
A CONVERSE THEOREM FOR HILBERT-JACOBI FORMS

KATHRIN BRINGMANN AND SHUICHI HAYASHIDA

1. Introduction and Statement of Results

Doi and Naganuma (see [6]) constructed a lifting map from elliptic modular forms to
Hilbert modular forms in the case of a real quadratic field with narrow class number
one. A Converse Theorem for Hilbert modular forms was one of their basic tools. This
gives rise to the question of constructing a lifting map in the case of Jacobi forms. Here
we do the first step in this direction and prove a Converse Theorem for Hilbert-Jacobi
forms.

Studying the connection between functions that satisfy certain transformation laws
and the functional equation of their associated L-functions has value on its own and a
long history. In a celebrated paper (see [9]), Hecke showed that the automorphy of a cusp
form with respect to SL2(Z) is equivalent to the functional equation of its associated
L-functions. That only one functional equation is needed is in a way atypical and highly
depends on the fact that SL2(Z) is generated by the matrices ( 1 1

0 1 ) and ( 0 −1
1 0 ). This

situation already changes if one considers cusp forms with respect to a subgroup of
SL2(Z) which have a character. In this case the functional equation of twists is required
(see [18]).

Hecke’s work has inspired an astonishing number of people and a lot of generalizations
of his “Converse Theorem” have been made, e.g. generalizations to Hilbert modular
forms as mentioned above (see [6]), Siegel modular forms (see [1], [10]) or Jacobi forms
(see [14],[15]). Maass showed an analogue of Hecke’s result for nonholomorphic modular
forms (see [13]). He proved that these correspond to certain L-functions in quadratic
fields. An outstanding generalization of a Converse Theorem for GL(n) was done by
Jacquet and Langlands for n = 2 (see [11]), Jacquet, Piatetski-Shapiro, and Shalika for
n = 3 (see [12]) and Cogdell and Piatetski-Shapiro for general n (see [5]).

In this paper, we prove a Converse Theorem for Hilbert-Jacobi cusp forms over a
totally real number field K of degree g := [K : Q] with discriminant DK and narrow
class number 1. The case g = 1, i.e., Jacobi forms over Q as considered by Eichler
and Zagier (see [7]), is treated in two interesting papers by Martin (see [14] and [15]).
To describe our result, we consider functions φ(τ, z) from Hg × Cg into C that have a
Fourier expansion with certain conditions on the Fourier coefficients (see (3.4),(3.5), and
(3.6)). We show that φ is a Hilbert-Jacobi cusp form (for the definition see Section 2) if
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and only if certain Dirichlet series L(s, φ, r, χm,ν) (see (3.9)) satisfy functional equations.
More precisely, we show the following.

Theorem 1.1. Let k be an integer and m ∈ d−1
K , the inverse different of K. A function

φ satisfying (3.3), (3.4), (3.5), and (3.6) is a Hilbert-Jacobi cusp form of weight k and
index m if and only if for all ν satisfying (3.1) and (3.2) and for all r ∈ d−1

K /(2mOK)
the functions L(s, φ, r, χm,ν) (see Definition 3.2) have analytic continuations to the whole
complex plane, are bounded in every vertical strip and satisfy the functional equations

L(s, φ, r, χm,ν)

=
1√
DK

i−kg N(2m)−1/2
∑

µ∈(d−1
K /2mOK)

e2m(−µr)L(k − s− 1/2, φ, µ, χm,−ν),

see Section 2 for the definition of N and e2m(·).

We proceed as follows: In Section 2 we recall basic facts about Hilbert-Jacobi cusps
forms. In particular we show that these have a theta decomposition (see (2.3)), where the
involved theta series satisfy some transformation law (see Lemma 2.1). Section 3 deals
with certain characters of Hecke type and the Dirichlet series needed for the Converse
Theorem. In Section 4, we prove Theorem 1.1.
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2. Basic Facts about Hilbert-Jacobi Cusp Forms

We let K be a totally real number field of degree g := [K : Q] and denote by OK ,
O×K , dK , and DK its ring of integers, units, different, and discriminant, respectively. We
denote the j-th embedding (1 ≤ j ≤ g) of an element l ∈ K by l(j). An element l ∈ K
is said to be totally positive (l > 0) if all its embeddings into R are positive.

Let us now briefly recall some basic facts about Hilbert-Jacobi cusp forms (see also
[16]). We put ΓK := SL2(OK). Let the Hilbert-Jacobi group be defined as the set
ΓJ

K := ΓK n (OK ×OK), with the group multiplication

γ1 · γ2 :=

((
a1 b1

c1 d1

) (
a2 b2

c2 d2

)
, (λ1, µ1)

(
a2 b2

c2 d2

)
+ (λ2, µ2)

)
,

where we put γi :=

((
ai bi

ci di

)
, (λi, µi)

)
∈ ΓJ

K ,

(
ai bi

ci di

)
∈ ΓK , and (λi, µi) ∈ OK×OK .

The Hilbert-Jacobi group is generated by the following three types of elements((
ε λ
0 ε−1

)
, (0, 0)

)
,

((
0 −1
1 0

)
, (0, 0)

)
, and

((
1 0
0 1

)
, (λ, µ)

)
,(2.1)

where λ, µ ∈ OK and ε ∈ O×K (see [2], [4] and [17]).
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The Hilbert-Jacobi group acts on Hg×Cg (H is the usual upper half-plane) by((
a b
c d

)
, (λ, µ)

)
◦ (τ, z)

:=

((
a(1)τ1 + b(1)

c(1)τ1 + d(1)
, · · · ,

a(g)τg + b(g)

c(g)τg + d(g)

)
,

(
z1 + λ(1)τ1 + µ(1)

c(1)τ1 + d(1)
, . . . ,

zg + λ(g)τg + µ(g)

c(g)τg + d(g)

))
,

where

((
a b
c d

)
, (λ, µ)

)
∈ ΓJ

K , τ = (τ1, · · · , τg) ∈ Hg and z = (z1, · · · , zg) ∈ Cg.

Throughout this paper we write τ = u + iv, z = x + iy, τj = uj + ivj, and zj = xj + iyj

(1 ≤ j ≤ g).

Let k ∈ N, m ∈ d−1
K totally positive, γ =

((
a b
c d

)
, (λ, µ)

)
∈ ΓJ

K , and a function

φ : Hg × Cg → C. Then we define

φ|k,mγ(τ, z) := N(cτ + d)−k · e
(
−

(
cm(z + λτ + µ)2

cτ + d
+ mτλ2 + 2mλz

))
· φ(γ ◦ (τ, z)),

where for α ∈ K and for z ∈ Cg, we define N(αz) :=
∏g

j=1

(
α(j)zj

)
, tr(az) :=

∑g
j=1 a(j)zj,

and e(αz) := e2πitr(αz).
A holomorphic function φ : Hg×Cg → C is called a Hilbert-Jacobi cusp form of weight

k and index m if φ|k,mγ(τ, z) = φ(τ, z) for all γ ∈ ΓJ
K , and if it has a Fourier expansion

of the form
∑

n,r∈d−1
K

4nm−r2>0

c(n, r) e (nτ + rz).

In [16] m is chosen to be in OK , but our choice m ∈ d−1
K seems more natural since in

this way the coefficients of Hilbert-Siegel modular forms are examples for Jacobi forms
as in the classical case.

If φ is a Hilbert-Jacobi cusp form, then the transformation (τ, z) → (τ, z + λτ + µ)
leads to

c(n, r) = c(n + λr + λ2m, r + 2λm) (∀λ ∈ OK).(2.2)

From this we can deduce that

φ(τ, z) =
∑

r∈(d−1
K /2mOK)

fr(τ) ϑm,r(τ, z) ,(2.3)

where for r ∈ (d−1
K /2mOK), we define

fr(τ) :=
∑

n∈d−1
K

4nm−r2>0

c(n, r) e4m

((
4nm− r2

)
τ
)

,(2.4)

ϑm,r(τ, z) :=
∑

λ∈OK

e4m

(
(r + 2λm)2 τ + 2m (r + 2λm) z

)
,(2.5)
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and where for α, β ∈ K, β 6= 0, and z ∈ Cg, we define eβ(αz) := e(β−1αz).
The theta series ϑm,r satisfy the following transformation law.

Lemma 2.1. If m ∈ d−1
K totally positive, and µ ∈ (d−1

K /2mOK), then we have

ϑm,µ

(
−1

τ
,
z

τ

)
=

1√
DK

N
(
(τ/i)1/2

)
· N (2m)−1/2 · e

(
m · z2

τ

) ∑
r∈(d−1

K /2mOK)

e2m(−µr)ϑm,r(τ, z),

where we put (τ/i)1/2 := ((τ1/i)
1/2, ..., (τg/i)

1/2), and we take the principal value of the
square root, namely −π/2 < arg(w) ≤ π/2 for w ∈ C.

From Lemma 2.1 we obtain

Corollary 2.2. A function φ : Hg×Cg having a decomposition of the form (2.3) satisfies

φ

(
−1

τ
,
z

τ

)
= N(τ)ke

(
mz2

τ

)
φ(τ, z)

if and only if

fr(τ) =
1√
DK

i−kg N
(
(τ/i)1/2−k

)
N(2m)−1/2

∑
µ∈(d−1

K /2mOK)

e2m(−µr)fµ

(
−1

τ

)
,(2.6)

for all r ∈ (d−1
K /2mOK). In particular, if φ is a Hilbert-Jacobi cusp form, then φ satisfies

(2.6).

Exactly as in the case of elliptic modular forms, one can show;

Lemma 2.3. Assume that φ is a Hilbert-Jacobi cusp form, with fr defined as in (2.4).
Let c1 be a positive real number and let S be the subset of Hg such that for all τ ∈ S the
components vj (1 ≤ j ≤ g) are larger than c1. Then we have

|fr(τ)| �φ,c1 e−c2(
Pg

j=1 vj),(2.7)

where c2 is a positive constant, and where the constant implied in �φ,c1 depends on φ
and on c1.

Lemma 2.4. If φ is a Hilbert-Jacobi cusp form of weight k and index m, then the
function

g(τ, z) := N(v)k/2 exp

(
−2π tr

(
my2

v

))
φ(τ, z)

is bounded on Hg×Cg.

By using Lemma 2.4, we have the following.

Lemma 2.5. If φ is a Hilbert-Jacobi cusp form of weight k and index m with Fourier
coefficients c(n, r), then |c(n, r)| �φ N(4mn− r2)k/2.
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3. Hecke-type characters and Dirichlet series

For the remaining we assume that k is an integer. For m ∈ d−1
K , we let Tm be the

subgroup of O×K defined by

Tm :=
{
ε ∈ O×K | ε− 1 ∈ 2mdK

}
.

We have that ε ∈ O×K is in Tm if and only if εr− r ∈ 2mOK for every r ∈ d−1
K /(2mOK).

We let u1, . . . , ug−1 be a basis of T 2
m, where T 2

m := {ε2 | ε ∈ Tm}. We take ε1, . . . , εg−1 ∈
Tm which satisfy ε2

l = ul for l = 1, ..., g−1. If m is not a generator of the inverse different,
then Tm does not contain −1, hence the εl are uniquely determined. If m is a generator
of the inverse different, then Tm contains −1, and we choose εl > 0 as a solution of the
above equation.

For integers Nl (1 ≤ l ≤ g − 1), we choose pure imaginary solutions ν1, . . . , νg which
satisfy the following equations

g∑
j=1

νj = 0,(3.1)

g∑
j=1

νj log
(
u

(j)
l

)
= 2πi

(
Nl +

1

2
δl

)
,(3.2)

where we put δl = 0 or 1 if N(εl)
k = 1 or −1, respectively. For any integers Nl (l =

1, .., g − 1) we have a solution to (3.1) and (3.2), because

det


1 ... 1

log(u
(1)
1 ) ... log(u

(g)
1 )

... ...
...

log(u
(1)
g−1) ... log(u

(g)
g−1)

 = (−1)g+1g · det((log(u
(j)
l ))l,j=1,...,g−1) 6= 0,

where the last non-equality can be obtained from the fact that basis elements ul are
multiplicatively independent.

For x ∈ K and ν := (ν1, . . . , νg) satisfying (3.1) and (3.2), we set

χm,ν(x) :=

g∏
j=1

∣∣x(j)
∣∣νj

.

To define the Dirichlet series needed, we consider functions φ(τ, z) from Hg ×Cg into C
that have a Fourier expansion of the form

φ(τ, z) =
∑

n,r∈d−1
K

4nm−r2>0

c(n, r)e(nτ + rz)(3.3)
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that is absolutely and locally uniformly convergent. We regard c(n, r) = 0 unless 4nm−
r2 > 0 or unless n, r ∈ d−1

K . Moreover we demand that its Fourier coefficients satisfy

c(n, r) = c(n + λr + λ2m, r + 2λm) (∀λ ∈ OK),(3.4)

c(ε2n, εr) = N(ε)kc(n, r) (∀ε ∈ O×K),(3.5)

c(n, r) �φ N(4nm− r2)M(3.6)

for an integer M .

Lemma 3.1. (1) Condition (3.4) implies that we can decompose φ(τ, z) as in (2.3).
(2) Conditions (3.4) and (3.5) imply by the definition of Tm that

cr(N) := c

(
N + r2

4m
, r

) (
N ∈ d−2

K

)
is well defined on r ∈ d−1

K /(2mOK), where we put d−2
K := d−1

K · d−1
K .

(3) φ is a Hilbert-Jacobi cusp form if and only if (3.3), (3.4), (3.5), and (3.6) hold,
and if φ satisfies the transformation law

φ

(
−1

τ
,
z

τ

)
= N(τ)ke

(
mz2

τ

)
φ(τ, z).(3.7)

(4) From Corollary 2.2, we see that a function φ satisfying (3.3), (3.4), (3.5), and
(3.6) is a Hilbert-Jacobi cusp form if and only if (2.6) is satisfied for all r ∈
(d−1

K /2mOK).

Proof. These are straightforward. We omitted the proof of this Lemma. �

Let us now define the Dirichlet series needed for Theorem 1.1.

Definition 3.2. For a function φ satisfying (3.3), (3.4), (3.5), and (3.6), r ∈ d−1
K /(2mOK),

and ν satisfying (3.1) and (3.2), we define

L(s, φ, r, χm,ν) :=
∑

α∈d−2
K /T 2

m

χm,ν(α) · cr(α) · N(α)−s,(3.8)

L(s, φ, r, χm,ν) := 2gsπ−gs

g∏
j=1

Γ(s− νj)N(m)s

g∏
j=1

(
m(j)

)−νj
L(s, φ, r, χm,ν).(3.9)

Due to (3.6) the series L(s, φ, r, χm,ν) is absolutely convergent for σ = Re(s) > M +1.
We have the following lemma.

Lemma 3.3. For σ > M + 1, we have the identity

L(s, φ, r, χm,ν) =

∫
T 2

m\R
g
+

fr(iy)N(ys−ν)
dy

N(y)
,(3.10)

where fr(τ) is the form defined in (2.4) with Fourier coefficients c(n, r).
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Proof. This can be directly calculated by using the Fourier expansion of fr(iy) and by
using the relation N(uν

l ) = N(εl)
k for l = 1, ..., g − 1, where ul and εl are defined in the

beginning of this section. We leave the details to the reader (see also [3] p.87). �

4. Proof of Theorem 1.1

Theorem 1.1 follows directly from the two lemmas proven in this section.

Lemma 4.1. If φ is a Hilbert-Jacobi cusp form, r ∈ d−1
K /(2mOK), and ν satisfies (3.1)

and (3.2), then the functions L(s, φ, r, χm,ν) have analytic continuations to the whole
complex plane. They are of rapid decay, and satisfy the functional equations

(4.1) L(s, φ, r, χm,ν)

=
1√
DK

i−kg N(2m)−1/2
∑

µ∈(d−1
K /2mOK)

e2m(−µr)L(k − s− 1/2, φ, µ, χm,−ν).

Proof. To prove the analytic continuation of L(s, φ, r, χm,ν), we show that the right-
hand side of (3.10) is analytic for all s. For this, we separate the integral in a part with
N(y) ≥ 1 and a part with N(y) ≤ 1. Using the transformation law of fr, one can see that
it is enough to consider the part with N(y) ≥ 1. To estimate this, we use the variables
y0 ∈ R+ and t = (t1, ..., tg−1) ∈ Rg−1, where

yj := y0 · e
Pg−1

l=1 tl log
“
u
(j)
l

”
.

Then a fundamental domain of T 2
m\R

g
+ is given by the inequalities y0 > 0 and 0 ≤ tl < 1

(l = 1, ..., g − 1) and the part with N(y) ≥ 1 is given by y0 ≥ 1. The analyticity
now follows if we use Lemma 2.3, since for c > 0 and σ ∈ R arbitrary the integral∫ ∞

1

e−cyyσdy is convergent. The boundness of L(s, φ, r, χm,ν) in every vertical strip

follows also from this convergence.
Moreover, by using the transformation law of fr and Lemma 3.3, equation (4.1) follows

since 1/y runs through T 2
m\R

g
+ if y does. �

Lemma 4.2. Assume that φ is a function satisfying (3.3), (3.4), (3.5), and (3.6),
and that for all r ∈ d−1

K /(2mOK) and for all ν satisfying (3.1) and (3.2) the series
L(s, φ, r, χm) have analytic continuations, satisfy (4.1) and are of rapid decay. Then φ
is a Hilbert-Jacobi cusp form of weight k and of index m.

Proof. By analytic continuation it is enough to show (2.2) for τ = iy. We parametrize
the integrals as before and use the Mellin inversion formula to get for σ sufficiently large∫

[0,1]g−1

fr(iy0 · etR)e−νtRdt =
1

2gRmπi

∫ σ+i∞

σ−i∞
L(s/g, φ, r, χm,ν)y

−s
0 ds,(4.2)
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where

Rm := det((log(u
(j)
l ))l,j=1,...,g−1)

fr

(
iy0 · etR

)
:= fr

(
iy0e

Pg−1
l=1 tl log

“
u
(1)
l

”
, · · · , iy0e

Pg−1
l=1 tl log

“
u
(g)
l

”)
,

e−νtR :=

g∏
j=1

g−1∏
l=1

e
−νjtl log

“
u
(j)
l

”
=

g−1∏
l=1

e−2πi(Nl+
1
2
δl)tl ,(4.3)

where Nl and δl appeared in (3.2). Applying (4.1) and making the substitution s →
g(k − 1/2− s) gives that the right-hand side of (4.2) equals

1√
DK

i−kg N(2m)−1/2
∑

µ∈(d−1
K /2mOK)

e2m(−µr)y
−g(k−1/2)
0

× 1

2gRmπi

∫ g(k−1/2)−σ+i∞

g(k−1/2)−σ−i∞
L(s/g, φ, µ, χm,ν)y

s
0ds.

If Re(s) > M + 1, the series L(s, φ, r, χm,ν) is absolutely convergent, and the series
L(s, φ, r, χm,ν) is of rapid decay for |Im(s)| → ∞. Also L(s, φ, r, χm,−ν) is bounded
in every vertical strip and has a functional equation. By using the Phragmén-Lindelöf
principle, we can conclude that L(s, φ, r, χm,−ν) is of uniformly rapid decay for |Im(s)| →
∞ in every vertical strip. Hence, we use Cauchy’s Theorem and shift the path of
integration to the line Re(s) = σ. Thus the left-hand side of (4.2) equals

1√
DK

i−kg N(2m)−1/2
∑

µ∈(d−1
K /2mOK)

e2m(−µr)y
−g(k−1/2)
0

× 1

2gRmπi

∫ σ+i∞

σ−i∞
L(s/g, φ, µ, χm,−ν)y

s
0ds.

But the latter integral equals 2gRmπi

∫
[0,1]g−1

fµ(iy−1
0 · e−tR)e−νtRdt.

Thus

(4.4)

∫
[0,1]g−1

fr(iy0 · etR)e−νtRdt

=
1√
DK

i−kg N(2m)−1/2
∑

µ∈(d−1
K /2mOK)

e2m(−µr)y
−g(k−1/2)
0

∫
[0,1]g−1

fµ(iy−1
0 ·e−tR)e−νtRdt.

We now let

gr(t) := fr(iy0·etR)− 1√
DK

i−kg N(2m)−1/2
∑

µ∈(d−1
K /2mOK)

e2m(−µr)y
−g(k−1/2)
0 fµ(iy−1

0 ·e−tR).
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To prove the lemma is suffices to show that gr(t) is identically zero. But this follows

since the function ĝr(t) := gr(t)

g−1∏
l=1

e−πi δl tl has period 1 in every component of t and all

(N1, ..., Ng−1)-th Fourier coefficients of ĝr(t) are 0 due to (4.3) and (4.4). �
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