A CONVERSE THEOREM FOR HILBERT-JACOBI FORMS

KATHRIN BRINGMANN AND SHUICHI HAYASHIDA

1. Introduction and Statement of Results

Doi and Naganuma (see [6]) constructed a lifting map from elliptic modular forms to Hilbert modular forms in the case of a real quadratic field with narrow class number one. A Converse Theorem for Hilbert modular forms was one of their basic tools. This gives rise to the question of constructing a lifting map in the case of Jacobi forms. Here we do the first step in this direction and prove a Converse Theorem for Hilbert-Jacobi forms.

Studying the connection between functions that satisfy certain transformation laws and the functional equation of their associated L-functions has value on its own and a long history. In a celebrated paper (see [9]), Hecke showed that the automorphy of a cusp form with respect to $SL_2(\mathbb{Z})$ is equivalent to the functional equation of its associated L-functions. That only one functional equation is needed is in a way atypical and highly depends on the fact that $SL_2(\mathbb{Z})$ is generated by the matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. This situation already changes if one considers cusp forms with respect to a subgroup of $SL_2(\mathbb{Z})$ which have a character. In this case the functional equation of twists is required (see [18]).

Hecke's work has inspired an astonishing number of people and a lot of generalizations of his "Converse Theorem" have been made, e.g. generalizations to Hilbert modular forms as mentioned above (see [6]), Siegel modular forms (see [1], [10]) or Jacobi forms (see [14],[15]). Maass showed an analogue of Hecke's result for nonholomorphic modular forms (see [13]). He proved that these correspond to certain L-functions in quadratic fields. An outstanding generalization of a Converse Theorem for GL(n) was done by Jacquet and Langlands for n = 2 (see [11]), Jacquet, Piatetski-Shapiro, and Shalika for n = 3 (see [12]) and Cogdell and Piatetski-Shapiro for general n (see [5]).

In this paper, we prove a Converse Theorem for Hilbert-Jacobi cusp forms over a totally real number field K of degree $g := [K : \mathbb{Q}]$ with discriminant D_K and narrow class number 1. The case g = 1, i.e., Jacobi forms over \mathbb{Q} as considered by Eichler and Zagier (see [7]), is treated in two interesting papers by Martin (see [14] and [15]). To describe our result, we consider functions $\phi(\tau, z)$ from $\mathbb{H}^g \times \mathbb{C}^g$ into \mathbb{C} that have a Fourier expansion with certain conditions on the Fourier coefficients (see (3.4),(3.5), and (3.6)). We show that ϕ is a Hilbert-Jacobi cusp form (for the definition see Section 2) if

Date: August 17, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 11F41, 11F50, 11 F66.

and only if certain Dirichlet series $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$ (see (3.9)) satisfy functional equations. More precisely, we show the following.

Theorem 1.1. Let k be an integer and $m \in \mathfrak{d}_K^{-1}$, the inverse different of K. A function ϕ satisfying (3.3), (3.4), (3.5), and (3.6) is a Hilbert-Jacobi cusp form of weight k and index m if and only if for all ν satisfying (3.1) and (3.2) and for all $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$ the functions $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$ (see Definition 3.2) have analytic continuations to the whole complex plane, are bounded in every vertical strip and satisfy the functional equations

$$\mathcal{L}(s, \phi, r, \chi_{m,\nu}) = \frac{1}{\sqrt{D_K}} i^{-kg} \, \mathbb{N}(2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) \mathcal{L}(k - s - 1/2, \phi, \mu, \chi_{m,-\nu}),$$

see Section 2 for the definition of \mathbb{N} and $e_{2m}(\cdot)$.

We proceed as follows: In Section 2 we recall basic facts about Hilbert-Jacobi cusps forms. In particular we show that these have a theta decomposition (see (2.3)), where the involved theta series satisfy some transformation law (see Lemma 2.1). Section 3 deals with certain characters of Hecke type and the Dirichlet series needed for the Converse Theorem. In Section 4, we prove Theorem 1.1.

ACKNOWLEDGEMENTS

The authors thank N. Skoruppa and O. Richter for their helpful comments.

2. Basic Facts about Hilbert-Jacobi Cusp Forms

We let K be a totally real number field of degree $g := [K : \mathbb{Q}]$ and denote by \mathcal{O}_K , \mathcal{O}_K^{\times} , \mathfrak{d}_K , and D_K its ring of integers, units, different, and discriminant, respectively. We denote the j-th embedding $(1 \le j \le g)$ of an element $l \in K$ by $l^{(j)}$. An element $l \in K$ is said to be totally positive (l > 0) if all its embeddings into \mathbb{R} are positive.

Let us now briefly recall some basic facts about Hilbert-Jacobi cusp forms (see also [16]). We put $\Gamma_K := \operatorname{SL}_2(\mathcal{O}_K)$. Let the Hilbert-Jacobi group be defined as the set $\Gamma_K^J := \Gamma_K \ltimes (\mathcal{O}_K \times \mathcal{O}_K)$, with the group multiplication

$$\gamma_1 \cdot \gamma_2 := \left(\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}, (\lambda_1, \mu_1) \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} + (\lambda_2, \mu_2) \right),$$

where we put $\gamma_i := \begin{pmatrix} \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}, (\lambda_i, \mu_i) \end{pmatrix} \in \Gamma_K^J, \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \in \Gamma_K$, and $(\lambda_i, \mu_i) \in \mathcal{O}_K \times \mathcal{O}_K$.

The Hilbert-Jacobi group is generated by the following three types of elements

(2.1)
$$\left(\begin{pmatrix} \epsilon & \lambda \\ 0 & \epsilon^{-1} \end{pmatrix}, (0,0) \right), \quad \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, (0,0) \right), \text{ and } \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (\lambda,\mu) \right),$$

where $\lambda, \mu \in \mathcal{O}_K$ and $\epsilon \in \mathcal{O}_K^{\times}$ (see [2], [4] and [17]).

The Hilbert-Jacobi group acts on $\mathbb{H}^g \times \mathbb{C}^g$ (\mathbb{H} is the usual upper half-plane) by

$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}, (\lambda, \mu) \end{pmatrix} \circ (\tau, z)$$

$$:= \begin{pmatrix} \begin{pmatrix} a^{(1)}\tau_1 + b^{(1)} \\ c^{(1)}\tau_1 + d^{(1)} \end{pmatrix}, \cdots, \frac{a^{(g)}\tau_g + b^{(g)}}{c^{(g)}\tau_g + d^{(g)}} \end{pmatrix}, \begin{pmatrix} z_1 + \lambda^{(1)}\tau_1 + \mu^{(1)} \\ c^{(1)}\tau_1 + d^{(1)} \end{pmatrix}, \ldots, \frac{z_g + \lambda^{(g)}\tau_g + \mu^{(g)}}{c^{(g)}\tau_g + d^{(g)}} \end{pmatrix} \end{pmatrix},$$

$$\text{where } \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}, (\lambda, \mu) \end{pmatrix} \in \Gamma_K^J, \ \tau = (\tau_1, \cdots, \tau_g) \in \mathbb{H}^g \ \text{and} \ z = (z_1, \cdots, z_g) \in \mathbb{C}^g.$$

$$\text{Throughout this paper we write } \tau = u + iv, \ z = x + iy, \ \tau_j = u_j + iv_j, \ \text{and} \ z_j = x_j + iy_j$$

$$(1 \leq j \leq g).$$

Let $k \in \mathbb{N}$, $m \in \mathfrak{d}_K^{-1}$ totally positive, $\gamma = \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (\lambda, \mu) \right) \in \Gamma_K^J$, and a function $\phi : \mathbb{H}^g \times \mathbb{C}^g \to \mathbb{C}$. Then we define

$$\phi|_{k,m}\gamma(\tau,z) := \mathbb{N}(c\tau+d)^{-k} \cdot e\left(-\left(\frac{cm(z+\lambda\tau+\mu)^2}{c\tau+d} + m\tau\lambda^2 + 2m\lambda z\right)\right) \cdot \phi(\gamma \circ (\tau,z)),$$

where for $\alpha \in K$ and for $z \in \mathbb{C}^g$, we define $\mathbb{N}(\alpha z) := \prod_{j=1}^g \left(\alpha^{(j)} z_j\right)$, $\operatorname{tr}(az) := \sum_{j=1}^g a^{(j)} z_j$, and $e(\alpha z) := e^{2\pi i \operatorname{tr}(\alpha z)}$.

A holomorphic function $\phi: \mathbb{H}^g \times \mathbb{C}^g \to \mathbb{C}$ is called a *Hilbert-Jacobi cusp form* of weight k and index m if $\phi|_{k,m}\gamma(\tau,z) = \phi(\tau,z)$ for all $\gamma \in \Gamma_K^J$, and if it has a Fourier expansion of the form $\sum_{\substack{n,r \in \mathfrak{d}_K^{-1} \\ 4nm-r^2>0}} c(n,r) \, e\, (n\tau+rz)$.

In [16] m is chosen to be in \mathcal{O}_K , but our choice $m \in \mathfrak{d}_K^{-1}$ seems more natural since in this way the coefficients of Hilbert-Siegel modular forms are examples for Jacobi forms as in the classical case.

If ϕ is a Hilbert-Jacobi cusp form, then the transformation $(\tau, z) \to (\tau, z + \lambda \tau + \mu)$ leads to

$$(2.2) c(n,r) = c(n+\lambda r + \lambda^2 m, r + 2\lambda m) (\forall \lambda \in \mathcal{O}_K).$$

From this we can deduce that

(2.3)
$$\phi(\tau, z) = \sum_{r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} f_r(\tau) \,\vartheta_{m,r}(\tau, z) ,$$

where for $r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)$, we define

(2.4)
$$f_r(\tau) := \sum_{\substack{n \in \mathfrak{d}_K^{-1} \\ 4nm-r^2 > 0}} c(n,r) e_{4m} \left(\left(4nm - r^2 \right) \tau \right) ,$$

(2.5)
$$\vartheta_{m,r}(\tau,z) := \sum_{\lambda \in \mathcal{O}_K} e_{4m} \left((r + 2\lambda m)^2 \tau + 2m (r + 2\lambda m) z \right),$$

and where for $\alpha, \beta \in K$, $\beta \neq 0$, and $z \in \mathbb{C}^g$, we define $e_{\beta}(\alpha z) := e(\beta^{-1}\alpha z)$. The theta series $\vartheta_{m,r}$ satisfy the following transformation law.

Lemma 2.1. If $m \in \mathfrak{d}_K^{-1}$ totally positive, and $\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)$, then we have

$$\vartheta_{m,\mu}\left(-\frac{1}{\tau},\frac{z}{\tau}\right) = \frac{1}{\sqrt{D_K}}\mathbb{N}\left((\tau/i)^{1/2}\right)\cdot\mathbb{N}\left(2m\right)^{-1/2}\cdot e\left(\frac{m\cdot z^2}{\tau}\right)\sum_{r\in\left(\mathfrak{d}_K^{-1}/2m\mathcal{O}_K\right)}e_{2m}(-\mu r)\vartheta_{m,r}(\tau,z),$$

where we put $(\tau/i)^{1/2} := ((\tau_1/i)^{1/2}, ..., (\tau_g/i)^{1/2})$, and we take the principal value of the square root, namely $-\pi/2 < \arg(w) \le \pi/2$ for $w \in \mathbb{C}$.

From Lemma 2.1 we obtain

Corollary 2.2. A function $\phi: \mathbb{H}^g \times \mathbb{C}^g$ having a decomposition of the form (2.3) satisfies

$$\phi\left(-\frac{1}{\tau}, \frac{z}{\tau}\right) = \mathbb{N}(\tau)^k e\left(\frac{mz^2}{\tau}\right)\phi(\tau, z)$$

if and only if

$$(2.6) f_r(\tau) = \frac{1}{\sqrt{D_K}} i^{-kg} \, \mathbb{N}\left((\tau/i)^{1/2-k} \right) \, \mathbb{N}(2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) f_\mu \left(-\frac{1}{\tau} \right),$$

for all $r \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)$. In particular, if ϕ is a Hilbert-Jacobi cusp form, then ϕ satisfies (2.6).

Exactly as in the case of elliptic modular forms, one can show;

Lemma 2.3. Assume that ϕ is a Hilbert-Jacobi cusp form, with f_r defined as in (2.4). Let c_1 be a positive real number and let S be the subset of \mathbb{H}^g such that for all $\tau \in S$ the components v_j $(1 \leq j \leq g)$ are larger than c_1 . Then we have

$$(2.7) |f_r(\tau)| \ll_{\phi, c_1} e^{-c_2 \left(\sum_{j=1}^g v_j\right)},$$

where c_2 is a positive constant, and where the constant implied in \ll_{ϕ,c_1} depends on ϕ and on c_1 .

Lemma 2.4. If ϕ is a Hilbert-Jacobi cusp form of weight k and index m, then the function

$$g(\tau, z) := \mathbb{N}(v)^{k/2} \exp\left(-2\pi \operatorname{tr}\left(\frac{my^2}{v}\right)\right) \phi(\tau, z)$$

is bounded on $\mathbb{H}^g \times \mathbb{C}^g$.

By using Lemma 2.4, we have the following.

Lemma 2.5. If ϕ is a Hilbert-Jacobi cusp form of weight k and index m with Fourier coefficients c(n,r), then $|c(n,r)| \ll_{\phi} \mathbb{N}(4mn-r^2)^{k/2}$.

3. Hecke-type characters and Dirichlet series

For the remaining we assume that k is an integer. For $m \in \mathfrak{d}_K^{-1}$, we let T_m be the subgroup of \mathcal{O}_K^{\times} defined by

$$T_m := \left\{ \epsilon \in \mathcal{O}_K^{\times} \mid \epsilon - 1 \in 2m\mathfrak{d}_K \right\} .$$

We have that $\epsilon \in \mathcal{O}_K^{\times}$ is in T_m if and only if $\epsilon r - r \in 2m\mathcal{O}_K$ for every $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$. We let u_1, \ldots, u_{g-1} be a basis of T_m^2 , where $T_m^2 := \{\epsilon^2 \mid \epsilon \in T_m\}$. We take $\epsilon_1, \ldots, \epsilon_{g-1} \in T_m$ which satisfy $\epsilon_l^2 = u_l$ for $l = 1, \ldots, g-1$. If m is not a generator of the inverse different, then T_m does not contain -1, hence the ϵ_l are uniquely determined. If m is a generator of the inverse different, then T_m contains -1, and we choose $\epsilon_l > 0$ as a solution of the above equation.

For integers N_l $(1 \le l \le g-1)$, we choose pure imaginary solutions ν_1, \ldots, ν_g which satisfy the following equations

(3.1)
$$\sum_{j=1}^{g} \nu_j = 0,$$

(3.2)
$$\sum_{j=1}^{g} \nu_j \log \left(u_l^{(j)} \right) = 2\pi i \left(N_l + \frac{1}{2} \delta_l \right),$$

where we put $\delta_l = 0$ or 1 if $\mathbb{N}(\epsilon_l)^k = 1$ or -1, respectively. For any integers N_l (l = 1, ..., q - 1) we have a solution to (3.1) and (3.2), because

$$\det\begin{pmatrix} 1 & \dots & 1\\ \log(u_1^{(1)}) & \dots & \log(u_1^{(g)})\\ \vdots & \dots & \vdots\\ \log(u_{a-1}^{(1)}) & \dots & \log(u_{a-1}^{(g)}) \end{pmatrix} = (-1)^{g+1}g \cdot \det((\log(u_l^{(j)}))_{l,j=1,\dots,g-1}) \neq 0,$$

where the last non-equality can be obtained from the fact that basis elements u_l are multiplicatively independent.

For $x \in K$ and $\nu := (\nu_1, \dots, \nu_g)$ satisfying (3.1) and (3.2), we set

$$\chi_{m,\nu}(x) := \prod_{j=1}^{g} |x^{(j)}|^{\nu_j}.$$

To define the Dirichlet series needed, we consider functions $\phi(\tau, z)$ from $\mathbb{H}^g \times \mathbb{C}^g$ into \mathbb{C} that have a Fourier expansion of the form

(3.3)
$$\phi(\tau, z) = \sum_{\substack{n, r \in \mathfrak{d}_K^{-1} \\ 4nm - r^2 > 0}} c(n, r)e(n\tau + rz)$$

that is absolutely and locally uniformly convergent. We regard c(n,r) = 0 unless 4nm $r^2 > 0$ or unless $n, r \in \mathfrak{d}_K^{-1}$. Moreover we demand that its Fourier coefficients satisfy

$$(3.4) c(n,r) = c(n+\lambda r + \lambda^2 m, r + 2\lambda m) (\forall \lambda \in \mathcal{O}_K),$$

$$(3.5) c(\epsilon^2 n, \epsilon r) = \mathbb{N}(\epsilon)^k c(n, r) (\forall \epsilon \in \mathcal{O}_K^{\times}),$$

$$(3.6) c(n,r) \ll_{\phi} \mathbb{N}(4nm - r^2)^M$$

for an integer M.

(1) Condition (3.4) implies that we can decompose $\phi(\tau, z)$ as in (2.3). Lemma 3.1. (2) Conditions (3.4) and (3.5) imply by the definition of T_m that

$$c_r(N) := c\left(\frac{N+r^2}{4m}, r\right) \qquad \left(N \in \mathfrak{d}_K^{-2}\right)$$

is well defined on $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$, where we put $\mathfrak{d}_K^{-2} := \mathfrak{d}_K^{-1} \cdot \mathfrak{d}_K^{-1}$. (3) ϕ is a Hilbert-Jacobi cusp form if and only if (3.3), (3.4), (3.5), and (3.6) hold, and if ϕ satisfies the transformation law

(3.7)
$$\phi\left(-\frac{1}{\tau}, \frac{z}{\tau}\right) = \mathbb{N}(\tau)^k e\left(\frac{mz^2}{\tau}\right) \phi(\tau, z).$$

(4) From Corollary 2.2, we see that a function ϕ satisfying (3.3), (3.4), (3.5), and (3.6) is a Hilbert-Jacobi cusp form if and only if (2.6) is satisfied for all $r \in$ $(\mathfrak{d}_K^{-1}/2m\mathcal{O}_K).$

Proof. These are straightforward. We omitted the proof of this Lemma.

Let us now define the Dirichlet series needed for Theorem 1.1.

Definition 3.2. For a function ϕ satisfying (3.3), (3.4), (3.5), and (3.6), $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$, and ν satisfying (3.1) and (3.2), we define

$$(3.8) L(s, \phi, r, \chi_{m,\nu}) := \sum_{\alpha \in \mathfrak{d}_K^{-2}/T_m^2} \chi_{m,\nu}(\alpha) \cdot c_r(\alpha) \cdot \mathbb{N}(\alpha)^{-s},$$

$$(3.9) \mathcal{L}(s,\phi,r,\chi_{m,\nu}) := 2^{gs}\pi^{-gs}\prod_{j=1}^{g}\Gamma(s-\nu_{j})\mathbb{N}(m)^{s}\prod_{j=1}^{g}\left(m^{(j)}\right)^{-\nu_{j}}L(s,\phi,r,\chi_{m,\nu}).$$

Due to (3.6) the series $L(s, \phi, r, \chi_{m,\nu})$ is absolutely convergent for $\sigma = Re(s) > M+1$. We have the following lemma.

Lemma 3.3. For $\sigma > M + 1$, we have the identity

(3.10)
$$\mathcal{L}(s,\phi,r,\chi_{m,\nu}) = \int_{T_m^2 \backslash \mathbb{R}_+^g} f_r(iy) \mathbb{N}(y^{s-\nu}) \frac{dy}{\mathbb{N}(y)} ,$$

where $f_r(\tau)$ is the form defined in (2.4) with Fourier coefficients c(n,r).

Proof. This can be directly calculated by using the Fourier expansion of $f_r(iy)$ and by using the relation $\mathbb{N}(u_l^{\nu}) = \mathbb{N}(\epsilon_l)^k$ for l = 1, ..., g - 1, where u_l and ϵ_l are defined in the beginning of this section. We leave the details to the reader (see also [3] p.87).

4. Proof of Theorem 1.1

Theorem 1.1 follows directly from the two lemmas proven in this section.

Lemma 4.1. If ϕ is a Hilbert-Jacobi cusp form, $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$, and ν satisfies (3.1) and (3.2), then the functions $\mathcal{L}(s,\phi,r,\chi_{m,\nu})$ have analytic continuations to the whole complex plane. They are of rapid decay, and satisfy the functional equations

(4.1)
$$\mathcal{L}(s, \phi, r, \chi_{m,\nu}) = \frac{1}{\sqrt{D_K}} i^{-kg} \, \mathbb{N}(2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) \mathcal{L}(k-s-1/2, \phi, \mu, \chi_{m,-\nu}).$$

Proof. To prove the analytic continuation of $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$, we show that the right-hand side of (3.10) is analytic for all s. For this, we separate the integral in a part with $\mathbb{N}(y) \geq 1$ and a part with $\mathbb{N}(y) \leq 1$. Using the transformation law of f_r , one can see that it is enough to consider the part with $\mathbb{N}(y) \geq 1$. To estimate this, we use the variables $y_0 \in \mathbb{R}_+$ and $t = (t_1, ..., t_{g-1}) \in \mathbb{R}^{g-1}$, where

$$y_j := y_0 \cdot e^{\sum_{l=1}^{g-1} t_l \log(u_l^{(j)})}.$$

Then a fundamental domain of $T_m^2 \backslash \mathbb{R}_+^g$ is given by the inequalities $y_0 > 0$ and $0 \le t_l < 1$ (l = 1, ..., g - 1) and the part with $\mathbb{N}(y) \ge 1$ is given by $y_0 \ge 1$. The analyticity now follows if we use Lemma 2.3, since for c > 0 and $\sigma \in \mathbb{R}$ arbitrary the integral $\int_1^\infty e^{-cy} y^{\sigma} dy$ is convergent. The boundness of $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$ in every vertical strip follows also from this convergence.

Moreover, by using the transformation law of f_r and Lemma 3.3, equation (4.1) follows since 1/y runs through $T_m^2 \setminus \mathbb{R}_+^g$ if y does.

Lemma 4.2. Assume that ϕ is a function satisfying (3.3), (3.4), (3.5), and (3.6), and that for all $r \in \mathfrak{d}_K^{-1}/(2m\mathcal{O}_K)$ and for all ν satisfying (3.1) and (3.2) the series $\mathcal{L}(s,\phi,r,\chi_m)$ have analytic continuations, satisfy (4.1) and are of rapid decay. Then ϕ is a Hilbert-Jacobi cusp form of weight k and of index m.

Proof. By analytic continuation it is enough to show (2.2) for $\tau = iy$. We parametrize the integrals as before and use the Mellin inversion formula to get for σ sufficiently large

(4.2)
$$\int_{[0,1]^{g-1}} f_r(iy_0 \cdot e^{tR}) e^{-\nu tR} dt = \frac{1}{2gR_m \pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \mathcal{L}(s/g, \phi, r, \chi_{m,\nu}) y_0^{-s} ds,$$

where

$$R_{m} := \det((\log(u_{l}^{(j)}))_{l,j=1,\dots,g-1})$$

$$f_{r}(iy_{0} \cdot e^{tR}) := f_{r}\left(iy_{0}e^{\sum_{l=1}^{g-1}t_{l}\log(u_{l}^{(1)})}, \dots, iy_{0}e^{\sum_{l=1}^{g-1}t_{l}\log(u_{l}^{(g)})}\right),$$

$$e^{-\nu tR} := \prod_{j=1}^{g} \prod_{l=1}^{g-1} e^{-\nu_{j}t_{l}\log(u_{l}^{(j)})} = \prod_{l=1}^{g-1} e^{-2\pi i\left(N_{l}+\frac{1}{2}\delta_{l}\right)t_{l}},$$

$$(4.3)$$

where N_l and δ_l appeared in (3.2). Applying (4.1) and making the substitution $s \to g(k-1/2-s)$ gives that the right-hand side of (4.2) equals

$$\frac{1}{\sqrt{D_K}} i^{-kg} \, \mathbb{N}(2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) y_0^{-g(k-1/2)} \\
\times \frac{1}{2gR_m \pi i} \int_{g(k-1/2)-\sigma-i\infty}^{g(k-1/2)-\sigma+i\infty} \mathcal{L}(s/g, \phi, \mu, \chi_{m,\nu}) y_0^s ds.$$

If $\operatorname{Re}(s) > M+1$, the series $L(s, \phi, r, \chi_{m,\nu})$ is absolutely convergent, and the series $\mathcal{L}(s, \phi, r, \chi_{m,\nu})$ is of rapid decay for $|\operatorname{Im}(s)| \to \infty$. Also $\mathcal{L}(s, \phi, r, \chi_{m,-\nu})$ is bounded in every vertical strip and has a functional equation. By using the Phragmén-Lindelöf principle, we can conclude that $\mathcal{L}(s, \phi, r, \chi_{m,-\nu})$ is of uniformly rapid decay for $|\operatorname{Im}(s)| \to \infty$ in every vertical strip. Hence, we use Cauchy's Theorem and shift the path of integration to the line $\operatorname{Re}(s) = \sigma$. Thus the left-hand side of (4.2) equals

$$\frac{1}{\sqrt{D_K}} i^{-kg} \, \mathbb{N}(2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) y_0^{-g(k-1/2)} \\
\times \frac{1}{2gR_m \pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \mathcal{L}(s/g, \phi, \mu, \chi_{m, -\nu}) y_0^s ds.$$

But the latter integral equals $2gR_m\pi i\int_{[0,1]^{g-1}}f_{\mu}(iy_0^{-1}\cdot e^{-tR})e^{-\nu tR}dt$.

Thus

$$\begin{split} &(4.4) \quad \int_{[0,1]^{g-1}} f_r(iy_0 \cdot e^{tR}) e^{-\nu tR} dt \\ &= \frac{1}{\sqrt{D_K}} i^{-kg} \, \mathbb{N}(2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) y_0^{-g(k-1/2)} \int_{[0,1]^{g-1}} f_\mu(iy_0^{-1} \cdot e^{-tR}) e^{-\nu tR} dt. \end{split}$$

We now let

$$g_r(t) := f_r(iy_0 \cdot e^{tR}) - \frac{1}{\sqrt{D_K}} i^{-kg} \, \mathbb{N}(2m)^{-1/2} \sum_{\mu \in (\mathfrak{d}_K^{-1}/2m\mathcal{O}_K)} e_{2m}(-\mu r) y_0^{-g(k-1/2)} f_\mu(iy_0^{-1} \cdot e^{-tR}).$$

To prove the lemma is suffices to show that $g_r(t)$ is identically zero. But this follows since the function $\hat{g}_r(t) := g_r(t) \prod_{l=1}^{g-1} e^{-\pi i \delta_l t_l}$ has period 1 in every component of t and all $(N_1, ..., N_{g-1})$ -th Fourier coefficients of $\hat{g}_r(t)$ are 0 due to (4.3) and (4.4).

References

- [1] T. Arakawa, I. Makino, F. Sato, Converse Theorems for not necessarily cuspidal Siegel Modular forms of degree 2 and Saito-Kurokawa liftings, Comment. Math. Univ. St. Pauli **50** (2001), no 2, pages 197-234.
- [2] T. Arakawa, Jacobi Eisenstein Series and a Basis Problem for Jacobi Forms, Comment. Math. Univ. St. Pauli 43 (1994), no. 2, pages 181-216.
- [3] D. Bump, Automorphic Forms and Representations, Cambridge University Press 1998.
- [4] J.Choie, A short note on the full Jacobi group, Proc. Amer. Math. Soc. 123 (1995), pages 2625-2628.
- [5] J. Cogdell, I. Piatetski-Shapiro, Converse Theorems for GL(n), Pub. Math. IHES **79**, pages 157-214 (1994).
- [6] K. Doi, H. Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969), pages 1-14.
- [7] M. Eichler, D. Zagier, The theory of Jacobi forms, Progress in Mathematics 55.
- [8] E. Freitag, Hilbert Modular Forms, Springer Verlag, New York 1990.
- [9] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), pages 664-699.
- [10] K. Imai, Generalisation of Hecke's Correspondence to Siegel Modular forms, Amer. J. Math 102 (1980) no 5, pages 903-936.
- [11] H. Jacquet, R. Langlands, Automorphic Forms on GL(2), Springer Lecture Notes.
- [12] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, *Automorphic Forms on GL(3) I and II*. Ann. Math, **109**, pages 169-212 and 213-258 (1979).
- [13] H. Maass, Uber eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math Ann. 121 (1949), pages 141-183.
- [14] Y. Martin, A Converse Theorem for Jacobi Forms, J. of Number Theory 61 (1996), pages 181-193.
- [15] Y. Martin, L-functions for Jacobi forms of arbitrary degree, Abh. Math. Sem. Univ. Hamburg 68 (1998), pages 45-63.
- [16] H. Skogman, Jacobi forms over totally real number fields, Results in Math. 39 (2001), no. 1-2, pages 169-182.
- [17] L. Vaserstein, The group $SL_2(\mathbb{Z})$ over Dedekind rings of arithmetic type, Mat. USSR Sbornik 18 (1972), pages 321-332.
- [18] A. Weil, *Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen*, Math. Annalen **168** (1967), pages 149-156.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 *E-mail address*: bringman@math.wisc.edu

FACHBEREICH 6, MATHEMATIK, UNIVERSITÄT SIEGEN, 57068 SIEGEN, GERMANY E-mail address: hayashida@math.uni-siegen.de