by Dunn and Robles
in [17].

2Explicit asymptotic formulas for p3(n), p4(n), and p5(n) are given in Corollary 5.4.
3Note that Romik used different signs for the constants in the exponential.
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Theorem 1.2. The function ζ
so(5) has a meromorphic continuation to C whose positive poles are

simple and occur for s ∈ {1
2 ,

1
3}.

It is well-known that the finite-dimensional representations of so(5) can be doubly indexed as
(ϕj,k)j,k∈N with dim(ϕj,k) = 1

6jk(j + k)(j + 2k), which explains the last equality in (1.6). A
general n-dimensional representation decomposes as a sum of these ϕj,k, each with some multiplicity.
Therefore, as in the case su(3), we find that

∑

n≥0

r
so(5)(n)q

n =
∏

j,k≥1

1

1− q
jk(j+k)(j+2k)

6

.

We prove the following.

Theorem 1.3. As n→ ∞, we have, for any N ∈ N,

r
so(5)(n) =

C

n
7
12

exp
(

A1n
1
3 +A2n

2
9 +A3n

1
9 +A4

)



1 +

N+1
∑

j=2

Bj

n
j−1
9

+ON

(

n−
N+1
9

)



 ,

where C, A1, A2, A3, and A4 are given in (5.17)–(5.19) and the Bj can be calculated explicitly.

1.6. Statement of results. The main goal of this paper is to prove asymptotic formulas for a
general class of partition functions. To state it, let f : N → N0, set Λ := N \ f−1({0}), and for
q = e−z (z ∈ C with Re(z) > 0), define

Gf (z) :=
∑

n≥0

pf (n)q
n =

∏

n≥1

1

(1− qn)f(n)
, Lf (s) :=

∑

n≥1

f(n)

ns
. (1.7)

We require the following key properties of these objects.

(P1) Let α > 0 be the largest pole of Lf . There exists L ∈ N, such that for all primes p, we have
|Λ \ (pN ∩ Λ)| ≥ L > α

2 .
(P2) Condition (P2) is attached to R ∈ R

+. The series Lf (s) converges for some s ∈ C, has
a meromorphic continuation to {s ∈ C : Re(s) ≥ −R}, and is holomorphic on the line
{s ∈ C : Re(s) = −R}. The function L∗

f (s) := Γ(s)ζ(s+1)Lf (s) has only real poles 0 < α :=
γ1 > γ2 > . . . that are all simple, except the possible pole at s = 0, that may be double.

(P3) For some a < π
2 , in every strip σ1 ≤ σ ≤ σ2 in the domain of holomorphicity, we uniformly

have, for s = σ + it,

Lf (s) = Oσ1,σ2

(

ea|t|
)

, |t| → ∞.

Note that (P1) implies that |Λ \ (bN ∩ Λ)| ≥ L > α
2 for all b ≥ 2.

Theorem 1.4. Assume (P1) for L ∈ N, (P2) for R > 0, and (P3). Then, for some M,N ∈ N,

pf (n) =
C

nb
exp



A1n
α

α+1 +

M
∑

j=2

Ajn
αj







1 +

N
∑

j=2

Bj

nβj
+OL,R

(

n
−min

{

2L−α
2(α+1)

, R
α+1

})



 ,

where 0 ≤ αM < αM−1 < · · ·α2 < α1 = α
α+1 are given by4 L (defined in (1.8)), and 0 < β2 <

β3 < . . . are given by M+N , where M and N are defined in (1.9) and (1.10), respectively. The
coefficients Aj and Bj can be calculated explicitly; the constants A1, C, and b are provided in (1.11)
and (1.12). Moreover, if α is the only positive pole of Lf , then we have M = 1.

Remarks.

4We can enlarge the discrete exponent sets at will, since we can always add trivial powers with vanishing coefficients
to an expansion. Therefore, from now on we always use this expression, even if the set increases tacitly.
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(1) Debruyne and Tenenbaum proved Theorem 1.4 in the special case that f is the indicator function
of a subset Λ of N. They also assumed that the associated L-function can be analytically
continued except for one pole in 0 < α ≤ 1. Our refined assumption (P1) on the set Λ is
necessary to bound minor arcs in this more general setup.

(2) The complexity of the exponential term depends on the number and positions of the positive
poles of Lf . Theorem 4.4 is more explicit and covers the case of exactly two positive poles.
This case has importance for representation numbers of su(3) and so(5).

In Section 2, we collect some analytic tools, properties of special functions and useful properties
of asymptotic expansions that are heavily used throughout the paper. In Section 3, we apply the
Circle Method and calculate asymptotic expansions for the saddle point ̺n and the value of the
generating function Gf (̺n). In Section 4, we complete the proof of Theorem 1.4, and we also
state and prove a more explicit version of Theorem 1.4 in the case that Lf has two positive poles
(Theorem 4.4). The proofs of Theorems 1.1, 1.2, and 1.3 are given in Section 5; this includes a
detailed study of the Witten zeta function ζ

so(5) which is of independent interest.
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Notation

For β ∈ R, we denote by {β} := β − ⌊β⌋ the fractional part of β. As usual, we set H := {τ ∈ C :
Im(τ) > 0} and E := {z ∈ C : |z| < 1}. For δ > 0, we define

Cδ :=
{

z ∈ C : |Arg(z)| ≤ π
2 − δ

}

,

where Arg uses the principal branch of the complex argument. For r > 0 and z ∈ C, we set

Br(z) := {w ∈ C : |w − z| < r}.
For a, b ∈ R, we let Ra,b;K be the rectangle with vertices a± iK and b± iK, and we let ∂Ra,b;K be
the path along the boundary of Ra,b;K , surrounded once counterclockwise. For −∞ ≤ a < b ≤ ∞,
we denote Sa,b := {z ∈ C : a < Re(z) < b}. We also set, for real σ1 ≤ σ2 and δ > 0,

Sσ1,σ2,δ := {s ∈ C : σ1 ≤ Re(s) ≤ σ2}
∖



Bδ

(

1

2

)

∪
1
⋃

j=−∞
Bδ

(

j

3

)



 .

For k ∈ N and s ∈ C, the falling factorial is (s)k := s(s− 1) · · · (s− k + 1). For f : N → N0, we let
P be the set of poles of L∗

f , and for R > 0 we denote by PR the union of the poles of L∗
f greater

than −R with {0}. We define

L :=
1

α+ 1
PR +

∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0, (1.8)

M :=
α

α+ 1
N0 +



−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
[

0,
R+ α

α+ 1

)

, (1.9)

5



N :=







K
∑

j=1

bjθj : bj,K ∈ N0, θj ∈ (−L) ∩
(

0,
R

α+ 1

)







. (1.10)

We set, with ωα := Ress=α Lf (s),

A1 :=

(

1 +
1

α

)

(ωαΓ(α+ 1)ζ(α+ 1))
1

α+1 , C :=
eL

′
f
(0)(ωαΓ(α+ 1)ζ(α+ 1))

1
2−Lf (0)

α+1

√

2π(α + 1)
, (1.11)

b :=
1− Lf (0) +

α
2

α+ 1
. (1.12)

2. Preliminaries

In this section, we collect and prove some tools used in this paper.

2.1. Tools from complex analysis. We require the following results from complex analysis. The
first theorem describes Taylor coefficients of the inverse of a biholomorphic function; for a proof,
see Corollary 11.2 on p. 437 of [10].

Proposition 2.1. Let φ : Br(0) → D be a holomorphic function such that φ(0) = 0 and φ′(0) 6= 0,
with φ(z) =:

∑

n≥1 anz
n. Then φ is locally biholomorphic and its local inverse of φ has a power

series expansion φ−1(w) =:
∑

k≥1 bkw
k, where

bk =
1

kak1

∑

ℓ1,ℓ2,ℓ3...≥0
ℓ1+2ℓ2+3ℓ3+···=k−1

(−1)ℓ1+ℓ2+ℓ3+···k · · · (k − 1 + ℓ1 + ℓ2 + · · · )
ℓ1!ℓ2!ℓ3! · · ·

(

a2
a1

)ℓ1
(

a3
a1

)ℓ2

· · · .

To deal with certain zeros of holomorphic functions, we require the following result from complex
analysis, the proof of which is quickly obtained from Exercise 7.29 (i) in [9].

Proposition 2.2. Let r > 0 and let φn : Br(0) → C be a sequence of holomorphic functions that
converges uniformly on compact sets to a holomorphic function φ : Br(0) → C, with φ′(0) 6= 0.
Then there exist r > κ1 > 0 and κ2 > 0 such that, for all n sufficiently large, the restrictions
φn|Bκ1 (0)

: Bκ1(0) → φn(Bκ1(0)) are biholomorphic and Bκ2(0) ⊂ φn(Bκ1(0)). In particular, the

restrictions φ−1
n |Bκ2 (0)

: Bκ2(0) → φ−1
n (Bκ2(0)) are biholomorphic functions.

2.2. Asymptotic expansions. We require two classes of asymptotic expansions.

Definition. Let R ∈ R.

(1) Let g : R+ → C be a function. Then g ∈ K(R) if there exist real numbers νg,1 < νg,2 < νg,3 <
· · · < νg,N < R and complex numbers ag,j such that

g(x) =

Ng
∑

j=1

ag,j
xνg,j

+OR

(

x−R
)

, (x→ ∞).

(2) Let φ be holomorphic on the right half-plane. Then φ ∈ H(R) if there are real numbers
νφ,1 < νφ,2 < νφ,3 < · · · < νφ,N < R and aφ,j ∈ C such that, for all k ∈ N0 and 0 < δ < π

2 ,

φ(k)(z) =

Nφ
∑

j=1

(νφ,j)kaφ,jz
νφ,j−k +Oδ,R,k

(

|z|R−k
)

, (z → 0, z ∈ Cδ). (2.1)

If there is no risk of confusion, then we write N , νj , and aj in the above. The R-dependence of the
error only matters if R varies, for instance, if we can choose it to be arbitrarily large.
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Note that any sequence g(n) with

g(n) =

N
∑

j=1

aj
nνj

+OR

(

n−R
)

, (n→ ∞), (2.2)

can be extended to a function g in K(R). Conversely, each function in K(R) can be restricted to a
sequence g(n)n∈N satisfying (2.2). In addition, we include functions in K(R) that have asymptotic
expansion as in (1), but are initially defined only on intervals (r,∞) for some large r > 0. The
reason for this is that it does not matter how the function is defined up to r, and therefore it can
always be continued to (0,∞). If g ∈ K(R) for all R > 0, then we write

g(x) =
∑

j≥1

aj
xνj

, (x→ ∞). (2.3)

We use the same abbreviation if φ ∈ H(R) for all R > 0. In this case we write g ∈ K(∞) and
φ ∈ H(∞), respectively. In some situations, we write for R ∈ R ∪ {∞}

g(x) =
N
∑

j=1

ag,j
xνg,j

+OR

(

x−R
)

,

where R might depend on the choice of the function g. If R = ∞, then one may ignore the error
OR(x

−R) and use the notation (2.3) instead. We have the following useful lemmas, that can be
obtained by a straightforward calculation.

Lemma 2.3. Let R1, R2 ∈ R, λ ∈ C, g ∈ K(R1), and h ∈ K(R2). Then we have the following:

(1) We have λg ∈ K(R1) and g + h ∈ K(min{R1, R2}). The exponents νg+h,j run through

({νg,j : 1 ≤ j ≤ Ng} ∪ {νh,j : 1 ≤ j ≤ Nh}) ∩ (−∞,min{R1, R2}).
(2) We have gh ∈ K(min{R1 + νh,1, R2 + νg,1}). The exponents νgh,j run through

({νg,j : 1 ≤ j ≤ Ng}+ {νh,j : 1 ≤ j ≤ Nh}) ∩ (−∞,min{R1 + νh,1, R2 + νg,1}).
We next deal with compositions of asymptotic expansions with holomorphic functions.

Lemma 2.4. Let 0 < R ≤ ∞, g ∈ K(R) with νg,1 = 0 and h holomorphic at ag,1. Then (h ◦ g)(x)
is defined for all x > 0 sufficiently large, and we have h ◦ g ∈ K(R) with

{νh◦g,j : 1 ≤ j ≤ Nh◦g} =





Ng
∑

j=1

νg,jN0



 ∩ [0, R).

We need a similar result for general asymptotic expansions.

Lemma 2.5. Let 0 < R1, R2 ≤ ∞, φ ∈ H(R1), g ∈ K(R2), and R := min{R2 − νg,1, νg,1R1}.
Assume νg,1 > 0 and g(x) > 0 for x sufficiently large. Then φ ◦ g ∈ K(R), aφ◦g,1 = aφ,1a

νφ,1
g,1 , and

{νφ◦g,j : 1 ≤ j ≤ Nφ◦g} =



νg,1{νφ,1, ..., νφ,Nφ
}+

Ng
∑

j=2

(νg,j − νg,1)N0



 ∩ (−∞, R).

2.3. Special functions. The following theorem collects some facts about the Gamma function.

Proposition 2.6 (see [1, 32]). Let γ denote the Euler–Mascheroni constant.

(1) The gamma function Γ is holomorphic on C \ (−N0) with simple poles in −N0. For n ∈ N0 we

have Ress=−n Γ(s) =
(−1)n

n! .
7



(2) For s = σ + it ∈ C with σ ∈ I for a compact interval I ⊂ [12 ,∞), we uniformly have

max
{

1, |t|σ− 1
2

}

e−
π|t|
2 ≪I |Γ(s)| ≪I max

{

1, |t|σ− 1
2

}

e−
π|t|
2 .

The bound also holds for compact intervals I ⊂ R if |t| ≥ 1.
(3) Near s = 0, we have the Laurent series expansion Γ(s) = 1

s
− γ +O(s).

(4) For all s ∈ C \ Z, we have Γ(s)Γ(1− s) = π
sin(πs) .

For s, z ∈ C with s /∈ −N, the generalized Binomial coefficient is defined by
(

s

z

)

:=
Γ(s+ 1)

Γ(z + 1)Γ(s − z + 1)
.

We require the following properties of the Riemann zeta function.

Proposition 2.7 (see [2, 8, 32]).

(1) The ζ-function has a meromorphic continuation to C with only a simple pole at s = 1 with
residue 1. For s ∈ C we have (as identity between meromorphic functions)

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1− s)ζ(1− s).

(2) For I := [σ0, σ1] and s = σ + it ∈ C, there exists mI ∈ Z, such that for σ ∈ I

ζ(s) ≪ (1 + |t|)mI , (|t| → ∞).

(3) Near s = 1, we have the Laurent series expansion ζ(s) = 1
s−1 + γ +O(s− 1).

For the Saddle Point Method we need the following estimate.

Lemma 2.8. Let µn be an increasing unbounded sequence of positive real numbers, B > 0, and P
a polynomial of degree m ∈ N0. Then we have

∫ µn

−µn

P (x)e−Bx2
dx =

∫ ∞

−∞
P (x)e−Bx2

dx+OB,P

(

µ
m−1

2
n e−Bµ2

n

)

.

Finally, we require the following in our study of the Witten zeta function ζ
so(5).

Lemma 2.9. Let n ∈ N0. The function g : R → R defined as g(u) := e|u|
∫∞
−∞ |v|ne−|v|−|v+u|dv

satisfies g(u) = On(u
n+1) as |u| → ∞.

Proof. Let u ≥ 0. Then we have

g(u) =
n!

2n+1

n
∑

j=0

2j

j!
uj +

un+1

n+ 1
+

n!

2n+1
= On

(

un+1
)

.

The lemma follows, since g is an even function. �

3. Minor and major arcs

3.1. The minor arcs. For z ∈ C with Re(z) > 0, we define, with Gf given in (1.7),

Φf (z) := Log(Gf (z)).

Note that we assume throughout, that the function f grows polynomially, which is implicitly part
of (P2). We apply Cauchy’s Theorem, writing

pf (n) =
1

2π

∫ π

−π

exp (n(̺n + it) + Φf (̺n + it)) dt,
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where ̺n → 0+ is determined in Subsection 3.3. We split the integral into two parts, the major
and minor arcs, for any β ≥ 1

pf (n) =
e̺nn

2π

∫

|t|≤̺
β
n

exp (int+Φf (̺n + it)) dt+
e̺nn

2π

∫

̺β≤|t|≤π

exp (int+Φf (̺n + it)) dt. (3.1)

The first integral provides the main terms in the asymptotic expansion for pf (n), the second integral
is negligible, as the following lemma shows.

Lemma 3.1. Let 1 < β < 1 + α
2 and assume that f satisfies the conditions of Theorem 1.4. Then

∫

̺
β
n

2π
≤|t|≤ 1

2

e2πintGf (̺n + 2πit)dt ≪L ̺
L+1
n Gf (̺n).

Sketch of proof. The proof may be adapted from [15, Lemma 3.1]. That is, we estimate the quotient,

|Gf (̺n + 2πit)|
Gf (̺n)

≤
∏

m≥1

(

1 +
16||mt||2
em̺nm2̺2n

)− f(m)
2

,

where ||x|| is the distance from x to the nearest integer. We then throw awaym-th factors depending

on the location of t ∈ [̺
β
n

2π ,
1
2 ]. The proof follows [15, Lemma 3.1] mutatis mutandis; key facts are

hypothesis (P3) of Theorem 1.4 and that (which follows from [32, Theorem 7.28 (1)])

∑

1≤m≤x

f(m) ∼ Ress=αLf

α
xα. �

3.2. Inverse Mellin transforms for generating functions. We start this subsection with a
lemma on the asymptotic behavior of the function Φf near z = 0.

Lemma 3.2. Let f : N → N0 satisfy (P2) with R > 0 and (P3). Fix some 0 < δ < π
2 − a. Then

we have, as z → 0 in Cδ,

Φf (z) =
∑

ν∈−PR\{0}
Ress=−ν L

∗
f (s)z

ν − Lf (0)Log(z) + L′
f (0) +OR

(

|z|R
)

.

For the k-th derivative (k ∈ N), we have

Φ
(k)
f (z) =

∑

ν∈−PR\{0}
(ν)k Ress=−ν L

∗
f (s)z

ν−k +
(−1)k(k − 1)!Lf (0)

zk
+OR,k

(

|z|R−k
)

.

Proof. With Jf (s; z) := L∗
f (s)z

−s, we obtain, for κ ∈ N0,

2πiΦ
(κ)
f (z) =

dκ

dzκ

(

∫ −R+i∞

−R−i∞
+ lim

K→∞

(

∫

∂R−R,α+1;K

+

∫ −R−iK

α+1−iK

+

∫ α+1+iK

−R+iK

))

Jf (s; z)ds. (3.2)

Here we use (P2), giving that there are no poles of Jf (s; z) on the path of integration. By Propo-
sition 2.7 (2), [7, Theorem. 2.1 (3)], and (P3), we find a constant c(R,κ) such that, as |v| → ∞,

∣

∣L∗
f (−R+ iv)

∣

∣≪R (1 + |v|)c(R,κ)e−(
π
2
−a)|v|.

This yields, with Leibniz’ integral rule and 0 < δ < π
2 − a,

∣

∣

∣

∣

dκ

dzκ

∫ −R+i∞

−R−i∞
Jf (s; z)ds

∣

∣

∣

∣

≪R,κ |z|R−κ.

For the second integral in (3.2), applying the Residue Theorem gives

9



dκ

dzκ
lim

K→∞
1

2πi

∫

∂R−R,α+1;K

Jf (s; z)ds

=
∑

ν∈−PR\{0}
(ν)κ Ress=−ν L

∗
f (s)z

ν−κ +
dκ

dzκ
(

−Lf (0)Log(z) + L′
f (0)

)

,

since s = 0 is a double pole of Jf (s; z). For the last two integrals in (3.2) we have, for some
m(I) ∈ N0, depending on I := [−R,α+ 1],

∣

∣

∣

∣

∫ α+1±iK

−R±iK

Jf (s; z)ds

∣

∣

∣

∣

≪I (1 + |K|)m(I) max
{

|z|α+1, |z|−R
}

e−(δ−a)|K|,

which vanishes as K → ∞ and thus the claim follows by distinguishing κ = 0 and κ ∈ N. �

3.3. Approximation of saddle points. We now approximately solve the saddle point equations

−Φ′
f (̺) = n = −Φ′

f (̺n). (3.3)

The following proposition provides an asymptotic formula for certain functions.

Proposition 3.3. Let φ ∈ H(R) with R > 0, νφ,1 < 0, and aφ,1 > 0. Assume that φ(R+) ⊂ R.
Then we have the following:

(1) There exists a positive sequence (̺n)n∈N, such that for all n sufficiently large, φ(̺n) = n holds.

(2) We have5 ̺ ∈ K(1 − R+1
νφ,1

), a̺,1 = a
− 1

νφ,1

φ,1 , and the corresponding exponent set

{ν̺,j : 1 ≤ j ≤ N̺} =



− 1

νφ,1
+

Nφ
∑

j=1

(

1− νφ,j
νφ,1

)

N0



 ∩
(

−∞, 1− R+ 1

νφ,1

)

.

In particular, we have ̺n → 0+.

Proof. In the proof we abbreviate νn := νφ,n and an := aφ,n.
(1) For n ∈ N, set

ψn(w) := −1 +
1

n
φ

(

(

n

a1

) 1
ν1

w

)

.

As φ is holomorphic on the right-half plane by assumption, so are the ψn. Using (2.1), write

ψn(w) = wν1 − 1 + En(w), (3.4)

where the error satisfies

En(w) =
1

n

Nφ
∑

j=2

aj

(

n

a1

)

νj

ν1

wνj +OR

(

n
R
ν1

−1|w|R
)

.

We next show that, for all n sufficiently large, the ψn only have one zero near w = 1. We argue
with Rouché’s Theorem. First, we find that, for n sufficiently large, the inequality

|En(w)| < |1− wν1 |+ |wν1 − 1 + En(w)| = |1− wν1 |+ |ψn(w)| (3.5)

holds on the entire boundary of Bκ(ν1)(1), with 0 < κ(ν1) <
1
2 sufficiently small such that w 7→

1−wν1 only has one zero in Bκ(ν1)(1). By Rouché’s Theorem and (3.5), for n sufficiently large ψn

also has exactly one zero in Bκ(ν1)(1). We denote this zero of ψn by wn. It is real as φ is real-valued

on the positive real line and a holomorphic function. One can show that ̺n = ( n
a1
)

1
ν1wn > 0 satisfies

φ(̺n) = n.

5Recall that we can consider the sequence ̺n as a function on R
+.
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(2) We first give an expansion for wn. By Proposition 2.2, there exists κ > 0, such that for all n
sufficiently large and all z ∈ Bκ(0), the inverse functions ψ−1

n of ψn are defined and holomorphic in
Bκ(1). Using this, we can calculate wn, satisfying ψn(wn) = 0. For this, let

hn(w) := ψn(w + 1)− ψn(1).

We have hn(0) = 0, and we find, with Proposition 2.1,

wn − 1 = h−1
n (−ψn(1)) =

∑

m≥1

(−1)mbm(n)ψn(1)
m,

where the bm can be explicitly calculated. First, ψn(1)
m (m ∈ N0) have expansions in n by (3.4)

and Lemma 2.4. They have exponent set
∑

2≤j≤Nφ
(1− νj

ν1
)N0 ∩ [0, 1 − R

ν1
). We find, for k ∈ N,

ψ(k)
n (1) =

1

n

Nφ
∑

j=1

(νj)kaj

(

n

a1

)

νj

ν1

+OR

(

n
R
ν1

−1
)

. (3.6)

Again by Lemma 2.4, and (3.6), ψ
(k)
n (1) (k ∈ N0) has expansions in n, with exponent set (

∑

2≤j≤Nφ
(1−

νj
ν1
)N0) ∩ [0, 1 − R

ν1
). By Lemma 2.4 we have the following expansion in n

ψ′
n(1)

−m =



ν1 +
1

n

Nφ
∑

j=2

νjaj

(

n

a1

)

νj

ν1

+OR

(

n
R
ν1

−1
)





−m

with exponent set (
∑

2≤j≤Nφ
(1− νj

ν1
)N0)∩ [0, 1− R

ν1
). By the formula in Proposition 2.1, the bm(n)

are essentially sums and products of terms ψ′
n(1)

−1 and ψ
(k)
n (1), where k ≥ 2. Hence, bm(n) has an

expansion in n, with exponent set (
∑

2≤j≤Nφ
(1− νj

ν1
)N0)∩ [0, 1− R

ν1
), and according to Lemma 2.3,

the same holds for finite linear combinations
∑

1≤m≤M (−1)mbm(n)ψn(1)
m. As ψn(1) = O(n

ν2
ν1

−1
)

for n→ ∞, one has, for M sufficiently large and not depending on n,

∑

m≥M+1

(−1)mbm(n)ψn(1)
m = OR

(

n
R
ν1

−1
)

.

Now, as wn ∼ 1, we conclude the theorem recalling that ̺n = ( n
a1
)

1
ν1wn. �

We next apply Proposition 3.3 to −Φ′
f . For the proof one may use Lemma 3.2 with k = 1.

Corollary 3.4. Let ̺n solve (3.3). Assume that f : N → N0 satisfies the conditions of Theorem

1.4. Then ̺ ∈ K( R
α+1 + 1) with a̺,1 = a

1
α+1

−Φ′
f
,1
= (ωαΓ(α+ 1)ζ(α + 1))

1
α+1 and we have

{ν̺,j : 1 ≤ j ≤ N̺} =





1

α+ 1
−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
[

1

α+ 1
,

R

α+ 1
+ 1

)

.

3.4. The major arcs. In this subsection we approximate, for some 1 + α
3 < β < 1 + α

2 ,

In :=

∫

|t|≤̺
β
n

exp(Φf (̺n + it) + int)dt,

where α is the largest positive pole of Lf . The following lemma can be shown using [15, §4].
11



Lemma 3.5. Let f : N → N0 satisfy the conditions of Theorem 1.4, ̺n solve (3.3), and N ∈ N.
Then we have

In =
√
2πGf (̺n)







1
√

Φ′′
f (̺n)

+
∑

2≤k≤ 3H(N+α)
2α

(2k)!λ2k(̺n)

2kk!Φ′′
f (̺n)

k+ 1
2

+ON

(

̺Nn
)






,

where H := ⌈ N
3(β−1−α

3
)⌉+ 1 and

λ2k(̺) := (−1)k
H
∑

h=1

1

h!

∑

3≤m1,...,mh≤ 3(N+α)
α

m1+···+mh=2k

h
∏

j=1

Φ
(mj)
f (̺)

mj !
.

The following lemma shows that the first term in Lemma 3.5 dominates the others; its proof
follows with Lemma 2.5, Lemma 3.2, and Corollary 3.4 by a straightforward calculation.

Lemma 3.6. Let k ≥ 2 and assume the conditions as in Lemma 3.5. Then we have

λ2k(̺n)

Φ′′
f (̺n)

k+ 1
2

=

M
∑

j=1

bj
nηj

+OR

(

n−R+1+(k−⌊ 2k
3 ⌋+ 3

2)
α

α+1

)

,

where the ηj run through

α+ 2

2(α + 1)
+

α

α+ 1
N0 +



−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
[

0,
R+ α

α+ 1

)

.

We next use Lemma 2.5 and Corollary 3.4 to give an asymptotic expansion for Gf (̺n).

Lemma 3.7. Assume that f : N → N0 satisfies the conditions of Theorem 1.4. Then, we have

Gf (̺n) =
eL

′
f
(0)n

Lf (0)

α+1

a
Lf (0)

α+1

−Φ′
f
,1

exp





1

α
(ωαΓ(α+ 1)ζ(α+ 1))

1
α+1n

α
α+1 +

M
∑

j=2

Cjn
βj





×



1 +

N
∑

j=1

Bj

nδj
+OR

(

n−
R

α+1

)



 ,

where 0 ≤ βM < · · · < β2 <
α

α+1 run through L and 0 < δ1 < δ2 < · · · < δN through M+N .

Proof. Let φ(z) := Φf (z) + Lf (0)Log(z) and F := φ ◦ ̺. By Lemma 3.2, Proposition 3.3, and
Lemma 2.5 we find that

Φf (̺n) + Lf (0) log(̺n) = L′
f (0) +

NF
∑

j=1

aF,j
nνF,j

+OR

(

n−
R

α+1

)

, (3.7)

where νF,j run through (the inclusion follows by Corollary 3.4)


− 1

α+ 1
PR +

N̺
∑

j=2

(

ν̺,j −
1

α+ 1

)

N0



 ∩
(

−∞,
R

α+ 1

)

⊂



− 1

α+ 1
PR −

∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
(

−∞,
R

α+ 1

)

. (3.8)
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Note that, again by Lemma 2.5 and Lemma 3.2, we obtain

aF,1 = aφ,1a
νφ,1
̺,1 =

1

α
(ωαΓ(α+ 1)ζ(α+ 1))

1
α+1 .

We split the sum in (3.7) into two parts: one with nonpositive νF,1, . . . , νF,M , say, and the one with

positive νF,j <
R

α+1 . Note that M is bounded and independent of R. Exponentiating (3.7) yields

exp(Φf (̺n)) = ̺
−Lf (0)
n eL

′
f
(0) exp





NF
∑

j=M+1

aF,j
nνF,j

+OR

(

n−
R

α+1

)



 exp





M
∑

j=1

aF,j
nνF,j



 .

Note that the positive νF,j run through (3.8) with −∞ replaced by 0. By Lemma 2.4, we have

exp





NF
∑

j=M+1

aF,j
nνF,j

+OR

(

n−
R

α+1

)



 = 1 +

K
∑

j=1

Hj

nεj
+OR

(

n−
R

α+1

)

for some K ∈ N and with exponents εj running through N . Recall that, by Corollary 3.4, we have

̺n ∼ a̺,1n
− 1

α+1 . Now set h(n) := n−
Lf (0)

α+1 ̺
−Lf (0)
n . A straightforward calculation using Corollary 3.4

shows that h ∈ K(R+α
α+1 ) with exponent set (−∑µ∈PR

(µ+1
α+1 − 1)N0) ∩ [0, R+α

α+1 ) ⊂ M and ah,1 =

a
−Lf (0)

α+1

−Φ′
f
,1

. By Lemma 2.3 (2), we obtain, for some N ∈ N, Bj ∈ C, and δj running through M+N ,

h(n)



1 +

K
∑

j=1

Hj

nεj
+OR

(

n−
R

α+1

)



 = ah,1



1 +

N
∑

j=1

Bj

nδj
+OR

(

n−
R

α+1

)



 .

Setting Cj := aF,j for 1 ≤ j ≤M , the lemma follows. �

Another important step for the proof of our main theorem is the following lemma.

Lemma 3.8. Let f : N → N0 satisfy the conditions of Theorem 1.4. Then we have, as n→ ∞,

en̺n = exp



(ωαΓ(α+ 1)ζ(α+ 1))
1

α+1n
α

α+1 +

M
∑

j=2

a̺,jn
ηj







1 +

N
∑

j=1

Dj

nµj
+OR

(

n−
R

α+1

)





for some 1 ≤M ≤ N̺, with
α

α+1 > η2 > · · · > ηM ≥ 0 running through L and the µj through N .

Proof. Let g(n) := n̺n. By Corollary 3.4 we have g ∈ K( R
α+1 ) with exponent set

{νg,j : 1 ≤ j ≤ N̺} =



−1 +
1

α+ 1
−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
[

−1 +
1

α+ 1
,

R

α+ 1

)

.

Hence, for some 1 ≤M ≤ N̺, we obtain

en̺n = exp



a
1

α+1

−Φ′
f
,1
n

α
α+1 +

M
∑

j=2

a̺,j
nνg,j



 exp





N̺
∑

j=M+1

a̺,j
nνg,j

+OR

(

n−
R

α+1

)





with − α
α+1 < νg,2 < · · · < νg,M ≤ 0 < νg,M+1 < · · · < νg,N̺. By Lemma 3.2 we obtain a

1
α+1

−Φ′
f
,1
=

(ωαΓ(α+ 1)ζ(α + 1))
1

α+1 . Note that the exponents 0 < νg,M+1 < · · · < νg,N̺ run through


− α

α+ 1
−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
(

0,
R

α+ 1

)

.
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By Lemma 2.4, exp(
∑N̺

j=M+1
a̺,j
n
νg,j +OR(n

− R
α+1 )) is in K( R

α+1 ), with exponent set






K
∑

j=1

bjθj : K, bj ∈ N0, θj ∈



− α

α+ 1
−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
(

0,
R

α+ 1

)







.

As α ∈ PR, this is a subset of N , so the above exponents are given by N , proving the lemma. �

The following corollary is very helpful to prove our main theorem.

Corollary 3.9. Let f : N → N0 satisfy the conditions of Theorem 1.4. Then we have

en̺nGf (̺n) =
eL

′
f
(0)n

Lf (0)

α+1

a
Lf (0)

α+1

−Φ′
f
,1

exp



A1n
α

α+1 +

M
∑

j=2

Ajn
αj







1 +

N
∑

j=1

Ej

nηj
+OR

(

n−
R

α+1

)



 ,

with A1 defined in (1.11), α
α+1 > α2 > · · · > αM ≥ 0 running through L, and ηj through M+N .

4. Proof of Theorem 1.4

4.1. The general case. The following lemma follows by a straightforward calculation, using (3.1)
and Lemmas 3.5, 3.1, and 3.6.

Lemma 4.1. Let f : N → N0 satisfy the conditions of Theorem 1.4. Then we have

pf (n) =
en̺nGf (̺n)√

2π





M
∑

j=1

dj
nνj

+OL,R

(

n
−min

{

L+1
α+1

,R+α
α+1

+ α+2
2(α+1)

})





for some M ∈ N, d1 =
1√
α+1

(ωαΓ(α+ 1)ζ(α + 1))
1

2(α+1) , and the νj run through

α+ 2

2(α + 1)
+

α

α+ 1
N0 +



−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
[

0,
R+ α

α+ 1

)

.

In particular, we have ν1 =
α+2

2(α+1) .

We prove the following lemma.

Lemma 4.2. Assume that f satisfies the conditions of Theorem 1.4 and that Lf has only one
positive pole α. Then we have

n̺n +Φf (̺n) = (ωαΓ(α+ 1)ζ(α+ 1))
1

α+1
(

1 + 1
α

)

n
α

α+1 − Lf (0) log(̺n) + L′
f (0) + o(1).

Proof. By Lemma 3.2, we have

Φf (̺n) =
ωαΓ(α)ζ(α+ 1)

̺αn
− Lf (0) log(̺n) + L′

f (0) +O
(

̺R0
n

)

, (4.1)

where

R0 :=







−max ν
ν∈PR∩(−R,0)

if PR ∩ (−R, 0) 6= ∅,

R otherwise.
(4.2)

To show the lemma, we need an expansion for ̺n. We have, by (3.3) and again by Lemma 3.2,

−Φ′
f (̺n) =

ωαΓ(α+ 1)ζ(α+ 1)

̺α+1
n

+
Lf (0)

̺n
+O

(

̺R0−1
n

)

.
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By Corollary 3.4, we have an expansion for ̺n with an error o(1). We iteratively find the first

terms. By Corollary 3.4 we have ̺n ∼ a
1

α+1

−Φ′
f
,1n

− 1
α+1 , as n → ∞. We next determine the second

order term in ̺n =
a

1
α+1

−Φ′
f
,1

n
1

α+1
+ K2

nκ2 + o(n−κ2) for some κ2 <
1

α+1 and K2 ∈ C. We choose κ in

n






1 +

K2

a
1

α+1

−Φ′
f
,1
nκ2− 1

α+1







−α−1

+
Lf (0)

a
1

α+1

−Φ′
f
,1

n
1

α+1






1 +

K2

a
1

α+1

−Φ′
f
,1
nκ2− 1

α+1







−1

= n+O(nκ)

as small as possible. One finds that

(α+ 1)K2

a
1

α+1

−Φ′
f
,1

n1−κ2+
1

α+1 =
Lf (0)

a
1

α+1

−Φ′
f
,1

n
1

α+1 ,

and hence

̺n =
a

1
α+1

−Φ′
f
,1

n
1

α+1

+
Lf (0)

(α+ 1)n
+ o

(

1

n

)

. (4.3)

Plugging (4.3) into Φf leads, by (4.1), to

Φf







a
1

α+1

−Φ′
f
,1

n
1

α+1

+
Lf (0)

(α+ 1)n
+ o

(

1

n

)






=
a

1
α+1

−Φ′
f
,1

α
n

α
α+1 − Lf (0)

α+ 1
− Lf (0) log(̺n) + L′

f (0) + o(1).

As a result, using (4.3), we conclude the claim. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Theorem 1.4 follows from Lemmas 2.3 (2), 3.1, 3.5, 3.7, 4.1, 4.2 and Corol-
laries 3.4 and 3.9. �

4.2. The case of two positive poles of Lf . If α > 0 is the only positive pole of Lf , then we can
calculate the single term in the exponential in the asymptotic of pf (n) explicitly, by Theorem 1.4.
In this subsection we assume that Lf has exactly two positive simple poles, α and β. In this case,
Lemma 3.2 with k = 1 gives

−Φ′
f (z) =

c1
zα+1

+
c2
zβ+1

+
c3
z

+OR

(

|z|R0−1
)

with R0 from (4.2). Above we set cj := a−Φ′
f
,j for 1 ≤ j ≤ 3, i.e., by Lemma 3.2

c1 = ωαΓ(α+ 1)ζ(α+ 1), c2 = ωβΓ(β + 1)ζ(β + 1), c3 = Lf (0). (4.4)

In the next lemma, we approximate the saddle point in this special situation.

Lemma 4.3. Let f satisfy the conditions of Theorem 1.4. Additionally assume that Lf has exactly

two positive poles α and β that satisfy ℓ+1
ℓ
β < α ≤ ℓ

ℓ−1β for some ℓ ∈ N, where we treat the case

ℓ = 1 simply as 2β < α. Then there exists 0 < r ≤ R
α+1 such that

̺n =

ℓ+1
∑

j=1

Kj

n(j−1)(1− β+1
α+1)+

1
α+1

+
c3

(α+ 1)n
+OR

(

n−r−1
)

(4.5)
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for some constants Kj independent of n and c3 as in (4.4). In particular, we have

K1 = c
1

α+1

1 , K2 =
c2

(α+ 1)c
β

α+1

1

, K3 =
c22(α− 2β)

2(α+ 1)2c
2β+1
α+1

1

, K4 =
c32
(

2α2 − 9αβ − 2α+ 9β2 + 3β
)

6(α + 1)3c
3β+2
α+1

1

,

K5 =
c42(6α

3 − 44α2β − 15α2 + 96αβ2 + 56αβ + 6α − 64β3 − 48β2 − 8β)

24(α + 1)4c
4β+3
α+1

1

.

Proof. By Corollary 3.4, the exponents of ̺n that are at most 1 are given by combinations

1

α+ 1
+ (j − 1)

(

1− β + 1

α+ 1

)

+m

(

1− 1

α+ 1

)

≤ 1,

with j ∈ N and m ∈ N0. A straightforward calculation shows that ℓ+1
ℓ
β < α ≤ ℓ

ℓ−1β if and only if

0 <
1

α+ 1
+ (j − 1)

(

1− β + 1

α+ 1

)

≤ 1

for all 1 ≤ j ≤ ℓ+ 1 but not for j > ℓ+ 1. Together with the error term induced by Corollary 3.4,
(4.5) follows. Assuming ℓ ≥ 5, K1 to K5 and the term c3

(α+1)n can be determined iteratively. �

We are now ready to prove asymptotic formulas if Lf has exactly two positive poles.

Theorem 4.4. Assume that f : N → N0 satisfies the conditions of Theorem 1.4 and that Lf has

exactly two positive poles α > β, such that ℓ+1
ℓ
β < α ≤ ℓ

ℓ−1β for some ℓ ∈ N. Then we have

pf (n) =
C

nb
exp

(

A1n
α

α+1 +A2n
β

α+1 +

ℓ+1
∑

k=3

Akn
(k−1)β
α+1

+ k−2
α+1

+2−k

)

×



1 +

M1
∑

j=2

Bj

nνj
+OL,R

(

n
−min

{

2L−α
2(α+1)

, R
α+1

})



 , (n→ ∞),

with

A1 := (ωαΓ(α+ 1)ζ(α+ 1))
1

α+1

(

1 +
1

α

)

, A2 :=
ωβΓ(β)ζ(β + 1)

(ωαΓ(α+ 1)ζ(α+ 1))
β

α+1

, (4.6)

and for all k ≥ 3

Ak := Kk +
c

1
α+1

1

α

ℓ
∑

m=1

(−α
m

)

∑

0≤j1,...,jℓ≤m
j1+...+jℓ=m

j1+2j2+...+ℓjℓ=k−1

(

m

j1, j2, . . . , jℓ

)

Kj1
2 · · ·Kjℓ

ℓ+1

c
m

a+1

1

+
c2

βc
β

a+1

1

ℓ
∑

m=1

(−β
m

)

∑

0≤j1,...,jℓ≤m
j1+...+jℓ=m

j1+2j2+...+ℓjℓ=k−2

(

m

j1, j2, . . . , jℓ

)

Kj1
2 · · ·Kjℓ

ℓ+1

c
m

a+1

1

.

Here, C and b are defined in (1.11) and (1.12), the νj run through M + N , the Kj are given in
Lemma 4.3, and c1, c2, and c3 run through (4.4).
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Proof. Assume that g : N → C has an asymptotic expansion as n → ∞ and denote by [g(n)]∗ the
part with nonnegative exponents. With Lemmas 3.2 and 4.1 we obtain, using that Lf has exactly
two positive poles in α and β,

pf (n) =
C

nb
exp

(

[

n̺n +
c1
α̺αn

+
c2

β̺βn

]

∗

)



1 +

M1
∑

j=2

aj

nδj
+OL,R

(

n
−min

{

2L−α
2(α+1)

, R
α+1

})





with the δj running through M. With the Binomial Theorem and Lemma 4.3, we find

c1
α̺αn

=
c

1
α+1

1

α
n

α
α+1



1 +
∑

m≥1

(−α
m

)





ℓ+1
∑

j=2

Kjc
− 1

α+1

1

n(j−1)(1− β+1
α+1)

+
c3c

− 1
α+1

1

(α+ 1)n
α

α+1

+ o
(

n−
α

α+1

)





m 

 . (4.7)

By definition, [ c1
α̺αn

]∗ is the part of the expansion of c1
α̺αn

involving nonnegative powers of n, i.e., for

m ≥ 2 in the sum on the right of (4.7) we can ignore the term

c3

(α+ 1)c
1

α+1

1 n
α

α+1

+ o
(

n−
α

α+1

)

.

Applying the Multinomial Theorem to (4.7) gives

c1
α̺αn

=
c

1
α+1

1

α
n

α
α+1 − c3

α+ 1
+
c

1
α+1

1

α

ℓ
∑

m=1

(−α
m

)

∑

0≤j1,j2,...,jℓ≤m
j1+···+jℓ=m

(

m

j1, j2, . . . , jℓ

)

Kj1
2 · · ·Kjℓ

ℓ+1

c
m

a+1

1

× n
(j1+2j2+···+ℓjℓ)β

α+1
+

j1+2j2+···+ℓjℓ−1

α+1
−(j1+2j2+···+ℓjℓ−1) + o(1). (4.8)

Similarly, we have

c2

β̺βn
=

c2

βc
β

a+1

1

n
β

α+1 +
c2

βc
β

a+1

1

ℓ
∑

m=1

(−β
m

)

∑

0≤j1,j2,...,jℓ≤m
j1+···+jℓ=m

(

m

j1, j2, . . . , jℓ

)

Kj1
2 · · ·Kjℓ

ℓ+1

c
m

a+1

1

× n
(j1+2j2+···+ℓjℓ+1)β

α+1
+

j1+2j2+···+ℓjℓ
α+1

−(j1+2j2+···+ℓjℓ) + o(1). (4.9)

Finally, we obtain, with Lemma 4.3,

[n̺n]∗ = K1n
α

α+1 +

ℓ
∑

m=1

Km+1n
mβ

α+1
+m−1

α+1
−(m−1) +

c3
α+ 1

. (4.10)

Combining (4.8), (4.9), and (4.10), we find that

[

n̺n +
c1
α̺αn

+
c2

β̺βn

]

∗
=

(

1 +
1

α

)

c
1

α+1

1 n
α

α+1 +
c2

βc
β

α+1

1

n
β

α+1 +

ℓ
∑

k=2

Ak+1n
kβ

α+1
+ k−1

α+1
−(k−1),

where

Ak = Kk +
c

1
α+1

1

α

ℓ
∑

m=1

(−α
m

)

∑

0≤j1,j2,...,jℓ≤m
j1+···+jℓ=m

j1+2j2+···+ℓjℓ=k−1

(

m

j1, j2, . . . , jℓ

)

Kj1
2 · · ·Kjℓ

ℓ+1

c
m

a+1

1
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+
c2

βc
β

a+1

1

ℓ
∑

m=1

(−β
m

)

∑

0≤j1,j2,...,jℓ≤m
j1+···+jℓ=m

j1+2j2+···+ℓjℓ=k−2

(

m

j1, j2, . . . , jℓ

)

Kj1
2 · · ·Kjℓ

ℓ+1

c
m

a+1

1

.

Note that we have by definition of c1, c2 (see (4.4)), K1, and K2 (see Lemma 4.3),

A1 =

(

1 +
1

α

)

c
1

α+1

1 =

(

1 +
1

α

)

(ωαΓ(α+ 1)ζ(α + 1))
1

α+1 ,

A2 =
c2

βc
β

a+1

1

=
ωβΓ(β)ζ(β + 1)

(ωαΓ(α+ 1)ζ(α+ 1))
β

α+1

,

which gives (4.6). Hence we indeed obtain, as n→ ∞, for suitable M1 ∈ N

pf (n) =
C

nb
exp

(

A1n
α

α+1 +A2n
β

α+1 +

ℓ+1
∑

k=3

Akn
(k−1)β
α+1

+ k−2
α+1

−(k−2)

)

×



1 +

M1
∑

j=2

Bj

nνj
+OL,R

(

n
−min

{

2L−α
2(α+1)

, R
α+1

})



 ,

where the νj run, as in Theorem 1.4, through M+N . This proves the theorem. �

5. Proofs of Theorems 1.1, 1.2, and 1.3

We require the zeta function associated to a polynomial P ,

ZP (s) :=
∑

n≥1

1

P (n)s

with P (n) > 0 for n ∈ N. In particular, we consider P = Pk, where

Pk(w) :=
(k − 2)w2 − (k − 4)w

2
.

The following lemma ensures that all the Pk satisfy (P1) with L arbitrary large.

Lemma 5.1. Let k ≥ 3 be an integer and let

Λ[k] := {Pk(n) : n ∈ N} .
For every prime p, we have |Λ[k] \ (Λ[k] ∩ pN)| = ∞.

We next show that (P2) and (P3) hold.

Proposition 5.2. Let k ∈ N with k ≥ 3.

(1) The function ZPk
has a meromorphic continuation to C with at most simple poles in 1

2 − N0.

The positive pole lies in s = 1
2 .

(2) We have ZPk
(s) ≪ Qk(|Im(s)|) as |Im(s)| → ∞ for some polynomial Qk.

Proof. (1) The meromorphic continuation of ZPk
to C follows by [27, Theorem B]. By [27, Theorem

A (ii)] the only possible poles (of order at most one) are located at 1
2 − 1

2N0. Holomorphicity in

−N0 is a direct consequence of [27, Theorem C]. Finally, note that Pk(n) ≪k n
2. Thus, as x→ ∞,

∑

1≤n≤x

1

Pk(n)
1
2

≫k

∑

1≤n≤x

1

n
.

This proves the existence of a pole in s = 1
2 , completing the proof.

(2) This result follows directly by [27, Proposition 1 (iii)]. �
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To apply Theorem 1.4, it remains to compute ZPk
(0) and Z ′

Pk
(0), as well as Ress= 1

2
ZPk

(s).

Proposition 5.3. Let k ∈ N with k ≥ 3.

(1) We have ZPk
(0) = 1

2−k
and

Z ′
Pk
(0) =

log
(

k−2
2

)

k − 2
+ log

(

Γ

(

2

k − 2

))

− log(2π).

(2) We have Ress= 1
2
ZPk

(s) =
√

1
2(k−2) .

Proof. (1) Since the roots of Pk are not in R≥1, we may use [27, Theorem D] to obtain that
ZPk

(0) = 1
2−k

. For the derivative, one applies [27, Theorem E] yielding

Z ′
Pk
(0) =

log
(

k−2
2

)

k − 2
+ log

(

Γ

(

2

k − 2

))

− log(2π).

(2) Since ZPk
(s) = ( 2

k−2)
s
∑

n≥1
(n− k−4

k−2)
−sn−s, the result follows as the sum has residue 1

2 at s = 1
2

by equation (16) of [27]. �

The previous three lemmas are used to prove Theorem 1.1.

Proof of Theorem 1.1. We may apply Theorem 1.4 as Lemma 5.1 and Proposition 5.2 ensure that
conditions (P1)–(P3) are satisfied. Hence, one obtains an asymptotic formula for pk(n). The
constants occurring in Theorem 1.4 are computed using (1.11), (1.12), and Proposition 5.3. That

the exponential consists only of the term A1n
1
3 follows by Theorem 1.4, since ZPk

(s) has exactly
one positive pole, lying in s = 1

2 . Note that we are allowed to choose L and R arbitrarily large due
to Lemma 5.1 and Proposition 5.2 (1). �

We consider some special cases of Theorem 1.1.

Corollary 5.4. For triangular numbers, squares, and pentagonal numbers, respectively, we have

p3(n) ∼
ζ
(

3
2

)

2
7
2

√
3πn

3
2

exp

(

3

2
π

1
3 ζ

(

3

2

)
2
3

n
1
3

)

, p4(n) ∼
ζ
(

3
2

)
2
3

2
7
3

√
3π

7
6n

7
6

exp

(

3

2
4
3

π
1
3 ζ

(

3

2

)
2
3

n
1
3

)

,

p5(n) ∼
Γ
(

2
3

)

ζ
(

3
2

)
5
9

2
13
6 3

4
9π

11
9 n

19
18

exp

(

3
2
3

2
π

1
3 ζ

(

3

2

)
2
3

n
1
3

)

.

The next lemma shows that
∏

j,k≥1(1− q
jk(j+k)(j+2k)

6 )−1 satisfies (P1) for L arbitrarily large.

Lemma 5.5. Let f : N → N0 be defined by

f(n) :=

∣

∣

∣

∣

{

(j, k) ∈ N
2 :

jk(j + k)(j + 2k)

6
= n

}∣

∣

∣

∣

.

Then, for all primes p, we have |Λ \ (Λ ∩ pN)| = ∞.

For investigating the function ζ
so(5), we need the Mordell–Tornheim zeta function, defined by

ζMT,2(s1, s2, s3) :=
∑

m,n≥1

m−s1n−s2(m+ n)−s3 .

By [25], for Re(s) > 1 and some −Re(s) < c < 0 we get a relation between ζMT,2 and ζ
so(5) via

ζ
so(5)(s) =

6s

2πiΓ(s)

∫ c+i∞

c−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz. (5.1)
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We have the following theorem.

Theorem 5.6 ([24], Theorem 1). The function ζMT,2 has a meromorphic continuation to C
3 and

its singularities satisfy s1 + s3 = 1− ℓ, s2 + s3 = 1− ℓ, s1 + s2 + s3 = 2, with ℓ ∈ N0.

Fix M ∈ N0 and 0 < ε < 1. Let Re(s1),Re(s3) > 1, Re(s2) > 0, and s2 /∈ N. Then, for
Re(s2) < M + 1− ε, we have (see equation (5.3) in [24])

ζMT,2(s1, s2, s3) =
Γ(s2 + s3 − 1)Γ(1 − s2)

Γ(s3)
ζ(s1 + s2 + s3 − 1)

+

M−1
∑

m=0

(−s3
m

)

ζ(s1 + s3 +m)ζ(s2 −m)

+
1

2πi

∫ M−ε+i∞

M−ε−i∞

Γ(s3 + w)Γ(−w)
Γ(s3)

ζ(s1 + s3 + w)ζ(s2 − w)dw. (5.2)

The first two summands on the right-hand side of (5.2) extend meromorphically to C
3, so to show

that (5.1) extends meromorphically, we consider (5.2). Note that Re(w) = M − ε. To avoid poles
on the line of integration, we assume that

Re(s3 + w) > 0 ⇔ Re(s3) > ε−M, (5.3)

Re(s1 + s3 + w) > 1 ⇔ Re(s1) + Re(s3) > 1−M + ε, (5.4)

Re(s2 − w) < 1 ⇔ Re(s2) < 1 +M − ε. (5.5)

Note that the final condition is already assumed above.
By Propostition 2.6 (2), the integral converges compactly and the integrands are locally holo-

morphic. Thus, the integral is a holomorphic function in the region defined by (5.3), (5.4), and
(5.5). Recalling (5.1), we are interested in ζMT,2(s, s− z, 2s+ z). By Theorem 5.6, this function is
meromorphic in C

2 and holomorphic outside the hyperplanes defined by 3s+ z = 1− ℓ, 3s = 1− ℓ,
and 4s = 2, where ℓ ∈ N0. With (5.2), we obtain

ζMT,2(s, s − z, 2s+ z) =
Γ(3s − 1)Γ(z + 1− s)

Γ(2s+ z)
ζ(4s− 1)

+

M−1
∑

m=0

(−2s− z

m

)

ζ(3s+ z +m)ζ(s− z −m) + IM (s; z), (5.6)

where s ∈ C \ {1
2 ,

1−ℓ
3 }, and

IM (s; z) :=
1

2πi

∫ M−ε+i∞

M−ε−i∞

Γ(2s+ z + w)Γ(−w)
Γ(2s + z)

ζ(3s+ z + w)ζ(s− z −w)dw.

The following lemma shows that IM (s; z) is holomorphic in z. To state it let

µ = µM,σ := max{−1 + σ −M + ε, 1 − 3σ −M + ε,−2σ −M + ε}.
Lemma 5.7. Let s = σ + it ∈ C, M ∈ N0, and 0 < ε < 1. Then z 7→ IM (s; z) is holomorphic in
Sµ,∞.

Proof. If z ∈ Sµ,∞, then Re(2s + z + w) > 0, Re(3s + z + w) > 1, and Re(s − z − w) < 1 for
w ∈ C satisfying Re(w) =M − ε, so Γ(2s+ z + w), ζ(3s+ z + w), and ζ(s− z − w) have no poles
on the path of integration. As 0 < ε < 1, we have M − ε /∈ N0, so w 7→ Γ(−w) has no pole if
Re(w) =M − ε. As a result, no pole is located on the path of integration, and by Proposition 2.6
(2) and the uniform polynomial growth of the zeta function along vertical strips we find that the
integral converges uniformly on compact subsets of Sµ,∞. �
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The next lemma shows, that IM is bounded polynomially in certain vertical strips. A proof is
obtained using Propositions 2.6 (2) and 2.7 (2).

Lemma 5.8. Let σ1 < σ2 and σ3 < σ4, such that Sσ3,σ4 ⊂ Sµ,∞ for all s ∈ Sσ1,σ2 and fix 0 < ε < 1
sufficiently small. In Sσ1,σ2 × Sσ3,σ4 the function (s, z) 7→ IM (s; z) is holomorphic and satisfies
|IM (s; z)| ≤ Pσ1,σ2,σ3,σ4,M(|Im(s)|, |Im(z)|) for some polynomial Pσ1,σ2,σ3,σ4,M (X,Y ) ∈ R[X,Y ].

Next we investigate ζMT,2(s, s− z, 2s + z) for fixed s more in detail.

Lemma 5.9. Let s ∈ C \ {1
2 ,

1
3 − 1

3N0}. Then z 7→ ζMT,2(s, s − z, 2s + z) is holomorphic in the
entire complex plane except for possibly simple poles in z = 1− ℓ− 3s with ℓ ∈ N0.

Proof. As holomorphicity is a local property, it suffices to consider arbitrary right half-planes. By
Lemma 5.7, for M sufficiently large, IM is holomorphic in an arbitrary right half-plane. By (5.2),
possible poles of ζMT,2(s, s− z, 2s+ z) therefore lie in z = s− ℓ and in z = −3s−m− ℓ, ℓ ∈ N. A
direct calculation shows that the residue at z = s − ℓ vanishes if ℓ ≤ M − 1. Consequently, for a
fixed pole s− ℓ, we can choose M sufficiently large such that we only have to consider the of (5.2).
This gives the claim. �

We are now ready to prove growth properties of ζMT,2. As we need to avoid critical singular
points, we focus on incomplete half-planes of the type Sσ1,σ2,δ (with δ > 0 arbitrarily small).

Lemma 5.10. Let σ1 < σ2, σ3 < σ4 with 1 − 3σ1 < σ3 and δ > 0 arbitrarily small. For (s, z) ∈
Sσ1,σ2,δ × Sσ3,σ4 , we have, for some polynomial Pσ1,σ2,σ3,σ4,δ only depending on Sσ1,σ2,δ and Sσ3,σ4 ,

|ζMT,2(s, s− z, 2s + z)| ≤ Pσ1,σ2,σ3,σ4,δ(|Im(s)|, |Im(z)|).
If σ1 < 0, for all s ∈ U with U ⊂ Sσ1,σ2, a sufficiently small neighborhood of 0, we have

∣

∣

∣

∣

ζMT,2(s, s− z, 2s + z)

Γ(s)

∣

∣

∣

∣

≤ Pσ3,σ4,U (|Im(z)|),

where the polynomial Pσ3,σ4,U only depends on σ3, σ4, and U .

We need another lemma dealing with the poles of the Mordell–Tornheim zeta function.

Lemma 5.11. Let k ∈ N0. Then the meromorphic function s 7→ ζMT,2(s, s − k, 2s + k) is holo-

morphic for s = −ℓ with ℓ ∈ N≥ k
2
and has possible simple poles at s = ℓ ∈ N0 with 0 ≤ ℓ < k

2 . In

particular, s 7→ Γ(s+ k)ζMT,2(s, s− k, 2s + k)Γ(s)−1 is holomorphic at s = −ℓ with ℓ ∈ N0.

Proof. Let s lie in a bounded neighborhood of −ℓ. We use (5.6) with s = k. Analogous to the
proof of Lemma 5.7, the function s 7→ IM (s; k) is holomorphic in a neighborhood of s = −ℓ. The
analysis of the remaining terms is straightforward, and the lemma follows. �

The next lemma states where the integral of (5.1) defining ζ
so(5) is a meromorphic function.

Lemma 5.12. Let ε > 0 be sufficiently small and let K ∈ N. Then the function

s 7→ 1

2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz (5.7)

is meromorphic on the half plane {s ∈ C : Re(s) > 1−K+ε
3 } with at most simple poles in {1

2 ,
1
3 −

1
3N0} \ (−N0) (with Re(s) > 1−K+ε

3 ) and grows polynomially on vertical strips with finite width.

Proof. We first show holomorphicity in Sσ1,σ2,δ with 1−K+ε
3 < σ1 < σ2 and 0 < δ < 1. Since

Re(s) > 1−K+ε
3 > −K + ε, there are no poles of Γ(s+ z)Γ(−z) on the path of integration Re(z) =

K − ε. By Lemma 5.9, z 7→ ζMT,2(s, s− z, 2s+ z) has no poles for s ∈ Sσ1,σ2,δ, as Re(z+3s− 1) =
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K − ε + 3Re(s) − 1 > 0. By Proposition 2.6 (2), Lemma 5.10, and Lemma 2.9, the integral is
holomorphic away from singularities and grows polynomially on vertical strips of finite width.

We are left to show that (5.7) has at most a simple pole at s = s0, where s0 ∈ {1
2 ,

1
3− 1

3N0}\(−N0)

with s0 ≥ 1−K+ε
3 . Recall the representation of ζMT,2 in (5.6). By Lemma 5.8

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)IM (s; z)dz

converges absolutely and uniformly on any sufficiently small compact subset C containing s0 for
M sufficiently large. Similarly, by Propositions 2.7 (2) and 2.6 (2),

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)

M−1
∑

m=0

(−2s− z

m

)

ζ(3s+ z +m)ζ(s− z −m)dz

converges absolutely and uniformly in C. In particular, both integrals continue holomorphically to
s0. As s 7→ 1

Γ(s) is entire, it is sufficient to study

Γ(3s− 1)ζ(4s − 1)

Γ(s)

∫ K−ε+i∞

K−ε−i∞

Γ(s+ z)Γ(−z)Γ(1 + z − s)

Γ(2s+ z)
dz

around s0. Again, by Proposition 2.6 (2), the integral converges absolutely and uniformly in C. As
Γ(3s−1)ζ(4s−1)

Γ(s) has at most a simple pole in s0 and a removable singularity if s0 ∈ −N0, the proof of

the lemma is complete. �

The following lemma is a refinement of Lemma 5.12 for the specific case that z ∈ Z and follows
from Lemma 5.8, by using Propositions 2.6 and 2.7.

Lemma 5.13. Let k ∈ N0 with 0 ≤ k ≤ K − 1. Then, for all σ1 < σ2, there exists a polynomial
PK,σ1,σ2 , such that, uniformly for all σ1 ≤ Re(s) ≤ σ2 and |Im(s)| ≥ 1,

|ζMT,2(s, s− k, 2s + k)| ≤ PK,σ1,σ2(|Im(s)|).
The following theorem shows that the function ζ

so(5) satisfies the conditions of Theorem 1.4 and
gives the more precise statement of Theorem 1.2.

Theorem 5.14. The function ζ
so(5) extends to a meromorphic function in C and is holomorphic

in N0. For K ∈ N and 0 < ε < 1, we have, on S 1−K+ε
3

,∞,

ζ
so(5)(s) =

6s

Γ(s)

K−1
∑

k=0

(−1)kΓ(s+ k)

k!
ζMT,2(s, s− k, 2s + k)

+
6s

2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz. (5.8)

All poles of ζ
so(5) are simple and contained in {1

2 ,
1
3 ,−1

3 ,−2
3 , . . . }. Furthermore, for all σ0 ≤ σ ≤ σ1

as |Im(s)| → ∞, for some polynomial depending only on σ0 and σ1,

|ζ
so(5)(s)| ≤ Pσ0,σ1(|Im(s)|).

Proof. Assume Re(s) > 1. By Lemma 5.9, the only poles of the integrand in (5.1) in S−Re(s),∞
lie at z ∈ N0. By shifting the path to the right of Re(z) = M − ε, we find, with Lemma 5.10
and the Residue Theorem, that (5.8) holds on S1,∞. By Lemma 5.12 the right-hand side is a
meromorphic function on S 1−K+ε

3
,∞. By Theorem 5.6, the functions s 7→ ζMT,2(s, s − k, 2s + k)

only have possible (simple) poles for s1 + s3 = 3s + k = 1 − ℓ, s2 + s3 = 3s = 1 − ℓ, s1 +
s2 + s3 = 4s = 2, with ℓ ∈ N0, i.e., for s ∈ {1

2 ,
1
3 , 0,−1

3 ,−2
3 ,−1, . . . }. However, by Lemma 5.11

the sum in (5.8) continues holomorphically to −N0, so the sum only contributes possible poles
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s ∈ S := {1
2 ,

1
3 ,−1

3 ,−2
3 ,−4

3 , . . . }. Note that this argument does not depend on the choice of K.
On the other hand, if we choose K sufficiently large, then the integral in (5.8) is a holomorphic
function around s = −m for fixed but arbitrary m ∈ N0, and it only contributes poles in S in
S 1−K+ε

3
,∞ by Lemma 5.12, where 0 < ε < 1. So the statement about the poles follows if K → ∞.

We are left to show the polynomial bound. With Lemma 5.13 we obtain the bound for the finite
sum, as we chose K in terms of σ0 and σ1. Lemma 5.12 implies the polynomial bound for the
integral. �

To apply Theorem 1.4 we require ζ
so(5)(0).

Proposition 5.15. We have ζ
so(5)(0) =

3
8 .

Proof. Since IM (s; z) is holomorphic in s for z ∈ Sµ,∞ by Lemma 5.8 and Γ(s) has a pole in s = 0,

lim
s→0

IM (s; z)

Γ(s)
= 0. (5.9)

Let K ∈ N. For z ∈ C with Re(z) = K − 1
2 and m ∈ N0, we have ±(z + m) 6= 1. Hence,

s 7→
(−2s−z

m

)

ζ(3s + z +m)ζ(s − z −m) is holomorphic at s = 0. This implies that for z ∈ C with

Re(z) = K − 1
2 , we have

lim
s→0

(−2s− z

m

)

ζ(3s+ z +m)ζ(s− z −m)

Γ(s)
= 0.

Using this, (5.8) with ε = 1
2 , (5.9), Proposition 2.6 (4), and Lebesgue’s dominated convergence

theorem, we obtain, for integers K ≥ 3,

lim
s→0

6s

2πiΓ(s)

∫ K− 1
2
+i∞

K− 1
2
−i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz =
i

72

∫ K− 1
2
+i∞

K− 1
2
−i∞

1

sin(πz)
dz.

Since sin(π(z + 1)) = − sin(πz) and

lim
L→∞

∫ K+ 1
2
−iL

K− 1
2
−iL

1

sin(πz)
dz = lim

L→∞

∫ K− 1
2
+iL

K+ 1
2
+iL

1

sin(πz)
dz = 0,

the Residue Theorem implies that

lim
s→0

6s

2πiΓ(s)

∫ K− 1
2
+i∞

K− 1
2
−i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz = 1
72 Resz=K

π
sin(πz) =

(−1)K

72 . (5.10)

In the following we use that ζ(s) does not have a pole in s = ±m for m ∈ N≥2, implying that

s 7→
(−2s−1

m−1

)

ζ(3s +m)ζ(s−m) is holomorphic at s = 0. Moreover s 7→ Γ(s+ k)
(−2s−k

m

)

ζ(3s + k +

m)ζ(s − k −m) is holomorphic at s = 0 for (k,m) ∈ (N × N0)\{(1, 0)}. Thus, using Propositions
2.6 (3) and 2.7 (3) and the fact that ζ(−1) = − 1

12 and ζ(0) = 1
2 , we obtain, with (5.6),

lim
s→0

6s

Γ(s)

K−1
∑

k=0

(−1)kΓ(s+ k)

k!
ζMT,2(s, s− k, 2s + k)

=
3

8
+

(−1)K+1

72
+ lim

s→0
IM (s; 0) +

K−1
∑

k=1

(−1)k

k
lim
s→0

IM (s; k)

Γ(s)
. (5.11)

Since, by Lemma 5.8, s 7→ IM (s; k) is holomorphic at s = 0 for every k ∈ N0 and 1
Γ(s) vanishes in

s = 0, we have

lim
s→0

IM (s; k)

Γ(s)
= 0.
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Applying the Lebesgue dominated convergence theorem gives lim
s→0

IM (s; 0) = 0, yielding the claim

with (5.8), (5.10), and (5.11). �

Furthermore, we need certain residues of ζ
so(5).

Proposition 5.16. The poles of ζ
so(5) are precisely {1

2} ∪ {d
3 /∈ Z : d ≤ 1 odd}. We have

Ress= 1
2
ζ
so(5)(s) =

√
3Γ
(

1
4

)2

8
√
π

.

Moreover for d ∈ Z≤1 \ (−3N0),

Res
s= d

3
ζ
so(5)(s) =

3
d
3
− 3

2πΓ
(

d
6

)

ζ
(

4d
3 − 1

)

2
d
3
−1(1− d)!Γ

(

d
3

)2
Γ
(

d
2

)

(

d

3

)

(

1 + 2
2d
3
−1
)

. (5.12)

In particular, we have

Ress= 1
3
ζ
so(5)(s) =

2
1
3 + 1

3
2
3

ζ

(

1

3

)

.

Proof. With Lemma 5.12, near s = 1
2 , we can choose K = 1 in (5.8) and obtain

Ress= 1
2
ζ
so(5)(s)

= lim
s→ 1

2

(

s− 1

2

)

(

6sζMT,2(s, s, 2s) +
6s

2πiΓ(s)

∫ 1
2
+i∞

1
2
−i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s − z, 2s+ z)dz

)

.

Now, we have

lim
s→ 1

2

(

s− 1

2

)

6sζMT,2(s, s, 2s) =

√
3π

2
√
2
.

On the other hand, we find

lim
s→ 1

2

(

s− 1

2

)

6s

2πiΓ(s)

∫ 1
2
+i∞

1
2
−i∞

Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz

= lim
s→ 1

2

(

s− 1

2

)

6sΓ(3s− 1)ζ(4s − 1)

2πiΓ(s)

∫ 1
2
+i∞

1
2
−i∞

Γ(s+ z)Γ(−z)Γ(z + 1− s)dz, (5.13)

since s 7→ Γ(s+z)Γ(−z)ζ(3s+z)ζ(s−z)
Γ(s) and s 7→ Γ(s+z)Γ(−z)I1(s;z)

Γ(s) are holomorphic if Re(z) = 1
2 . Shifting

the path to the left and using [19, 9.113], Proposition 2.6 (1), 15.4.26 of [29], and Proposition 2.6
(4) we obtain that (5.13) equals

√
3π

2
√
2
2F1

(

1

2
,
1

2
; 1;−1

)

−
√
3π

2
√
2
=

√
3Γ
(

1
4

)2

8
√
π

−
√
3π

2
√
2
.

This proves the first part of the proposition.
Now, let d ∈ Z≤1 \ (−3N0) and choose 0 < ε < 1

3 , and also K,M > 1− d. We have, by (5.8),

Res
s= d

3
ζ
so(5)(s) = lim

s→ d
3

(

s− d
3

)

6s

Γ(s)

K−1
∑

k=0

(−1)kΓ(s+ k)

k!
ζMT,2(s, s − k, 2s+ k)

+ lim
s→ d

3

(

s− d
3

)

6s

2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz. (5.14)
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Note that lim
s→ d

3

(s− d
3)IM (s; k) = 0 because of holomorphicity of IM by Lemma 5.8 and

lim
s→ d

3

(

s− d

3

)

ζ(3s+ k +m) =
1

3
δm=1−d−k.

Thus we obtain, by (5.6) and (15.4.26) of [29],

lim
s→ d

3

(

s− d
3

)

6s

Γ(s)

K−1
∑

k=0

(−1)kΓ(k + s)

k!
ζMT,2(s, s − k, k + 2s) =

6
d
3 ζ
(

4d
3 − 1

)

3(1− d)!Γ
(

d
3

)

×
(

K−1
∑

k=0

(−1)k+d+1Γ
(

k + 1− d
3

)

Γ
(

k + d
3

)

k!Γ
(

k + 2d
3

) +

1−d
∑

k=0

(−1)k
(

1− d

k

)

Γ
(

k + d
3

)

Γ
(

1− 2d
3 − k

)

Γ
(

d
3

)

)

=
6

d
3 ζ
(

4d
3 − 1

)

3(1− d)!Γ
(

d
3

)

(

K−1
∑

k=0

(−1)k+d+1Γ
(

k + 1− d
3

)

Γ
(

k + d
3

)

k!Γ
(

k + 2d
3

) + Γ
(

1− 2d
3

)

2F1

(

d
3 , d− 1; 2d3 ;−1

)

)

=
6

d
3 ζ
(

4d
3 − 1

)

3(1− d)!Γ
(

d
3

)

K−1
∑

k=0

(−1)k+d+1Γ
(

k + 1− d
3

)

Γ
(

k + d
3

)

k!Γ
(

k + 2d
3

)

+
3

d
3
−1ζ

(

4d
3 − 1

)

Γ
(

1− 2d
3

)

Γ
(

2d
3

)

Γ
(

d
6

)

2
d
3 (1− d)!Γ

(

d
3

)2
Γ
(

d
2

)

. (5.15)

For the integral in (5.14), we obtain that

lim
s→ d

3

(

s− d
3

)

6s

2πiΓ(s)

∫ K−ε+i∞

K−ε−i∞
Γ(s+ z)Γ(−z)ζMT,2(s, s− z, 2s + z)dz

=
(−1)d+16

d
3 ζ
(

4d
3 − 1

)

3(1− d)!Γ
(

d
3

)

1

2πi

∫ K−ε+i∞

K−ε−i∞

Γ
(

z + d
3

)

Γ
(

z + 1− d
3

)

Γ(−z)
Γ
(

z + 2d
3

) dz. (5.16)

By shifting the path of integration to the left such that all poles of Γ(d3 + z)Γ(1 − d
3 + z)Γ(−z)

except the ones in N0 lie left to the path of integration, we obtain with formula (9.113) of [19]

1

2πi

∫ K−ε+i∞

K−ε−i∞

Γ
(

z − d
3

)

Γ
(

z + 1− d
3

)

Γ(−z)
Γ
(

z + 2d
3

) dz

=
Γ
(

d
3

)

Γ
(

1− d
3

)

Γ
(

2d
3

) 2F1

(

d

3
, 1− d

3
;
2d

3
;−1

)

+

K−1
∑

k=0

(−1)k+1Γ
(

k + d
3

)

Γ
(

k + 1− d
3

)

k!Γ
(

k + 2d
3

)

=
Γ
(

1− d
3

)

Γ
(

d
6

)

2Γ
(

d
2

) −
K−1
∑

k=0

(−1)kΓ
(

k + d
3

)

Γ
(

k + 1− d
3

)

k!Γ
(

k + 2d
3

) ,

where the final equality is due to (15.4.26) of [29]. Equation (5.12) follows by this calculation
together with (5.14), (5.15), (5.16), and Proposition 2.6 (4). Finally note that (5.12) vanishes for
even d ≤ 1. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Note that by Lemma 5.5 and Theorem 5.14 all conditions of Theorem 1.4
are satisfied (with L and R /∈ 1

3N arbitrary large). As ζ
so(5) has, by Proposition 5.16, exactly two
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positive poles α := 1
2 >

1
3 =: β, Theorem 4.4 applies with ℓ = 3, and we obtain

r
so(5)(n) =

C

nb
exp

(

A1n
1
3 +A2n

2
9 +A3n

1
9 +A4

)



1 +

N+1
∑

j=2

Bj

n
j−1
9

+ON

(

n−
N+1

9

)



 , (n→ ∞).

So we are left to calculate c, b, A1, A2, A3, and A4. By Proposition 5.15, ζ
so(5)(0) = 3

8 and by

Proposition 5.16, Ress= 1
2
ζ
so(5)(s), ω 1

2
=

√
3Γ( 1

4
)2

8
√
π

and ω 1
3
= 2

1
3+1

3
2
3
ζ(13). Hence, by (4.4), we get

c1

√
3Γ
(

1
4

)2
ζ
(

3
2

)

16
, c2 = 3−

5
3

(

2
1
3 + 1

)

Γ

(

1

3

)

ζ

(

1

3

)

ζ

(

4

3

)

.

Moreover, by Lemma 4.3, we have

K2 =
2c2

3c
2
9
1

, K3 = − c22

27c
10
9
1

.

Now, we compute A1, C, and b by (1.11) and A2, A3, A4 by Theorem 4.4 and obtain

b =
7

12
, C =

e
ζ′
so(5)

(0)
Γ
(

1
4

)
1
6 ζ
(

3
2

)
1
12

2
1
3 3

11
24
√
π

, A1 =
3

4
3Γ
(

1
4

)
4
3 ζ
(

3
2

)
2
3

2
8
3

, (5.17)

A2 =
2

8
9

(

2
1
3 + 1

)

Γ
(

1
3

)

ζ
(

1
3

)

ζ
(

4
3

)

3
7
9Γ
(

1
4

)
4
9 ζ
(

3
2

)
2
9

, A3 = −
2

40
9

(

2
1
3 + 1

)2
Γ
(

1
3

)2
ζ
(

1
3

)2
ζ
(

4
3

)2

3
44
9 Γ
(

1
4

)
20
9 ζ
(

3
2

)
10
9

, (5.18)

A4 =
28
(

2
1
3 + 1

)3
Γ
(

1
3

)3
ζ
(

1
3

)3
ζ
(

4
3

)3

38Γ
(

1
4

)4
ζ
(

3
2

)2 . (5.19)

This proves the theorem. �

6. Open problems

We are led by our work to the following questions:

(1) Is there a simple expression for ζ ′
so(5)(0)?

(2) Can one weaken the hypothesis that f(n) ≥ 0 for all n in Theorem 1.4? An important appli-
cation would be that the rf (n) are eventually positive. There are many special cases in the
literature (see [11, 12, 13, 14]), but to the best of our knowledge no general asymptotic formula
has been proved.6

(3) In [18], Erdős proved by elementary means that if S ⊂ N has natural density d and 1S is the

indicator function of S, then log(p
1S
(n)) ∼ π

√

2dn
3 . Referring to Theorem 1.4, can one prove

by elementary means that for any ε > 0

log (rf (n)) = A1n
α

α+1 +
M
∑

j=2

Ajn
αj +O(nε)?

(4) Can one “twist” the products in Theorem 1.4 by w ∈ C and prove asymptotic formulas for the
(complex) coefficients of

∏

n≥1

1

(1− wqn)f(n)
?

6The one exception is in Todt’s Ph.D. thesis [33, Theorem 3.2.1]; however, there it is further assumed that rf (n)
is non-decreasing, which precludes the princple application of such an asymptotic.
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If f(n) = n or f(n) = 1, then such asymptotics were shown to determine zero attractors of
polynomials (see [3, 4]) and equidistribution of partition statistics see [5, 6]), and the general
case of |w| 6= 1 was treated by Parry [30]. Nevertheless, all of these results require that Lf (s)
has only a single simple pole with positive real part.

(5) In Theorem 1.4, can one write down explicit or recursive expressions for the constants Aj in
the exponent, say in the case that Lf (s) has three positive poles?

(6) Can one prove limit shapes for the partitions generated by (1.7) in the sense of [16, 34]?
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Revista Matemática Iberoamericana, accepted for publication.
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