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THE ASYMPTOTIC DISTRIBUTION OF THE RANK FOR UNIMODAL

SEQUENCES

KATHRIN BRINGMANN, CHRIS JENNINGS-SHAFFER, AND KARL MAHLBURG

Abstract. We study the asymptotic behavior of the rank statistic for unimodal se-
quences. We use analytic techniques involving asymptotic expansions in order to prove
asymptotic formulas for the moments of the rank. Furthermore, when appropriately nor-
malized, the values of the unimodal rank asymptotically follow a logistic distribution.
We also prove similar results for Durfee unimodal sequences and semi-strict unimodal se-
quences, with the only major difference being that the (normalized) rank for semistrict
unimodal sequences has a distributional limit of a point mass probability distribution.

1. introduction and statement of results

There is an extensive literature on the study of integer unimodal sequences: see [24] for
a survey of combinatorial and other applications of such sequences, and [11] for a history
of asymptotic results for the enumeration functions. More recently, there has been further
interest in the asymptotic and probabilistic aspects of statistics for unimodal sequences.
There is a much lengthier discussion in the authors’ recent article [9], which also includes
results for strongly unimodal sequences. This article is intended to address the asymptotic
behavior of statistics for several families of unimodal sequences that have not been stud-
ied previously, including, most importantly, the rank of unimodal sequences with marked
summits.

A sequence of positive integers is a unimodal sequence of size n if it is of the form

a1 ≤ a2 ≤ · · · ≤ ar ≤ c ≥ bs ≥ · · · ≥ b1, (1.1)

with sum a1+ · · ·+ar+c+bs+ · · ·+b1 = n. Let U(n) denote the set of unimodal sequences
(with designated peaks) of size n, and let u(n) := |U(n)| be the enumeration function.
This function has appeared previously as ss(n) in [11], as σσ(n) in Section 3 of [2], as v(n)
in Section 2.5 of [25], and as X(n − 1) in [3]. The mark on the part c indicates that if
the largest part is repeated, the sequences may be further distinguished by specifying the
location of the “peak”. For example, u(3) = 6, as the unimodal sequences are {3}, {2, 1},
{1, 2}, {1, 1, 1}, {1, 1, 1}, and {1, 1, 1}. The generating function is given by

U(q) :=
∑

n≥0

u(n)qn =
∑

n≥0

qn

(q)2n
.

1
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Throughout the article we use the standard q-Pochhammer notation, which is defined
for n ∈ N0 ∪ {∞} by

(a)n := (a; q)n :=
n−1
∏

j=0

(

1− aqj
)

, (a1, a2, . . . , ak)n := (a1)n(a2)n · · · (ak)n.

The rank of a unimodal sequence is the number of parts after the peak minus the number
of parts before the peak. As such, it is direct to see that the generating function is

U(ζ ; q) =
∑

n≥0
m∈Z

u(m,n)ζmqn =
∑

n≥0

qn

(ζq, ζ−1q)n
,

where u(m,n)1 denotes the number of unimodal sequences, with designated peaks, of size
n and with rank m. We denote the moments, absolute moments, and moment generating
functions, respectively, by

uk(n) :=
∑

m∈Z

mku(m,n), u+k (n) :=
∑

m∈Z

|m|ku(m,n), Uk(q) :=
∑

n≥0

uk(n)q
n.

The next family that we consider has a generating function whose analytic behavior
is very similar to U(ζ ; q), although this is not immediately evident from the combinato-
rial definition. We define a Durfee unimodal sequence to be a unimodal sequence with a
designated peak as in (1.1), and that also satisfies s ≤ c − k where k is the size of the
“Durfee square” of the partition (a1, a2, . . . , ar) (this is the largest k such ar−k+1 ≥ k). Let
V(n) denote the set of Durfee unimodal sequences of size n, with enumeration function
v(n). This function was introduced in [22], where the enumeration function was denoted
by V (n). Again the rank is the number of parts after the peak minus the number of parts
before the peak. Let v(m,n) denote the number of Durfee unimodal sequences of size n
with rank m. The generating function is given by (see [22, Proposition 3.1])

V (ζ ; q) :=
∑

n≥0
m∈Z

v(m,n)ζmqn =
∑

n≥0

(qn+1)nq
n

(ζq, ζ−1q)n
.

As above, we also introduce notation for the moments, namely

vk(n) :=
∑

m∈Z

mkv(m,n), v+k (n) :=
∑

m∈Z

|m|kv(m,n), Vk(q) :=
∑

n≥0

vk(n)q
n.

1Unfortunately, there is no strongly established convention for the usage of u(m,n) and U(ζ; q), which
have been used to denote both unimodal sequences and strongly unimodal sequences (in which all inequalities
in (1.1) are strict).
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The third and final family that we consider are semi-strict unimodal sequences, which
are of the form

a1 < a2 < . . . ar < c > bs ≥ bs−1 ≥ . . . ≥ b1.

Let DM(n) denote the set of semi-strict unimodal sequences of size n, with enumeration
function dm(n), as in [11]. This function was introduced in [3], where the enumeration
function was written as xm(n). For example, dm(4) = 5 from the sequences {4}, {1, 3},
{3, 1}, {1, 2, 1}, and {2, 1, 1, 1}. The generating function is given by

D(q) :=
∑

n≥0

dm(n)qn =
∑

n≥0

(−q)n
(q)n

qn+1.

The rank of such a sequence is again defined as the number of parts after the peak minus the
number of parts before the peak. Let dm(m,n) denote the number of semi-strict unimodal
sequences of size n with rank m. The generating function of this rank is given by

D(ζ ; q) :=
∑

n≥0

dm(m,n)ζmqn =
∑

n≥0

(−ζ−1q)n
(ζq)n

qn+1.

Set

dmk(n) :=
∑

m∈Z

mkdm(m,n), dm+
k (n) :=

∑

m∈Z

|m|kdm(m,n), Dk(q) :=
∑

n≥0

dmk(n)q
n.

Our first result gives the asymptotic behavior of the moments for the rank functions. We
note that the odd moments u2k+1(n) and v2k+1(n) are trivially all zero, since it is clear by
symmetry that u(−m,n) = u(m,n) and v(−m,n) = v(m,n). We denote the ℓ-th Bernoulli
polynomial by Bℓ(x).

Theorem 1.1. Suppose that k ∈ N0. Then we have the following asymptotic formulas.

(1) We have, as n→ ∞,

u2k(n) ∼ (−1)k22k−33k−
3
4B2k

(

1

2

)

nk− 5
4 e2π

√
n
3 .

(2) We have, as n→ ∞,

v2k(n) ∼ (−1)k22k−23k−
7
4B2k

(

1

2

)

nk− 5
4 e2π

√
n
3 .

(3) We have, as n→ ∞,

dmk(n) ∼
1

16πk
log(n)kn

k
2
−1eπ

√
n.
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Following the probabilistic Method of Moments, we use the above asymptotic formulas
to show that each of the ranks has a limiting distribution when appropriately normalized.

Proposition 1.2. (1) The normalized rank of unimodal sequences is asymptotically dis-

tributed according to the logistic distribution with mean zero and scale 1
π
. In particular,

lim
n→∞

1

u(n)

∣

∣

∣

∣

{

σ ∈ U(n) : rank(σ)√
3n

≤ x

}
∣

∣

∣

∣

=
1

1 + e−πx
.

(2) The normalized rank of Durfee unimodal sequences is asymptotically distributed accord-

ing to the logistic distribution with mean zero and scale 1
π
. In particular,

lim
n→∞

1

v(n)

∣

∣

∣

∣

{

σ ∈ V(n) : rank(σ)√
3n

≤ x

}
∣

∣

∣

∣

=
1

1 + e−πx
.

(3) The normalized rank of semi-strict unimodal sequences is asymptotically distributed

according to a point mass distribution at one. In particular,

lim
n→∞

1

dm(n)

∣

∣

∣

∣

∣

{

σ ∈ DM(n) :
rank(σ)
√
n log(n)

π

≤ x

}
∣

∣

∣

∣

∣

=

{

0 if x < 1,

1 if x ≥ 1.

Remark. The appearance of the logistic distribution in part (1) is not surprising, as this
naturally arises as the difference between two independent extreme value distributions (see
[14] for a related example). As in [25, Proposition 2.5.1], unimodal sequences are closely
related to ordered pairs of partitions (up to an inclusion-exclusion argument), and the rank
of the sequence then corresponds to the difference between the number of parts in the two
partitions. Furthermore, if the partitions were independent, then [16, Theorem 1.1] would
show that the normalized number of parts in each partition has a (weak) limit that is an
extreme value distribution (see [7, page 195]).

Remark. The point mass distribution in part (3) can also be interpreted as the state-
ment that for large n, “almost all” semi-strict unimodal sequences of n have rank that is

approximately
√
n log(n)

π
. However, it would also be interesting to obtain the more refined

distribution centered around this average value. In particular, following the example of [16,
Theorem 1.1], one might expect to find a limiting distribution F (x) such that

lim
n→∞

1

dm(n)

∣

∣

∣

∣

∣

{

σ ∈ DM(n) :
rank(σ)−

√
n log(n)

π√
n

≤ x

}
∣

∣

∣

∣

∣

→ F (x).

Such a result is not easily accessible using the techniques in this paper, as all of our
calculations are instead for moments (and thus distributions) that are centered at zero.
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Our final result highlights an additional application of the Method of Moments, as we
use the distributions from Proposition 1.2 in order to determine asymptotic formulas for
the absolute moments.

Corollary 1.3. Assume that k ∈ N0.

(1) We have, as n→ ∞,

u+k (n) ∼
3

k
2
− 3

4

(

1− 21−k
)

k!ζ(k)

4πk
n

k
2
− 5

4 e2π
√

n
3 .

(2) We have, as n→ ∞,

v+k (n) ∼
3

k
2
− 7

4

(

1− 21−k
)

k!ζ(k)

2πk
n

k
2
− 5

4 e2π
√

n
3 .

(3) We have, as n→ ∞,

dm+
k (n) ∼ dmk(n).

The remainder of the paper is structured as follows. In Section 2, we recall some prelimi-
nary facts on the Dedekind η-function, Ingham’s theorem, the Euler-Maclaurin summation
formula, as well as some combinatorial statistics. In Section 3 we prove the asymptotic
results for the rank of unimodal sequences. This is followed by additional results on the
log-concavity of the unimodal rank in Section 4. Section 5 is dedicated to proving our re-
sults for Durfee unimodal sequences, and we conclude with semi-strict unimodal sequences
in Section 6.

2. Preliminary facts

2.1. Asymptotic results. We require the asymptotic behavior of Dedekind’s η-function

η(τ) := q
1
24

∞
∏

n=1

(1 − qn) (q := e2πiτ , τ ∈ H), which follows directly from its modular trans-

formation [6, Theorem 3.1]

(

e−w; e−w
)

∞ ∼
√

2π

w
e−

π2

6w as w → 0. (2.1)

Here the limit is taken in any region |Arg(w)| < θ, for fixed θ < π
2
. Throughout the article,

almost all asymptotic statements for w → 0 are based on setting q = e−w.
Moreover we need the following Tauberian theorem, which is a special case of Ingham’s

more general result [19, Theorem 1′].

Theorem 2.1. Suppose that B(q) =
∑

n≥0 bnq
n is a power series with weakly increasing

non-negative coefficients and radius of convergence at least one. If λ, α, β, and γ are real
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numbers with γ > 0 such that

B
(

e−t
)

∼ λ log

(

1

t

)α

tβe
γ
t as t→ 0+, B

(

e−z
)

≪ log

(

1

|z|

)α

|z|βe
γ
|z| as z → 0,

with z = x+ iy in each region of the form |y| ≤ ∆x with ∆ > 0, then

bn ∼ λγ
β
2
+ 1

4

2α+1
√
π
log (n)α n−β

2
− 3

4 e2
√
γn as n→ ∞.

Remark. Theorem 2.1 has been stated in a number of recent publications without the
boundedness condition for “angular” regions |y| ≤ ∆x, but this is in error, as the general
statement does indeed require the additional bound. This was noted by Ingham [19, p.
1088], and the technical aspects of the theorem are discussed in great detail in the authors’
recent preprint [8]. However, this point is of no great concern here, as Section 3.1 of [8]
also explains that if the asymptotic behavior of f is determined by modular inversion, then
the angular boundedness condition holds automatically.

We next recall a result for asymptotic expansions that follows from the Euler-Maclaurin
summation formula. Although this technique is widely used (see Section 6.7.4 of [27]), the
only source we aware of that provides a proof for all of the following results is the authors’
recent preprint [8]. We say that a function f is of sufficient decay in a domain D ⊂ C if
there exists some ε > 0 such that f(w) ≪ w−1−ε as |w| → ∞ in D.

Proposition 2.2. Suppose that 0 ≤ θ < π
2
and let Dθ := {reiα : r ≥ 0 and |α| ≤ θ}. Let

f : C → C be holomorphic in a domain containing Dθ, so in particular f is holomorphic

at the origin, and assume that w 7→ f(w) and all of its derivatives are of sufficient decay.

Then for a ∈ R and N ∈ N0,

∑

m≥0

f(w(m+ a)) =
1

w

∫ ∞

0

f(x)dx−
N−1
∑

n=0

Bn+1(a)f
(n)(0)

(n+ 1)!
wn +ON

(

wN
)

,

uniformly, as w → 0 in Dθ.

A useful corollary also gives a compact expression in the case of alternating signs.

Corollary 2.3. Under the assumptions and notation of Proposition 2.2, we have

∑

m≥0

(−1)mf(w(m+ a)) =
1

2

N−1
∑

n=0

En(a)f
(n)(0)

n!
wn +ON

(

wN
)

,

uniformly, as w → 0 in Dθ, where En(x) are the Euler polynomials.
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We also need the asymptotic expansion in the case that the function has a simple pole

at zero. For a 6∈ −N0, define the constant Ca := −γ − ψ(a), where ψ(a) := Γ′(a)
Γ(a)

is the

digamma function [1, equation 6.3.16], and γ is the Euler-Mascheroni constant.

Proposition 2.4. Suppose that 0 ≤ θ < π
2
. Let f : C → C be holomorphic in a domain

containing Dθ, except for a simple pole at the origin, and assume that w 7→ f(w) and all

of its derivatives are of sufficient decay as |w| → ∞ in Dθ. If f(w) =
∑

n≥−1 bnw
n, then

for a ∈ R, with a 6∈ −N0, and N ∈ N0, uniformly, as w → 0 in Dθ,

∑

m≥0

f(w(m+ a)) = −b−1 Log(w)

w
+
b−1Ca

w
+

1

w

∫ ∞

0

(

f(x)− b−1e
−x

x

)

dx

−
N−1
∑

n=0

Bn+1(a)bn
n+ 1

wn +ON

(

wN
)

.

2.2. Partition statistics. We use several basic definitions from the theory of integer par-
titions. For a partition λ = λ1 + · · · + λℓ, with parts written in weakly decreasing order,
Dyson [15] defined its rank to be

rank(λ) := λ1 − ℓ.

Let N(m,n) denote the number of partitions of n with rank m.
Furthermore, let ω(λ) denote the number of ones in λ, and let µ(λ) be the number of

parts larger than ω(λ). As defined by Andrews and Garvan [4] (and building on Garvan’s
earlier work on the “vector crank” [17]), the crank of the partition is then given by

crank(λ) :=

{

λ1 if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) ≥ 1.

LetM(m,n) denote the number of partitions of n with crank m (with a slight modification
in the case that n = 1, where the values are instead M(±1, 1) = 1,M(0, 1) = −1).

As was thoroughly discussed in [9], the partition rank is combinatorially related to the
unimodal rank, and it therefore is somewhat surprising that it is instead the generating
function of the crank that plays a major role in the asymptotic analysis of the unimodal
rank. The following product formula is found in [4]:

C(ζ ; q) :=
∑

n≥0
m∈Z

M(m,n)ζmqn =
(q)∞

(ζq, ζ−1q)∞
. (2.2)
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3. Unimodal sequences

In this section we prove the asymptotic results for the rank of unimodal sequences,
beginning with the moments. Throughout we write ζ = ez, so that

[

∂kz (ζ
m)
]

z=0
= mk, where ∂z :=

∂

∂z
.

Proof of Theorem 1.1 (1). Since u2k(n) ≤ u2k(n+ 1) (as can be seen by adding one to the
peak), we can determine the asymptotic value of u2k(n) by Theorem 2.1, once we know the
asymptotic main term of U2k(e

−w) as w → 0 with |Arg(w)| ≤ θ < π
2
.

For this, we state the following identity from Proposition 2.1 of [21]

U(ζ ; q) =
(q)∞

(ζq, ζ−1q)∞
G1(ζ ; q) +H1(ζ ; q), (3.1)

where

G1(ζ ; q) :=
1

(q)∞

∑

n≥0

(−1)nζ2n+1q
n(n+1)

2 ,

H1(ζ ; q) := (1− ζ)
∑

n≥0

(−1)nζ3nq
n(3n+1)

2

(

1− ζ2q2n+1
)

.

Note that the product in (3.1) is exactly C(ζ ; q), as in (2.2).
Since U2k(q) = [∂2kz (U(ζ ; q))]z=0, we compute, for ℓ ∈ N0

[

∂ℓz(G1(ζ ; q))
]

z=0
=

1

(q)∞

∑

n≥0

(−1)n(2n + 1)ℓq
n(n+1)

2 ,

[

∂ℓz(H1(ζ ; q))
]

z=0
=
∑

n≥0

(−1)nq
n(3n+1)

2

(

(3n)ℓ − (3n + 1)ℓ − (3n+ 2)ℓq2n+1 + (3n+ 3)ℓq2n+1
)

.

Denoting the ℓ-th moment generating function of the crank by

Cℓ(q) :=
∑

n≥0
m∈Z

mℓM(m,n)qn,

we obtain, using the product rule

U2k(q) =
[

∂2kz (C(ζ ; q)G1(ζ ; q) +H1(ζ ; q))
]

z=0
(3.2)

=

2k
∑

j=0

(

2k

j

)

Cj(q)
[

∂2k−j
z (G1(ζ ; q))

]

z=0

+
∑

n≥0

(−1)nq
n(3n+1)

2

(

(3n)2k − (3n + 1)2k − (3n+ 2)2kq2n+1 + (3n+ 3)2kq2n+1
)
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=

k
∑

j=0

(

2k

2j

)

C2j(q)
[

∂2(k−j)
z (G1(ζ ; q))

]

z=0

+
∑

n≥0

(−1)nq
n(3n+1)

2

(

(3n)2k − (3n + 1)2k − (3n+ 2)2kq2n+1 + (3n+ 3)2kq2n+1
)

=
1

(q)∞

k
∑

j=0

(

2k

2j

)

C2j(q)
∑

n≥0

(−1)n(2n+ 1)2(k−j)q
n(n+1)

2

+
∑

n≥0

(−1)nq
n(3n+1)

2

(

(3n)2k − (3n + 1)2k − (3n+ 2)2kq2n+1 + (3n+ 3)2kq2n+1
)

,

where in the penultimate equality we use the fact that the odd moments of the crank
generating function vanish.

We now determine the asymptotic behavior of the individual components. Using Propo-

sition 2.2, we may show that the second sum is bounded by the polynomial order O(w− ℓ
2 )

for some ℓ ∈ Z, as w → 0. For the first term we first determine the behavior of the crank
moments. Corollary 3.3 of [12] implies that

C2j

(

e−w
)

∼ (−1)jB2j

(

1

2

)(

w

2π

)
1
2
−2j

e
π2

6w , (3.3)

where the limit can be taken in any region with |Arg(w)| ≤ θ < π
2
.

Next we determine the behavior of

Fj(w) := wk−j22(j−k)e−
w
8

∑

n≥0

(−1)n(2n + 1)2(k−j)e−
n(n+1)w

2 =
∑

n≥0

(−1)nfk−j

(√
w

(

n+
1

2

))

,

where

fℓ(w) := w2ℓe−
w2

2 .

From Corollary 2.3 we obtain (because E2n+1(
1
2
) = 0) that

Fj(w) ∼
1

2
E2k−2j

(

1

2

)

wk−j. (3.4)

Using (2.1), (3.3), and (3.4) gives that the first summand of (3.2) (with q = e−w) equals

1

(e−w; e−w)∞

k
∑

j=0

(

2k

2j

)

C2j

(

e−w
)

wj−k22(k−j)e
w
8 Fj(w)

∼ e
π2

3w

k
∑

j=0

(

2k

2j

)

(−1)j22k−2j−1B2j

(

1

2

)

E2k−2j

(

1

2

)(

w

2π

)1−2j

.
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The j = k term is dominant giving

1

2
(−1)kB2k

(

1

2

)(

w

2π

)1−2k

e
π2

3w .

Applying Theorem 2.1 then gives the claimed asymptotic formula. �

We next turn to the proof of the limiting distribution for unimodal sequences. As in
Section 4 of [9], we use the probabilistic Method of Moments, which essentially employs the
limiting behavior of the moments of a sequence of random variables in order to determine
the limiting distribution (see Section 30 of [7]).

Proof of Proposition 1.2 (1). The asymptotic formula for unimodal sequences with marked
peaks is given by the case k = 0 in Theorem 1.1 (1), namely

u(n) ∼ 8−13−
3
4n− 5

4 e2π
√

n
3 .

To the best of our knowledge, this expression first appeared in print as (5.1) in [11].2

Combining with the case of general k in Theorem 1.1 (1), and using the relation Bk(
1
2
) =

(21−k − 1)Bk (see e.g. [1, 23.1.21]), we therefore have, as n→ ∞
u2k(n)

u(n)
∼ (3n)k

(

22k − 2
)

(−1)k+1B2k.

Since (−1)k+1B2k > 0 [1, 23.1.15], we conclude that

uk(n)

(3n)
k
2u(n)

∼
(

2k − 2
)

|Bk|,

as for k odd this is trivially true. However, (2k−2)|Bk| is well-known to be the k-th moment
for the logistic distribution, with mean µ = 0 and scale s = 1

π
(see [20, p. 116–118]), and

thus the the proof is complete upon applying the Method of Moments. �

Finally, we use the limiting distribution from above in order to calculate the asymptotic
behavior of the absolute moments for the rank of unimodal sequences.

Proof of Corollary 1.3 (1). Let Xn denote the random variable defined by

Xn(σ) :=
rank(σ)√

3n
,

for σ ∈ U(n), with each σ occuring with the uniform probability 1
u(n)

, and X denote the

random variable associated to the logistic distribution.

2However, as was further explained in Section 5 of [11], the formula directly follows from earlier work
of Stanley [25] and Wright [26].
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The Method of Moments implies that Xn converges in distribution to X . By the Contin-
uous Mapping Theorem, |Xn| converges in distribution to |X|. By the corollary to Theorem
25.12 of [7], if supn∈NE[|Xn|r+ε] <∞ for some ε > 0, then E[|Xn|r] → E[|X|r].

For fixed r we take ε = 1 if r is odd and ε = 2 if r is even. By doing so we have

sup
n∈N

E
[

|Xn|r+ε
]

= sup
n∈N

E
[

Xr+ε
n

]

,

which is finite since

lim
n→∞

E
[

Xr+ε
n

]

= lim
n→∞

ur+ε(n)

(3n)
r+ε
2 u(n)

=
(

2r+ε − 2
)

|Br+ε|.

Thus, with ζ denoting the Riemann zeta function,

lim
n→∞

u+k (n)

(3n)
k
2u(n)

= E
[

|X|k
]

= 2Γ(k + 1)π−k
(

1− 21−k
)

ζ(k),

where the formula for the absolute moments of the logistic distribution was given in [20,
equation (23.11)]. �

4. Asymptotics for u(m,n)

In [9], the authors conjectured the strict log-concavity of the rank of strongly unimodal
sequences and verified the conjecture in a limiting sense. The same phenomenon appears
to occur for u(m,n).

Conjecture 4.1. For n ≥ 37 and |m| ≤ n− 23, we have

u(m,n)2 > u(m− 1, n)u(m+ 1, n).

To see that the conjecture is reasonable, we now show that it holds for n sufficiently
large (depending on m).

Lemma 4.2. For n→ ∞, Conjecture 4.1 is true.

Proof. Recall that Corollary 6.4 of [10] states that

u(m,n) =
π2

2
X3(n) +

π3

3
X4(n) +

π4

72

(

59− 36m2
)

X5(n) +Om

(

n−3e2π
√

n
3

)

,

where, with Iκ(x) the I-Bessel function of order κ,

Xj(n) :=
(

2
√
3n
)−j

I−j

(

2π

√

n

3

)

.

Using that I−j(x) = (2πx)−
1
2 ex(1 +O(x−1)) as x→ ∞, we obtain that

u(m,n)2 − u(m− 1, n)u(m+ 1, n) =
π6

2
X3(n)X5(n) +Om

(

n− 19
4 e4π

√
n
3

)

.
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This gives the claim. �

We note that similar statements appear to hold for both the rank and crank of ordinary
partitions, which we record here for posterity.

Conjecture 4.3. The following inequalities hold:

N(m,n)2 > N(m− 1, n)N(m+ 1, n) for n ≥ 123 and |m| ≤ n− 72,

M(m,n)2 > M(m − 1, n)M(m+ 1, n) for n ≥ 125 and |m| ≤ n− 71.

There are related results for the partition function p(n), which is known to be log-concave
for n > 25; this was originally proven by Nicolas [23] (also see [13]). The proof relies on
certain analytic properties of the asymptotic growth of p(n), and the recent work of Griffin-
Ono-Rolen-Zagier [18] on the hyperbolicity of polynomials associated to real sequences
shows that a more general phenomenon holds for a wide class of sequences. Unfortunately,
these analytic techniques do not seem to directly apply to the statistics in Conjectures 4.1
and 4.3.

5. Durfee Unimodal Sequences

In this section we consider Durfee unimodal sequences, which turn out to have many sim-
ilarities to unrestricted unimodal sequences. We begin by proving the asymptotic formulas
for the moments of the Durfee unimodal rank.

Proof of Theorem 1.1 (2). As with u2k(m), we see that v2k(n) ≤ v2k(n+ 1), by adding one
to the peak. We therefore again look to apply Theorem 2.1, by determining the asymptotic
main term of V2k(e

−w) as w → 0 with |Arg(w)| ≤ θ < π
2
.

For this, we use the following identity from Proposition 3.1 of [22], for V (ζ ; q):

V (ζ ; q) = C (ζ ; q)G2(ζ ; q) +H2(ζ ; q),

where

G2(ζ ; q) :=
1

(q)∞

∑

n≥0

ζ3n+1q3n
2+2n

(

1− ζq2n+1
)

, H2(ζ ; q) := (1− ζ)
∑

n≥0

ζnqn
2+n.

Since V2k(q) = [∂2kz (V (ζ ; q))]z=0, we compute

[

∂ℓz(G2(ζ ; q))
]

z=0
=

1

(q)∞

∑

n≥0

(

(3n+ 1)ℓ − (3n+ 2)ℓq2n+1
)

q3n
2+2n,

[

∂ℓz(H2(ζ ; q))
]

z=0
=
∑

n≥0

(

nℓ − (n + 1)ℓ
)

qn
2+n.

Thus

V2k(q) =
[

∂2kz (C(ζ ; q)G2(ζ ; q) +H2(ζ ; q))
]

z=0
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=
1

(q)∞

k
∑

j=0

(

2k

2j

)

C2j(q)
∑

n≥0

(

(3n+ 1)2(k−j) − (3n+ 2)2(k−j)q2n+1
)

q3n
2+2n

+
∑

n≥0

(

n2k − (n + 1)2k
)

qn
2+n, (5.1)

where we again use that the odd moments of the crank generating function are zero.
We now determine the asymptotics of the individual components. Proposition 2.2 implies

that the second term is O(w− ℓ
2 ) for some ℓ ∈ Z as w → 0. For the first term we first

determine, using Proposition 2.2 the asymptotic behavior of

∑

n≥0

(

fℓ

(√
w

(

n +
1

3

))

− fℓ

(√
w

(

n +
2

3

)))

∼ −2B2ℓ+1

(

1
3

)

2ℓ+ 1
wℓ,

where fℓ(w) := w2ℓe−3w2
. Combining this with (2.1) and (3.3) gives that the first summand

in (5.1) is asymptotically equal to

−2e
π2

3w

k
∑

j=0

(

2k

2j

)

(−1)jB2j

(

1

2

)

32(k−j)B2(k−j)+1

(

1
3

)

2(k − j) + 1

( w

2π

)1−2j

.

The j = k term is dominant giving

1

3
(−1)kB2k

(

1

2

)

( w

2π

)1−2k

e
π2

3w .

Applying Theorem 2.1 we then obtain the claim. �

We conclude our discussion of Durfee unimodal sequences by noting that the proofs
of Proposition 1.2 (2) and Corollary 1.3 (2) are essentially identical to the corresponding
proofs for unimodal sequences from Section 3.

6. Semi-Strict Unimodal Sequences

In this section, we investigate semi-strict unimodal sequences. We begin by proving
Theorem 1.1 (3).

Proof of Theorem 1.1 (3). Since the corresponding rank is monotone in n, i.e., dm(m,n) ≤
dm(m,n + 1) (again by adding one to the peak), we can again apply Theorem 2.1 to
determine the asymptotics of the moments.

For this, we need to determine

lim
w→0

Dk

(

e−w
)

.



14 K. BRINGMANN, C. JENNINGS-SHAFFER, AND K. MAHLBURG

Letting x = q, β = −ζ−1q, and γ = ζq in [5, equation (4.1)] yields

D(ζ ; q) = D∗(ζ ; q) +
q(1− ζ−1)

1 + ζ−2q
,

where

D∗(ζ ; q) :=
q (−ζ−1q)∞

ζ (1 + ζ−2q) (ζq)∞
.

For k = 0, we obtain, using (2.1),

D0

(

e−w
)

=
1

4

√

w

π
e

π2

4w .

We next turn to higher k. We compute the logarithmic derivative of D∗ as

∂z (D
∗(ζ ; q))

D∗(ζ ; q)
= −1 +

2ζ−2q

1 + ζ−2q
−
∑

n≥1

ζ−1qn

1 + ζ−1qn
+
∑

n≥1

ζqn

1− ζqn
=: L(ζ ; q). (6.1)

We first consider the third term and set

L1(ζ ; q) :=
∑

n≥1

ζ−1qn

1 + ζ−1qn
= −

∑

n1,n2≥1

(

−ζ−1qn1
)n2

,

which is valid for |q| < |ζ | (in fact, we set ζ to be 1 below). In order to calculate the
moments, we need the following derivatives for ℓ ∈ N0:

L1,ℓ(q) :=
[

∂ℓz (L1(ζ ; q))
]

z=0
= (−1)ℓ+1

∑

n1,n2≥1

nℓ
2(−1)n2qn1n2 = (−1)ℓ+1

∑

n2≥1

nℓ
2(−1)n2qn2

1− qn2
.

We next determine the asymptotic behavior of L1,ℓ(e
−w) as w → 0 with |Arg(w)| ≤ θ <

π
2
. The case ℓ = 0 is combined below with the fourth term. For ℓ ≥ 1 we write

L1,ℓ

(

e−w
)

= (−1)ℓw−ℓ
∑

n≥0

(−1)nfℓ(w(n+ 1)),

where

fℓ(w) :=
wℓe−w

1− e−w
.

Since ℓ ≥ 1, fℓ(w) does not have a pole at w = 0 and we may apply Corollary 2.3 to obtain

∑

n≥0

(−1)nfℓ(w(n+ 1)) =
1

2

N−1
∑

n=0

En(1)f
(n)
ℓ (0)

n!
wn +O

(

wN
)

.
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Now f (n)(0) = 0 for n < ℓ− 1. Thus
∑

n≥0

(−1)nfℓ(w(n+ 1)) ≪ wℓ−1,

which implies that

L1,ℓ

(

e−w
)

≪ 1

w
.

We next consider the fourth term in (6.1), which we denote by

L2(ζ ; q) :=
∑

n≥1

ζqn

1− ζqn
.

Proceeding as for L1 we have for ℓ ∈ N0

L2,ℓ(q) :=
[

∂ℓz (L2(ζ ; q))
]

z=0
=
∑

n≥1

nℓqn

1− qn
.

For ℓ ≥ 1, we have by [27, equation (6.80)], after correcting minor typos, that

L2,ℓ(e
−w) ∼ ℓ!ζ(ℓ+ 1)

wℓ+1
. (6.2)

We now consider the ℓ = 0 cases of L1;ℓ and L2,ℓ. For this, we note that

L(1; q) = −1 +
2q

1 + q
−
∑

n≥1

qn

1 + qn
+
∑

n≥1

qn

1− qn
= −1 +

2q

1 + q
+ 2

∑

n≥1

q2n

1− q2n
.

To determine the asymptotic behavior of L(1; q), we write

∑

n≥1

q2n

1− q2n
=
∑

n≥0

f(w(n+ 1)),

where

f(w) :=
e−2w

1− e−2w
=

1

2w
− 1

2
+O(w).

By Proposition 2.4, we have

L(1; e−w) ∼ −Log(w)

w
. (6.3)

Recalling (6.1), we have that for k ∈ N,

∂kz (D
∗(ζ ; q)) =

k−1
∑

j=0

(

k − 1

j

)

∂jz (D
∗(ζ ; q))∂k−1−j

z (L(ζ ; q)) .
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By induction, this implies that

∂kz (D
∗(ζ ; q)) = D∗(ζ ; q)

∑

ℓ1+2ℓ2+···+kℓk=k

a(ℓ1, ℓ2, . . . , ℓk)
k−1
∏

n=0

(∂nz (L(ζ ; q)))
ℓn+1 ,

where ℓh ∈ N0 and the a(ℓ1, ℓ2, . . . , ℓk) are constants. Now for a given sequence of non-
negative integers with ℓ1 + 2ℓ2 + · · ·+ kℓk = k, we have, using (6.3) and (6.2)

[

k−1
∏

n=0

(

∂nz
(

L(ζ ; e−w)
))ℓn+1

]

z=0

∼
(

Log
(

1
w

)

w

)ℓ1 k−1
∏

n=1

(

n!ζ(n+ 1)

wn+1

)ℓn+1

= Log

(

1

w

)ℓ1

w−k

k−1
∏

n=1

(n!ζ(n+ 1))ℓn+1 .

Since this is largest for ℓ1 = k, and clearly a(k, 0, . . . , 0) = 1, we have, using (2.1)

Dk(e
−w) ∼

[

∂kz
(

D∗(ζ ; e−w)
)]

z=0
∼ D∗(1; e−w) Log

(

1

w

)k

w−k ∼ 1

4
√
π
Log

(

1

w

)k

w
1
2
−ke

π2

4w .

Applying Theorem 2.1 then yields the claim. �

Proof of Proposition 1.2 (3) and Corollary 1.3 (3). Plugging in k = 0 to Theorem 1.1 (3),
we find that

dm(n) ∼ 1

16n
eπ

√
n.

Note that this formula also appeared as Theorem 1.3 of [11]. We therefore have

dmk(n)

dm(n)
∼ log(n)kn

k
2

πk
,

and thus the normalized ratio of moments is

dmk(n)
(√

n log(n)
π

)k

dm(n)
∼ 1.

However, the only distribution whose moments are identically 1 comes from the point mass
probability function that satisfies p(x = 1) = 1, with p(x = a) = 0 for all a 6= 1.

This immediately implies both the proposition and corollary statements (for the latter,
simply note that there is no difference between the absolute moments and the moments for
the point mass distribution). �
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