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Abstract. In a recent paper, J. Lovejoy and the second author conjectured that ranks for
four types of unimodal like sequences satisfy certain inequalities. In this paper, we prove
these conjectures asymptotically. For this, we use Wright’s Circle Method and analyze the
asymptotic behavior of certain general partial theta functions.

1. Introduction and statement of results

An integer sequence is unimodal if there is a peak in the sequence. Let u(n) denote the
number of unimodal sequences of the form

(1.1) a1 ≤ a2 ≤ · · · ≤ ar ≤ c ≥ b1 ≥ b2 ≥ · · · ≥ bs

with weight n = c +
∑r

j=1 aj +
∑s

j=1 bj. In Ramanujan’s lost notebook [1, Entry 6.3.2], we
find that
(1.2)∑

n≥0

qn

(ζq)n(ζ−1q)n
=

∑
n≥0(−1)nζ2n+1q

n(n+1)
2

(ζq)∞(ζ−1q)∞
+ (1− ζ)

∑
n≥0

(−1)nζ3nq
n(3n+1)

2

(
1− ζ2q2n+1

)
,

where (a)n = (a; q)n :=
∏n

k=1(1 − aqk) for n ∈ N0 ∪ {∞}. For ζ = 1 the left side of (1.2)
becomes the generating function for u(n). Thus we can think of the coefficient of ζmqn, after
expanding the left side, as a refinement of the number of unimodal sequences of weight n.
This motivates the definition of the unimodal rank, which is s − r. If we define u(m,n) as
the number of unimodal sequences with rank m, then we can see that the left-hand side of
(1.2) is the generating function for u(m,n). Besides the equality with the left side, however,
it is not at all combinatorially clear that the right-hand side of (1.2) is also the generating
function for u(m,n).

The partial theta function on the right-hand side has played an important role in studying
the arithmetic properties of u(n) and u(m,n) [6, 11, 12]. When ζ = 1 the right side of (1.2) is
a product of an infinite modular product and a partial theta function. Using this expression,
Wright obtained asymptotics for u(n) [11, 12]. Since the generating function in (1.2) is not
modular, the classical Circle Method introduced by Hardy and Ramanujan does not work in
this case. Wright carefully examined the asymptotic behavior of partial theta functions to
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employ the Circle Method. On the other hand, Lovejoy and the second author [6] studied
the rank differences for u(m,n) and congruences for certain arithmetic functions involving
u(m,n) by analyzing the partial theta function that appeared in the generating function. In
a follow-up paper [7], Lovejoy and the second author studied the rank differences for three
additional types of unimodal sequences. As the rank for u(n) stems from a two variable
partial theta function identity, all of these ranks are motivated by identities for two-variable
partial theta functions. These three types of unimodal ranks are denoted by w(m,n), v(m,n),
and ν(m,n), respectively. (See Section 2 for the combinatorial definitions.) While studying
the rank differences for these unimodal ranks, Lovejoy and the second author [7] conjectured
that these ranks are weakly decreasing, i.e., for non-negative integers m and j with m > j,

u(m,n) > u(j, n)

holds for large enough integers n, and the same phenomenon occurs for the other three
unimodal ranks. The main goal of this paper is to confirm these conjectures asymptotically.
Namely, we prove that

Theorem 1.1. For non-negative integers m and j with m > j, the inequalities

u(j, n) > u(m,n),(1.3)

w(j, n) > w(m,n),(1.4)

v(j, n) > v(m,n),(1.5)

ν(j, n) > ν(m,n)

hold for all sufficiently large integers n.

Remarks. (i) Due to the symmetry u(m,n) = u(−m,n) (which also holds for the other
unimodal ranks), we see that asymptotically unimodal ranks of weight n are unimodal
sequences with peak u(0, n).

(ii) For the ranks and cranks of the ordinary partition function, inequalities of the same
type have been established by various methods [3, 4, 5, 10]. In these cases, the
generating functions are simpler, as they are (mock) modular.

Just as Wright used the asymptotic behavior of a partial theta function to obtain an
asymptotic formula for u(n), the asymptotic behavior of a partial theta functions also plays
a crucial role in obtaining an asymptotic formula for unimodal ranks. However, as our
partial theta functions are two-variable functions, analyzing their asymptotic behavior is
more involved. In particular, one has to show that the resulting asymptotic expansions
converge.

The rest of paper is organized as follows. In Section 2, we explain what each arithmetic
function u(m,n), w(m,n), v(m,n), and ν(m,n) counts and give their generating functions.
In Section 3, we recall basic properties of certain modular forms and evaluate special kinds of
integrals. In Section 4, we obtain the asymptotic behavior of a general partial theta function
which is an essential part of the proof. In Section 5, by using Wright’s Circle Method for
more complicated functions, we prove an asymptotic formula for a quite general generating
function. In Sections 6–9, we obtain asymptotic formulas for these unimodal rank functions
by applying the results from Section 4. From these asymptotic formulas, Theorem 1.1 follows
immediately.
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2. Unimodal generating functions

In this section, we introduce four types of unimodal sequences and their ranks. For the
proofs, we refer the reader to [6, 7].

2.1. Unimodal sequences. Recall that u (n) denotes the number of unimodal sequences of
the form (1.1) with weight n = c+

∑r
j=1 aj +

∑s
j=1 bj. For example, u (4) = 12, the relevant

sequences being (
4
)
,
(
1, 3
)
,
(
3, 1
)
,
(
1, 2, 1

)
,
(
2, 2
)
,
(
2, 2
)
,(

1, 1, 2
)
,
(
2, 1, 1

)
,
(
1, 1, 1, 1

)
,
(
1, 1, 1, 1

)
,
(
1, 1, 1, 1

)
,
(
1, 1, 1, 1

)
.

Define the rank of a unimodal sequence to be s− r, and assume that the empty sequence has
rank 0. Let u (m,n) be the number of unimodal sequences of weight n with rank m. Then the
generating function for u (m,n) is given by (1.2). Note the symmetry u (m,n) = u (−m,n),
which follows upon exchanging the partitions

∑r
j=1 aj and

∑s
j=1 bj in (1.1).

2.2. Unimodal sequences with double peak. Let w (n) be the number of unimodal se-
quences with a double peak, i.e., sequences of the form

(2.1) a1 ≤ a2 ≤ · · · ≤ ar ≤ c c ≥ b1 ≥ b2 ≥ · · · ≥ bs,

with weight n = 2c +
∑r

j=1 aj +
∑s

j=1 bj. For example, w (6) = 11, the relevant sequences
being (

3, 3
)
,
(
2, 2, 2

)
,
(
2, 2, 2

)
,
(
2, 2, 1, 1

)
,
(
1, 2, 2, 1

)
,
(
1, 1, 2, 2

)
,(

1, 1, 1, 1, 1, 1
)
,
(
1, 1, 1, 1, 1, 1

) (
1, 1, 1, 1, 1, 1

)
,
(
1, 1, 1, 1, 1, 1

)
,
(
1, 1, 1, 1, 1, 1

)
.

Define the rank of such a unimodal sequence to be s−r, and assume that the empty sequence
has rank 0. Let w (m,n) denote the number of sequences counted by w (n) with rank m. Then
the generating function for w (m,n) is given by (see [7, Proposition 2.1])

W (ζ; q) :=
∑
n≥0

∑
m∈Z

w (m,n) ζmqn =
∑
n≥0

q2n

(ζq)n(ζ−1q)n

=
ζ2 + (1 + ζ2)

∑
n≥1 (−1)n ζ2nq

n(n+1)
2

(ζq)∞ (ζ−1q)∞

+ 1− ζ2 +
(
1 + ζ2

)
(1− ζ)

∑
n≥1

(−1)n ζ3n−2q
n(3n−1)

2 (1 + ζqn) .

Note the symmetry w (m,n) = w (−m,n), which follows upon exchanging the partitions∑r
j=1 aj and

∑s
j=1 bj in (2.1).
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2.3. Durfee unimodal sequences. Let v (n) denote the number of unimodal sequences of
the form (1.1), where

∑
j bj is a partition into parts at most c − k and k is the size of the

Durfee square of the partition
∑

j aj. For example, v (4) = 10, the relevant sequences being(
4
)
,
(
1, 3
)
,
(
3, 1
)
,
(
1, 2, 1

)
,
(
2, 2
)
,
(
2, 2
)
,
(
1, 1, 2

)
,
(
2, 1, 1

)
,
(
1, 1, 1, 1

)
,
(
1, 1, 1, 1

)
.

Define the rank of a sequence counted by v (n) to be s − r, and assume that the empty
sequence has rank 0. Let v (m,n) denote the number of sequences counted by v (n) with rank
m. Then the generation function is given by (see [7, Proposition 3.1])

V (ζ; q) :=
∑
n≥0

∑
m∈Z

v (m,n) ζmqn =
∑
n≥0

(qn+1)nq
n

(ζq)n(ζ−1q)n

=
ζ

(ζq)∞ (ζ−1q)∞

∑
n≥0

ζ3nq3n
2+2n

(
1− ζq2n+1

)
+ (1− ζ)

∑
n≥0

ζnqn
2+n.

Although not obvious from the definition, the symmetry v (m,n) = v (−m,n) follows from
the generating function.

2.4. Odd-Even unimodal sequences. Let ν (n) denote the number of unimodal sequences
of the form (1.1) where c has to be odd,

∑
j aj is a partition without repeated even parts,

and
∑

j bj is an overpartition into odd parts whose largest part is not c. (Recall that an

overpartition is a partition in which the first occurrence of a part may be overlined.) For
example, ν (5) = 12, the relevant sequences being(

5
)
,
(
1, 3, 1

)
,
(
1, 1, 3

)
,
(
3, 1, 1

)
,
(
3, 1, 1

)
,
(
1, 3, 1

)
,
(
2, 3
)
,(

1, 1, 1, 1, 1
)
,
(
1, 1, 1, 1, 1

)
,
(
1, 1, 1, 1, 1

)
,
(
1, 1, 1, 1, 1

)
,
(
1, 1, 1, 1, 1

)
.

Define the rank of a sequence counted by ν (n) to be the number of odd non-overlined parts
in
∑

j bj minus the number of odd parts in
∑

j aj, and assume that the empty sequence has

rank 0. Let ν (m,n) denote the number of sequences counted by ν (n) with rank m. Then
the generating function is given by (see [7, Proposition 4.1])

V(ζ; q) :=
∑
n≥0

∑
m∈Z

ν (m,n) ζmqn =
∑
n≥0

(−q)2nq2n+1

(ζq; q2)n+1(ζ−1q; q2)n+1

=
ζ (−q)∞

(1 + ζ) (ζq; q2)∞ (ζ−1q; q2)∞

∑
n≥0

(−1)n ζnq
n(n+1)

2 − ζ

1 + ζ

∑
n≥0

(−1)n ζnqn
2+n.

Note the symmetry ν (m,n) = ν (−m,n), which follows from exchanging the odd parts of∑
j aj with the odd non-overlined parts of

∑
j bj.

3. Preliminaries and some integral approximations

In this section we recall some special modular forms and their behavior under modular
inversion and give some (asymptotic) integral evaluations that are required for our proofs.



ON THE ASYMPTOTIC BEHAVIOR OF UNIMODAL RANK GENERATING FUNCTIONS 5

3.1. Special modular forms and Jacobi forms. Define the usual Dedekind η function
(q := e2πiτ throughout)

η(τ) := q
1
24

∏
n≥1

(1− qn)

and Jacobi’s theta function (ζ := e2πiz throughout)

ϑ(z; τ) :=
∑

n∈ 1
2
+Z

qn
2

e2πin(z+
1
2) = −iq

1
8 ζ−

1
2

∏
n≥1

(1− qn)
(
1− ζqn−1

) (
1− ζ−1qn

)
.

We require the following transformations.

Lemma 3.1. We have

η

(
−1

τ

)
=
√
−iτη(τ),

ϑ

(
z

τ
;−1

τ

)
= −i

√
−iτe

πiz2

τ ϑ(z; τ).

From Lemma 3.1, we directly obtain the following asymptotic behavior which plays an
important role in the investigation of the asymptotic behavior of the generating functions.

Lemma 3.2. For 0 ≤ z ≤ 1
2
, we have

1

(ζq)∞ (ζ−1q)∞
= −iq

1
12
e
πi
6τ ζ−

1
2 (1− ζ)e

πiz2

τ(
1− e 2πiz

τ

)
e−

πiz
τ

(
1 +O

(
e−2π(1−z)Im(− 1

τ )
))

.

The following lemma plays a key role in bounding the generating function away from the
dominant pole.

Lemma 3.3. Let τ = x+ iy ∈ H with y ≤ |x| ≤ 1
2
. Then, as y → 0,∣∣∣∣ 1

(q)∞

∣∣∣∣� e
5π
72y .

Proof. The proof follows immediately from Lemma 3.5 of [3] with M = 1. �

3.2. Integral evaluations. In our asymptotic considerations, certain integrals occur which
lead to special values of Euler polynomials. To be more precise, define for a ∈ R+, τ ∈ H,
and ` ∈ N0

I`(a, τ) :=

∫ a

0

z2`+1

sinh
(
πiz
τ

)dz,
K`(a, τ) :=

∫ a

0

z2`

cosh
(
πiz
τ

)dz.
Then we have the following integral approximations.

Lemma 3.4. Let a ∈ R+.
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(i) We have, as y → 0,

I`(a, τ) =
1

2
E2`+1(0)τ 2`+2 +O

(
e−πaIm(− 1

τ )
)
,

where En(x) denotes the nth Euler polynomial.
(ii) We have, as y → 0,

K`(a, τ) = −iE2` ·
(τ

2

)2`+1

+O
(
e−πaIm(− 1

τ )
)
,

where En is the nth Euler number.

Proof. (i) We write

I`(a, τ) =

∫ ∞
0

z2`+1

sinh
(
πiz
τ

)dz − ∫ ∞
a

z2`+1

sinh
(
πiz
τ

)dz.
In the first integral we make the change of variables z 7→ −iτz to obtain, by the
Residue Theorem, that it equals

(−1)`+1τ 2`+2

∫ ∞
0

z2`+1

sinh(πz)
dz.

The integral now evaluates as (−1)`+1E2`+1(0)

2
by Lemma 2.3 of [3]. For the the second

integral, we see that∫ ∞
a

z2`+1

sinh
(
πiz
τ

)dz � ∫ ∞
a

z2`+1e−πzIm(− 1
τ )dz

�
(

Im

(
−1

τ

))−2`−2
Γ

(
2`+ 2, πaIm

(
−1

τ

))
� Im

(
−1

τ

)−1
e−πaIm(− 1

τ ) � e−πaIm(− 1
τ ),

where Γ (α, x) :=
∫∞
x
tα−1e−tdt is the incomplete gamma function, and we used the

fact that, as x→∞,
Γ(k, x) ∼ xk−1e−x.

(ii) For the evaluation of K`(a, τ), we similarly write

K`(a, τ) =

∫ ∞
0

z2`

cosh
(
πiz
τ

)dz − ∫ ∞
a

z2`

cosh
(
πiz
τ

)dz.
The first integral equals

i(−1)`+1
(τ
π

)2`+1
∫ ∞
0

z2`

cosh (z)
dz.

We next find that∫ ∞
0

z2`

cosh(z)
dz = 2

∫ ∞
0

z2`e−z

1 + e−2z
dz = 2

∞∑
j=0

(−1)j
∫ ∞
0

z2`+1e−(2j+1)z dz

z

= 2(2`)!
∞∑
j=0

(−1)j

(2j + 1)2`+1
= 2(2`)!β(2`+ 1) = (−1)`E2`

(π
2

)2`+1

,
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where β(s) :=
∑∞

n=0
(−1)n

(2n+1)s
is Dirichlet’s β-function, and we used that β(2` + 1) =

(−1)`E2`π
2`+1

22`+2(2`)!
[9, equation (3)]. The second integral may now be bounded as before,

giving the claim.
�

4. Asymptotic expansion of a partial theta function

As the generating functions we are interested in contain partial theta functions, investi-
gating their asymptotic behavior is a crucial part of this paper. To more uniformly treat the
occurring functions, we define the partial theta function (d ∈ Q+, k ∈ N)

Fd,k(z; τ) :=
∑
n≥0

ζkn+dq(kn+d)
2

.

The following theorem explains the asymptotic behavior near q = 1.

Theorem 4.1. The asymptotic expansion

Fd,k(z; τ) =
∑
`≥0

(2kπiz)`

`!

(
Γ
(
`+1
2

)
2(2π)

`+1
2 k`+1

(−iτ)−
`+1
2 −

N∑
j=0

(2k2πi)j

j!

B2j+`+1

(
d
k

)
2j + `+ 1

τ j

)
+O

(
|τ |N+1

)
,

converges for |z| < 1
4k

. Here Bn(x) denotes the nth Bernoulli polynomial.

Before proving Theorem 4.1, we require an auxiliary lemma which is a slight extension of
a lemma of Zagier [13]. Recall that a function f is of rapid decay if zAf(z) is bounded for
any A ∈ R.

Lemma 4.2 (Proposition 3 of [13]). Let f : C → C be a C∞ function. Furthermore, we
require that f(x) and all its derivatives are of rapid decay for Re(x)→∞. Then, for t→∞
with Re(t) > 0 and a > 0, we have for any N ∈ N0:∑

m≥0

f((m+ a)t) =
1

t

∫ ∞
0

f(x)dx−
N∑
n=0

f (n)(0)

n!

Bn+1(a)

n+ 1
tn

− tN

(N + 1)!

∫ ∞
0

BN+1

(
a− x

t

)
f (N+1)(x)dx,

where Bn(x) := Bn(x− bxc).

We also need the following lemma, which plays an important role in showing convergence
of various asymptotic expansions.

Lemma 4.3. For all n ∈ N0 and ` ∈ N, we have∫ ∞
0

∣∣∣f (n)
` (x)

∣∣∣ dx ≤ 4n

2
Γ

(
`+ n+ 1

2

)
,

where f`(x) := x`e−x
2
.

Proof. We denote

f
(n)
` (x) =: e−x

2
n∑
k=0

Ak(n)x`+n−2k.
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Note that if 2k > `+ n, then Ak(n) = 0. We next claim that

|Ak(n)| ≤ 2n−k
(
n

k

)
(`+ n− 1)(`+ n− 3) · · · (`+ n− 2k + 1).

This bound can easily be proved by induction, using that A0(n) = (−2)n and

Ak(n+ 1) = (`+ n− 2k + 2)Ak−1(n)− 2Ak(n).

Therefore,∫ ∞
0

∣∣∣f (n)
` (x)

∣∣∣ dx ≤ n∑
k=0

|Ak(n)|
∫ ∞
0

x`+n−2ke−x
2

dx =
1

2

n∑
k=0

|Ak(n)|Γ
(
`+ n− 2k + 1

2

)

≤ 1

2

n∑
k=0

2n−k
(
n

k

)
2k

(`+ n− 1)

2

(`+ n− 3)

2
· · · (`+ n− 2k + 1)

2
Γ

(
`+ n− 2k + 1

2

)
≤ 1

2
4nΓ

(
n+ `+ 1

2

)
,

where we have applied Γ(x+ 1) = xΓ(x) k times and used the Binomial Theorem. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first expand ζkn+d, to obtain

Fd,k(z; τ) =
∑
`≥0

(2πiz)`

`!

∑
n≥0

(kn+ d)`e2πi(kn+d)
2τ =

∑
`≥0

(2kπiz)`

`!
T−`

∑
n≥0

f`

(
T

(
n+

d

k

))
,

where T :=
√
−2πik2τ . By employing Lemma 4.2, we find that the inner sum equals

(4.1)
I`
T
− T `

N∑
j=0

(−1)j

j!

B2j+`+1

(
d
k

)
2j + `+ 1

T 2j − T `+2N+2

(
(−1)N+1

(N + 1)!

B2N+`+3

(
d
k

)
2N + `+ 3

+
1

(2N + `+ 3)!

∫ ∞
0

B2N+`+3

(
d

k
− x

T

)
f
(2N+`+3)
` (x)dx

)
,

where

I` :=

∫ ∞
0

f`(x)dx =
1

2
Γ

(
`+ 1

2

)
.

Next, we consider convergence of the occurring sums and show that the third and fourth term
in (4.1) contribute to the error term. We first note that∣∣∣∣∣∑

`≥0

(2kπiz)`

`!

(−1)j

j!

B2j+`+1

(
d
k

)
2j + `+ 1

∣∣∣∣∣ ≤ 2
∑
`≥0

(2kπ|z|)`

`!

(2j + `)!

j!(2π)2j+`+1
,(4.2)

where we used Lehmer’s bound (see Theorem 1 and equation (19) in [8])

(4.3) Bn(x) ≤ 2n!

(2π)n
,

which holds for all x ∈ [0, 1] and n > 2. By the ratio test, we see that (4.2) converges for fixed
j if |z| < 1

k
. Thus, the contributions from the second and the third term in (4.1) converge for

|z| < 1
k
.
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We next consider the fourth term. By Lemma 4.3 and Lehmer’s bound (4.3), we see that∣∣∣∣∣∑
`≥0

(2kπiz)`

`!

1

(2N + `+ 3)!

∫ ∞
0

B2N+`+3

(
d

k
− x

T

)
f
(2N+`+3)
` (x)dx

∣∣∣∣∣
≤ 2

∑
`≥0

(2kπ|z|)`

`!(2π)2N+`+3

∫ ∞
0

∣∣∣f (2N+`+3)
` (x)

∣∣∣ dx�∑
`≥0

(4k|z|)`

`!
Γ (N + `+ 2) ,

which converges for |z| < 1
4k

, again using the ratio test.
Finally, we note that ∑

`≥0

(2kπiz)`

`!

I`
T `+1

≤
∑
`≥0

(2kπ|z|)`

`!

Γ
(
`+1
2

)
2|T |`+1

converges for all z ∈ C because the ratio of consecutive coefficients

2πk|z|Γ
(
`+2
2

)
(`+ 1)|T |Γ

(
`+1
2

) =
2πk|z|

(`+ 1)|T |

((
`+ 1

2

) 1
2

+ o(1)

)
tends to zero as ` goes to the infinity. Here we used that for α ∈ R

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1.

This completes the proof of Theorem 4.1. �

5. Wright’s Circle Method

In a series of papers [11, 12], Wright developed a simplified version of the Circle Method
to obtain asymptotic formulas for the number of combinatorial functions. In this section, by
adopting this method, we prove a general asymptotic formula, which can be applied to all
functions of interest for this paper.

Suppose that a function F(q) =
∑

n≥0 a(n)qn has the asymptotic expansion

(5.1) F(q) = e
πi
Lτ

N∑
j=1

A(j)τ j +O
(
|τ |N+1e

π
L
Im(− 1

τ )
)
,

for some L ∈ N, N ∈ N, and τ = x + iy with |x| ≤ y → 0. Moreover, we assume that there
exists ε > 0 such that for y ≤ |x| ≤ 1

2

(5.2) F(q)� e
π
Ly
−ε.

Under the above two assumptions, by employing Wright’s Circle Method, we prove the
following theorem.

Theorem 5.1. Suppose that F(q) =
∑

n≥0 a(n)qn satisfies the two assumptions (5.1) and
(5.2). Then, as n→∞,

a(n) = −2πi
N∑
j=1

A(j)

(
i√

2Ln

)j+1

I−j−1

(
2π

√
2n

L

)
+O

(
n−

N+2
2 e2π

√
2n
L

)
,

where I` denotes the usual I-Bessel function of order `.
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To determine the main contribution to a(n), we need to evaluate a certain integral, namely
for s, k ∈ R+, we define

Ps,k :=
1

2πi

∫ 1+i

1−i
vseπ
√

kn
6 ( 1

v
+v)dv.

The following lemma, which is an easy generalization of a lemma of Wright [12], relates Ps,k,
up to an error term, to a Bessel function.

Lemma 5.2 (Lemma 4.2 of [3]). As n→∞

Ps,k = I−s−1

(
π

√
2kn

3

)
+O

(
e
π
2

√
3kn
2

)
.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Cauchy’s integral formula, we see that

a(n) =
1

2πi

∫
C

F(q)

qn+1
dq =

∫ 1
2

− 1
2

F
(
e
2πix−

√
2π√
Ln

)
eπ
√

2n
L
−2πinx dx

=

∫
|x|≤ 1√

2Ln

F
(
e
2πix−

√
2π√
Ln

)
eπ
√

2n
L
−2πinx dx+

∫
1√
2Ln
≤|x|≤ 1

2

F
(
e
2πix−

√
2π√
Ln

)
eπ
√

2n
L
−2πinx dx

=: I ′ + I ′′,

where C := {|q| = e
−
√
2π√
Ln}. The integral I ′ is the main contribution and the integral I ′′

contributes the error term as shown in the following.
We first approximate I ′. Note that since |x| ≤ y and Im(− 1

τ
) = y

x2+y2
≤ 1

y
, the Big-O term

in (5.1) becomes O(yN+1e
π
Ly ). Next we evaluate, with τ = x+ i 1√

2Ln
,

(5.3)

∫
|x|≤ 1√

2Ln

τ se
πi
Lτ
−2πinτ dx =

(
i√

2Ln

)s+1

(−2πi)Ps, 12
L
.

By (5.1), (5.3), and Lemma 5.2, we then find that

I ′ = −2πi
N∑
j=1

A(j)

(
i√

2Ln

)j+1

I−j−1

(
2π

√
2n

L

)
+O

(
n−

N+2
2 e2π

√
2n
L

)
.

Moreover, by assumption (5.2), it is immediate that

|I ′′| � n−
N+2

2 e2π
√

2n
L ,

yielding the statement of the theorem. �

6. Asymptotics for u(m,n)

In light of Theorem 5.1, to obtain an asymptotic formula for u(m,n), it suffices to investi-
gate the asymptotic behavior of the generating function

Um(q) :=
∑
n≥0

u(m,n)qn
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near and away from the dominant pole. These asymptotic behaviors are given in the following
two lemmas whose proofs are given at the end of this section. We start with q = 1. To state
the asymptotic behavior there, we define the constants αm,2k+1 and γ2`,j(κ) by

(6.1) ζ−
1
2 (1− ζ) cos(2πmz) =:

∑
k≥0

iαm,2k+1z
2k+1,

(6.2) γ2`,j(κ) := (2κ)j
(2κπ)2`(−1)`πjB2j+2`+1

(
1
κ

)
(2`)!j!(2j + 2`+ 1)

.

Lemma 6.1. For |x| ≤ y and a positive integer N ≥ 2, as y → 0, we have

Um(q) = e
πi
6τ

∑
k,r,s,`,j≥0

2k+r+s+2`+j+2≤N

αm,2k+1
(πi)r+s(−1)s

12sr!s!
γ2`,j(4)

(
i

2

)j

× E2k+2r+2`+1(0)τ 2k+r+s+2`+j+2 +O
(
|τ |N+1e

π
6
Im(− 1

τ )
)
.

The next lemma gives the behavior of Um(q) away from q = 1.

Lemma 6.2. For y ≤ |x| ≤ 1
2

and some ε > 0, we have

Um(q)� e
π
6y
−ε.

From the above two lemmas, the asymptotic formula for u(m,n) is immediate.

Theorem 6.3. For m ∈ N0 and an integer N ≥ 2, we have, as n→∞,

u(m,n) =
∑

k,r,s,`,j≥0
2k+r+s+2`+j+2≤N

21−j(−1)k+r+s+j+`+1αm,2k+1
πr+s+1

12sr!s!
E2k+2r+2`+1(0)γ2`,j(4)

×X2k+r+s+2`+j+3(n) +O
(
n−

N+2
2 e2π

√
n
3

)
,

where Xk(n) := (2
√

3n)−kI−k(2π
√
n/3).

Proof of Theorem 6.3. Using Lemmas 6.1 and 6.2, we find that Um(q) satisfies the two as-
sumptions (5.1) and (5.2) required for Theorem 5.1. By applying Theorem 5.1 with L = 6
and

A(M) :=
∑

k,r,s,`,j≥0
2k+r+s+2`+j+2=M

αm,2k+1
(πi)r+s(−1)s

12sr!s!
γ2`,j(4)

(
i

2

)j
E2k+2r+2`+1(0),

we deduce the asymptotic formula for u(m,n), as claimed in Theorem 6.3. �

In particular, choosing N = 4 in Theorem 6.3, yields the following by a direct calculation.

Corollary 6.4. For m ∈ N0, we have, as n→∞,

u(m,n) =
π2

2
X3(n) +

π3

3
X4(n) +

π4

72

(
59− 36m2

)
X5(n) +O

(
n−3e2π

√
n
3

)
.

Corollary 6.4 now immediately gives the inequalities for u(m,n).
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Proof of (1.3). Corollary 6.4 yields that

u(j, n)− u(m,n) ∼ π4

2

m2 − j2(
2
√

3n
)5 I−5(2π

√
n

3

)
,

which directly implies the claim since I`(x) > 0 for x ∈ R+. �

Now we turn to proving Lemma 6.1.

Proof of Lemma 6.1. We start with noting that Cauchy’s integral formula and the symmetry
u(−m,n) = u(m,n) imply that

(6.3) Um(q) = 2

∫ 1
2

0

U(ζ; q) cos(2πmz)dz.

Using (1.2), we decompose the generating function as

U(ζ; q) = Gu,1(ζ; q) +Gu,2(ζ; q),

where

Gu,1(ζ; q) :=

∑
n≥0(−1)nζ2n+1q

n(n+1)
2

(ζq)∞ (ζ−1q)∞
,

Gu,2(ζ; q) := (1− ζ)
∑
n≥0

(−1)nζ3nq
n(3n+1)

2

(
1− ζ2q2n+1

)
.

We first approximate the partial theta function occuring in Gu,1. By splitting into even and
odds, we obtain

(6.4)
∑
n≥0

(−1)nζ2n+1q
n(n+1)

2 = q−
1
8

(
F1,4

(
z;
τ

8

)
− F3,4

(
z;
τ

8

))
.

By Theorem 4.1, we find that for |z| < 1/16, (6.4) has the asymptotic expansion

q−
1
8

∑
`≥0

(8πiz)`

`!

N∑
j=0

(4πi)j

j!

(
B2j+`+1

(
3
4

)
−B2j+`+1

(
1
4

))
2j + `+ 1

τ j +O
(
|τ |N+1

)
.

Thus, by employing Lemma 3.2, we have for z ∈ (0, 1/16) the asymptotic expansion

(6.5)

Gu,1 (ζ; q) =
2iq−

1
24 e

πi
6τ ζ−

1
2 (1− ζ) e

πiz2

τ(
1− e 2πiz

τ

)
e−

πiz
τ

∑
`≥0

(8πiz)2`

(2`)!

N∑
j=0

(4πi)j

j!

B2j+2`+1

(
1
4

)
2j + 2`+ 1

τ j

+O
(
|τ |N+1e

83π
768

Im(− 1
τ )
)
,

where we used that Bk(x) = (−1)kBk(1− x) and that z − z2 ≤ 15/256 for z ∈ (0, 1/16).
Moreover, for 1/16 ≤ z ≤ 1/2, we can bound

(6.6) Gu,1(ζ; q)� e
83π
768

Im(− 1
τ )
∑
n≥0

e−
πn(n+1)y

2 � |τ |−
1
2 e

83π
768

Im(− 1
τ ),

where we used that y � |τ | and Lemma 3.2 to estimate the contribution from the infinite
product.
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For Gu,2 and 0 ≤ z ≤ 1/2, we see directly that

(6.7)

∣∣∣∣∣(1− ζ)
∑
n≥0

(−1)nζ3nq
n(3n+1)

2

(
1− ζ2q2n+1

)∣∣∣∣∣�∑
n≥0

e−2πn
2y � |τ |−

1
2 .

Therefore, decomposing the integral in (6.3) as

Um(q) = 2

∫ 1
16

0

Gu,1(ζ; q) cos(2πmz)dz

+ 2

∫ 1
2

1
16

Gu,1(ζ; q) cos(2πmz)dz + 2

∫ 1
2

0

Gu,2(ζ; q) cos(2πmz)dz

=: Mu(q) + Eu,1(q) + Eu,2(q),

we observe, by (6.6) and (6.7), that

(6.8) Eu,1(q) + Eu,2(q)� |τ |−
1
2 e

83π
768

Im(− 1
τ ).

On the other hand, by (6.5), Lemma 3.4 (i), and by expanding e
πiz2

τ , we deduce that Mu(q)
equals
(6.9)

iq−
1
24 e

πi
6τ

∑
k,r,`,j≥0

2k+r+2`+j+2≤N

iαm,2k+1
(πi)r

r!

(
−2ij

)
2−jγ2`,j(4)τ j−r

∫ 1
16

0

z2k+1+2r+2`

sinh
(
πiz
τ

) dz
+O

(
|τ |N+1e

π
6
Im(− 1

τ )
)

= q−
1
24 e

πi
6τ

∑
k,r,`,j≥0

2k+r+2`+j+2≤N

αm,2k+1
(πi)r

r!
γ2`,j(4)

(
i

2

)j
E2k+2r+2`+1(0)τ 2k+r+2`+j+2

+O
(
|τ |N+1e

π
6
Im(− 1

τ )
)
,

where αm,2k+1 and γ2`,j(4) are defined by (6.1) and (6.2), respectively. Therefore, combining

(6.8) and (6.9) and expanding q−
1
24 , gives the claimed asymptotic expansion. �

We now turn to the proof of Lemma 6.2.

Proof of Lemma 6.2. Recall that [2, Theorem 2.1]

(6.10)
1

(ζq)∞ (ζ−1q)∞
=

1− ζ
(q)2∞

∑
n∈Z

(−1)nq
n(n+1)

2

1− ζqn
.

Approximating∣∣∣∣∣(1− ζ)
∑
n∈Z

(−1)nq
n(n+1)

2

1− ζqn

∣∣∣∣∣� 1 +
∑
n≥1

|q|
n(n+1)

2

1− |q|n
� 1 +

1

1− |q|
∑
n≥1

e−2πn
2y � y−

3
2 ,(6.11) ∣∣∣∣∣∑

n≥0

(−1)nζ3nq
n(3n+1)

2

∣∣∣∣∣�∑
n≥0

e−2πn
2y � y−

1
2 ,
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we obtain

U(ζ; q)� y−2
1

|(q)∞|2
+ y−

1
2 .

In summary, by combining the above bounds with Lemma 3.3, in the region y ≤ |x| ≤ 1
2
, we

have

Um(q) = 2

∫ 1
2

0

U(ζ; q) cos(2πmz)dz � y−2
∣∣∣∣ 1

(q)2∞

∣∣∣∣+y− 1
2 � e(

π
6y
−ε),

as desired. �

7. Asymptotics for w(m,n)

The following two lemmas give the asymptotic behavior of the generating functionWm(q) :=∑
nw(m,n)qn near and away from q = 1. Firstly, we have near q = 1.

Lemma 7.1. For |x| ≤ y and an integer N ≥ 2, we have, as y → 0,

Wm(q) = e
πi
6τ

1

2

∑
k,r,t≥0

2k+r+t+2≤N

αm,2k+1
(πi)r+t

6tr!t!
E2k+2r+1(0)τ 2k+r+t+2

+ 2
∑

k,r,j,`,s,t≥0
j+r+t+2k+2`+2s+2≤N

αm,2k+1
(−1)t(πi)r+t

12tr!t!

(
i

2

)j
γ2`,j(4)

(−1)s(2π)2s

(2s)!

× E2r+2k+2`+2s+1(0)τ j+r+t+2k+2`+2s+2

+O
(
|τ |N+1e

π
6
Im(− 1

τ )
)
.

Since the proof of the above lemma is similar to that of Lemma 6.1, we omit it here.
By using Lemma 3.3, (6.10), and proving as before that

W (ζ; q)� y−2
1

|(q)∞|2
+ y−

1
2 ,

we deduce the following asymptotic behavior away from q = 1.

Lemma 7.2. For y ≤ |x| ≤ 1
2
, we have, for some ε > 0,

Wm(q)� e
π
6y
−ε.

From Lemmas 7.1 and 7.2, we find that Wm(q) satisfies the two assumptions required for
Theorem 5.1. Thus, by applying this theorem, we deduce that
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Theorem 7.3. For m ∈ N0 and any integer N ≥ 2, we have, as n→∞,

w(m,n) =
∑
k,r,t≥0

2k+r+t+2≤N

(−1)r+t+k+1αm,2k+1
πr+t+1

6tr!t!
E2k+2r+1(0)X2k+r+t+3(n)

+ 4
∑

k,r,j,`,s,t≥0
j+r+2k+2`+2s+t+2≤N

(−1)r+t+k+j+`+s+1αm,2k+1
πr+t+2s+122s−j

12tr!t!(2s)!
γ2`,j(4)

× E2r+2k+2`+2s+1(0)X2k+r+t+2`+2s+j+3(n) +O
(
n−

N+2
2 e2π

√
n
3

)
.

In particular, N = 5 yields, by a lengthy but straightforward calculation, the following
asymptotic main terms.

Corollary 7.4. For a fixed non-negative integer m, we have, as n→∞,

w(m,n) =
π3

3
X4(n) +

55π4

24
X5(n) +

π5(1841− 108m2)

324
X6(n) +O

(
n−

7
2 eπ
√

4n
3

)
.

Inequality (1.4) in Theorem 1.1 is now immediate from the above corollary.

8. Asymptotics for v(m,n)

The following two lemmas, whose proof we omit, describe the asymptotic behavior of
Vm(q) :=

∑
n≥0 v(m,n)qn near and away from the dominant pole. Near q = 1, we have

Lemma 8.1. For |x| ≤ y and any integer N ≥ 2, we have, as y → 0,

Vm(q) = e
πi
6τ

∑
k,r,s,`,j≥0

2k+r+s+2`+j+2≤N

αm,2k+1
(−1)s(πi)r+s

2sr!s!
γ2`,j(3)ijE2k+2r+2`+1(0)τ 2k+r+s+2`+j+2

+O
(
|τ |N+1e

π
6
Im(− 1

τ )
)
.

By using Lemma 3.3, (6.10), and proving as before that

V (ζ; q)� y−2
1

|(q)∞|2
+ y−

1
2 ,

we deduce the following asymptotic behavior away from q = 1.

Lemma 8.2. For y ≤ |x| ≤ 1
2
, we have, for some ε > 0,

Vm(q)� e
π
6y
−ε.

From Lemmas 8.1 and 8.2, we find that Vm(q) satisfies the two assumptions in Theorem
5.1. Thus, again using Theorem 5.1, we deduce the following result.

Theorem 8.3. For a fixed non-negative integer m and a positive integer N ≥ 2, we have as
n→∞,

v(m,n) =
∑

k,r,s,`,j≥0
2k+r+s+2`+j+2≤N

2(−1)k+r+s+j+`+1αm,2k+1
πr+s+1

2sr!s!
E2k+2r+2`+1(0)γ2`,j(3)

×X2k+r+s+2`+j+3(n) +O
(
n−

N+2
2 eπ
√

4n
3

)
.
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In particular, N = 4 yields the following asymptotic main terms.

Corollary 8.4. For a fixed non-negative integer m, we have, as n→∞,

v(m,n) =
π2

3
X3(n) +

4π3

27
X4(n) +

π4 (101− 72m2)

216
X5(n) +O

(
n−3eπ

√
4n
3

)
.

Inequality (1.5) in Theorem 1.1 is now immediate from the above corollary.

9. Asymptotics for ν(m,n)

As the generating function of ν(m,n) contains a quotient of two Jacobi theta functions,
investigating its asymptotic behavior requires more work but still fits into the general method
developed in Sections 3 and 4. The following two lemmas describe the asymptotic behavior
of Vm(q) :=

∑
n≥0 ν(m,n)qn. We start with the asymptotic behavior near q = 1. For this, let

γ2`,j(4) be given as in (6.2), and βm,2k is the constant defined by

cos(2πmz)

ζ−
1
2 + ζ

1
2

=:
∑
k≥0

βm,2kz
2k.

The proofs of the following two lemmas are given at the end of this section.

Lemma 9.1. For |x| < y and a positive integer N , as y → 0,

Vm(q) =
√

2e
πi
8τ

∑
k,r,`,j,s≥0

j+r+2k+2`+1≤N

(−1)sβm,2k
(πi)r+s

2r+s+j+2`r!s!
ij+1γ2`,j(4)E2k+2r+2`τ

j+r+s+2k+2`+1

+O
(
|τ |N+1e

π
8
Im(− 1

τ )
)
.

Away from q = 1, we have the following behavior.

Lemma 9.2. For y ≤ |x| ≤ 1
2
, we have, for some ε > 0,

Vm(q)� e
π
8y
−ε.

Lemmas 9.1 and 9.2 enable us to apply Theorem 5.1 to obtain the following asymptotic
formula for ν(m,n).

Theorem 9.3. For m ∈ N0 and N ∈ N, we have

ν(m,n) = 2
3
2

∑
k,r,`,j,s≥0

j+r+s+2k+2`+1≤N

βm,2k
πr+s+1

2r+s+j+2`r!s!
γ2`,j(4)(−1)j+r+k+`+1E2k+2r+2`Yj+r+s+2k+2`+2(n)

+O
(
n−

N+2
2 eπ

√
n
)
,

where Yk(n) := (4
√
n)−kI−k(π

√
n).

By expanding the first three non-zero terms, we find the following asymptotic main terms.

Corollary 9.4. We have

ν(m,n) =
π

2
√

2
Y2(n) +

5π2

8
√

2
Y3(n) +

π3(77− 64m2)

64
√

2
Y4(n) +O

(
n−

5
2 eπ
√
n
)
.
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Now we prove Lemma 9.1.

Proof of Lemma 9.1. As before, we write

V (ζ; q) = Gν,1(ζ; q) +Gν,2(ζ; q),

where

Gν,1(ζ; q) :=
ζ(−q)∞

(1 + ζ) (ζq; q2)∞ (ζ−1q; q2)∞

∑
n≥0

(−1)nζnq
n(n+1)

2 ,

Gν,2(ζ; q) := − ζ

1 + ζ

∑
n≥0

(−1)nζnqn
2+n.

By splitting the partial theta function into even and odd terms, we find that

Gν,1(ζ; q) =
ζ

1
2 q−

1
8 (ζq2; q2)∞ (ζ−1q2; q2)∞ (q2; q2)∞
(1 + ζ) (ζq)∞ (ζ−1q)∞ (q)∞

(
F 1

2
,2

(
z;
τ

2

)
− F 3

2
,2

(
z;
τ

2

))
,

where we used that

(−q)∞
(ζq; q2)∞ (ζ−1q; q2)∞

=
(ζq2; q2)∞(ζ−1q2; q2)∞(q2; q2)∞

(ζq)∞ (ζ−1q)∞ (q)∞
.

By employing Lemma 3.1, we first approximate the contribution coming from the infinite
product, namely, we have
(9.1)

ζ
1
2 q−

1
8 (ζq2; q2)∞ (ζ−1q2; q2)∞ (q2; q2)∞
(1 + ζ) (ζq)∞ (ζ−1q)∞ (q)∞

=
ζ

1
2 q−

1
4 e

πi
8τ e

πiz2

2τ

√
2(1 + ζ)e−

πiz
2τ

(
1 + e

πiz
τ

) (1 +O
(
e−π(1−z)Im(− 1

τ )
))

.

Combining this with Theorem 4.1, we obtain that, for 0 ≤ z ≤ 1
4
,

Gν,1 (ζ; q) = −
√

2ζ
1
2 q−

1
4 e

πi
8τ e

πiz2

2τ

(1 + ζ)e−
πiz
2τ

(
1 + e

πiz
τ

)∑
`≥0

(4πiz)2`

(2`)!

N∑
j=0

(4πi)j

j!

B2j+2`+1

(
1
4

)
2j + 2`+ 1

τ j

+O
(
|τ |N+1e

π
32

Im(− 1
τ )
)
.

In the remaining range 1
4
≤ z ≤ 1

2
, we bound

Gν,1(ζ; q)� |τ |−
1
2 e

π
32

Im(− 1
τ ).

Finally, for 0 < z < 1
2
, we have

Gν,2(ζ; q)� |τ |−
1
2 .

Proceeding as before, but using the second formula in Lemma 3.4, finishes the proof. �

We next bound the generating function away from the dominant pole.

Proof of Lemma 9.2. Exactly as before, one can show that all contributions other then those
from the infinite product have at most polynomial growth in 1/y, and thus it suffices to show
that for y ≤ |x| ≤ 1

2

(−q)∞
(ζq; q2)∞ (ζ−1q; q2)∞

� e
π
8y
−ε,
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for some ε > 0. From (6.10) we obtain that

(−q)∞
(ζq; q2)∞ (ζ−1q; q2)∞

=
1

(q)∞ (ζq2; q2)∞

∑
n∈Z

(−1)nqn(n+1)

1− ζq2n+1
.

As in (6.11), we obtain ∣∣∣∣∣∑
n∈Z

(−1)nqn(n+1)

1− ζq2n+1

∣∣∣∣∣� y−
3
2 .

To bound the remaining product, we write

log

(
1

(q)∞ (q2; q2)∞

)
=
∑
n≥1

qn

n

(
1

1− qn
+

1

1− q2n

)
,

which implies that

log

(∣∣∣∣ 1

(q)∞ (q2; q2)∞

∣∣∣∣) ≤∑
n≥1

|q|n

n

(
1

1− |q|n
+

1

1− |q|2n

)
− |q|

(
1

1− |q|
− 1

|1− q|

)
.

The sum on n now equals

log

(
1

(|q|; |q|)∞ (|q|2; |q|2)∞

)
=

π

8y
+O (log(y)) .

Moreover, as in the proof of Lemma 3.5 in [3], we may bound

1− |q| = 2πy +O
(
y2
)
,

|1− q| ≥ 2
√

2πy.

This easily yields the claim. �
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