
PARTITION STATISTICS AND QUASIHARMONIC MAASS FORMS

KATHRIN BRINGMANN, FRANK GARVAN, AND KARL MAHLBURG

Abstract. Andrews recently introduced k-marked Durfee symbols, which are a generalization of
partitions that are connected to moments of Dyson’s rank statistic. He used these connections to
find identities relating their generating functions as well as to prove Ramanujan-type congruences for
these objects and find relations between.

In this paper we show that the hypergeometric generating functions for these objects are natural
examples of quasimock theta functions, which are defined as the holomorphic parts of harmonic Maass
forms and their derivatives. In particular, these generating functions may be viewed as analogs of
Ramanujan’s mock theta functions with arbitrarily high weight. We use the automorphic properties
to prove the existence of infinitely many congruences for the Durfee symbols. Furthermore, we show
that as k varies, the modularity of the k-marked Durfee symbols is precisely dictated by the case
k = 2. Finally, we use this relation in order to prove the existence of general congruences for rank
moments in terms of level one modular forms of bounded weight.

1. Introduction and Statement of results

Modular and automorphic forms play an important role in many different areas, including mathe-
matical physics, representation theory, the theory of elliptic curves, quadratic forms, and partitions,
just to mention a few. Many important generating functions are modular forms, and the modu-
lar transformation properties can often be used to prove arithmetic properties for the underlying
combinatorial objects [17]. There are many other examples of modular forms to be found in the
realm of hypergeometric q-series, such as the infinite products in the Rogers-Ramanujan identities.
Until recently, however, there were few known examples of more general automorphic forms arising
from similar “arithmetic” generating functions. Work of the first author and Ono [9, 10] (see also
[5, 7, 8, 11]) constructed several infinite families of harmonic Maass forms of weights 1/2 and 3/2,
whose holomorphic parts were based on Ramanujan’s mock theta functions and also more general
hypergeometric functions.

With the benefit of retrospect, we may view the error terms in the mock theta transformations as
suggesting that the appropriate functions to consider were not modular forms, but the more general
harmonic Maass forms. In this paper we study higher weight analogs that are based on Andrews’
work on Durfee symbols [1]. The main result of this paper is that the associated generating functions
can be written in terms of automorphic functions of higher weights, namely the derivatives of Maass
forms. Although these derivatives are difficult to understand on their own, we show that there are
cancellations among certain linear combinations of derivatives of different orders, and are able to
successfully describe the analytic behavior of the moment functions. Furthermore, this allows us to
better understand the arithmetic of the coefficients; as a sample application we prove the existence
of congruences.
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In order to define the new objects at hand, first recall the generating function for the partition
function,

P (q) :=
∞∑
n=0

p(n) qn = q
1
24 η(z)−1,(1.1)

where η(z) := q
1
24
∏∞
n=1(1− qn) is Dedekind’s η-function, a weight 1

2 modular form, and q := e2πiz.
Of the the many consequences of the modularity properties of P (q), some of the most striking are
the three congruences due to Ramanujan, namely

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

To explain the congruences with modulus 5 and 7, Dyson [12] introduced the rank of a partition,
which is defined to be its largest part minus the number of its parts. Dyson conjectured that the
partitions of 5n+ 4 (resp. 7n+ 5) form 5 (resp. 7) groups of equal size when sorted by their ranks
modulo 5 (resp. 7). This conjecture was proven by Atkin and Swinnerton-Dyer [3]. If N(m,n)
denotes the number of partitions of n with rank m, then we have the generating function

R(w; q) := 1 +
∑
m∈Z

∞∑
n=1

N(m,n)wmqn = 1 +
∞∑
n=1

qn
2

(wq; q)n(w−1q; q)n
=

(1− w)
(q; q)∞

∑
n∈Z

(−1)nq
n
2

(3n+1)

1− wqn
,

where (a; q)n :=
∏n−1
j=0 (1− aqj) and (a; q)∞ := limn→∞(a; q)n. In particular

R(1; q) = P(q),

R(−1; q) = f(q) := 1 +
∞∑
n=1

qn
2

(−q; q)2
n

.

The function f(q) is one of the mock theta functions defined by Ramanujan in his last letter to Hardy.
The first author and Ono shed light on their mysteries by showing that if w is a root of unity, then the
rank generating functions R(w; q) (and in particular f(q)) are the “holomorphic parts” of harmonic
Maass forms [10] (we say more on these results and recall the notion of a harmonic Maass form in
Section 3). The theory of harmonic Maass forms proved to be very useful for understanding the
arithmetic of the coefficients, leading to many notable results. These include, for example, an exact
formula for the coefficients of f(q) [9], asymptotics for N(m,n) [6], identities for rank differences
[11], and congruences for certain partition statistics [10].

Here we consider infinite families of harmonic Maass forms of arbitrarily high half-integer weight
that also arise from combinatorial hypergeometric functions. To state those results recall that An-
drews introduced in [1] the symmetrized k-th rank moment function

ηk(n) :=
∞∑

m=−∞

(
m+

[
k−1

2

]
k

)
N(m,n),(1.2)

which are linear combinations of the k-th rank moments

(1.3) Nk(n) :=
∞∑

m=−∞
mkN(m,n)
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considered by Atkin and the second author [2]. Using the rank symmetry N(−m,n) = N(m,n),
Andrews showed that η2k+1(n) = 0, and thus we need only consider even rank moments. For these
we define the rank generating function

Rk+1(q) :=
∞∑
n=0

η2k(n) qn.

The function R2(q) was studied in detail by the first author in [5]. One of the key results relates
R2(q) to a certain harmonic Maass form (see Section 3), but the connection is more complicated than
in the case of usual ranks due to double poles in the generating function. This leads to expressions
involving quasimodular forms, which are meromorphic functions f : H → C that can written as a
linear combination of derivatives of modular forms. Furthermore, asymptotics and congruences for
η2(n) are obtained as applications of the modularity of the generating function.

In the present work we consider the case of general k. The functions that arise in this setting
require yet a more general analytic definition; we say that f : H→ C is a quasimock theta function if
there exists a quasimodular form h(q) such that f(q) + h(q) is a linear combination of derivatives of
the holomorphic parts of harmonic Maass forms. Moreover we call linear combinations of derivatives
of harmonic Maass forms quasiharmonic Maass form.

Remark. The authors thank Don Zagier for pointing out that the forms considered in this paper lie
in the differential closure containing E2 and F2, where F2 is defined in [20]. This can be understood
analogous to the classical situation of quasimodular forms which can be defined as differential closure
of the ring containing modular forms and E2 [16].

Theorem 1.1. The function q−1Rk+1(q24) is a quasimock theta function.

Remark. The highest weight component includes a harmonic Maass form of weight 2k − 1/2.

The idea of the proof of Theorem 1.1 is to relate certain rank and crank moments via a differential
equation (see Section 4), and then argue inductively, using the fact that the crank moment generating
functions are quasimodular forms. The base case k = 1 is considered in [5], although our induction
step actually requires a new “twisted” version of those results.

Theorem 1.1 has many applications. We only address some of these here. We first consider
congruences for partition statistics. For this we let NFk(r, t;n) be the number of k-marked Durfee
symbols of size n with full rank congruent to r modulo t (see Section 2). We show that the full rank
satisfies infinitely many congruences, just as the first author and Ono proved for Dyson’s original
rank [10]. The case k = 2 of the following theorem was proven in [5].

Theorem 1.2. Let t be a positive odd integer, suppose that j ∈ N, k ≥ 3, and let Q - 6t a prime.
Then there exist infinitely many arithmetic progressions An + B, such that for every 0 ≤ r < t, we
have

NFk(r, t;An+B) ≡ 0 (mod Qj).

For the proof of Theorem 1.2, we employ the fact that the rank generating functions are holomor-
phic parts of harmonic Maass forms, and also the conclusion from Theorem 1.1 for Rk. Additional
complications arise in our proof if t has a prime divisor pt that is small relative to k (specifically,
pt ≤ 2k). To resolve this case, we extend a result from [5] and prove the modularity of a certain
“twist” of the second moment function (see Sections 4 and 5).

One nice consequence of Theorem 1.2 is a combinatorial decomposition of congruences for η2k(n).
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Corollary 1.3. Let j ∈ N and Q > 3 a prime. Then there exist infinitely many arithmetic progres-
sions An+B such that

η2k(An+B) ≡ 0 (mod Qj).

To illustrate the nature of these arithmetic progressions, we give some of the simpler examples

η2(113n+ 479) ≡ 0 (mod 11),

η4(11n) ≡ 0 (mod 11),

η6(49n+ 19) ≡ 0 (mod 7),

η8(132n+ 162) ≡ 0 (mod 13).

See [13] for a detailed explanation of the method used to find these explicit congruences. A signif-
icant part of the technique is in showing that the rank moment generating functions are congruent
modulo Q to modular forms over a restricted set of coefficients. This is of independent interest, and
is described precisely in the following theorem.

Theorem 1.4. Suppose ` > 3 is prime. Define 1 ≤ β` ≤ ` − 1 such that 24β` ≡ 1 (mod `) and let
r` := 24β`−1

` .

(1) The generating function for the second rank moment satisfies

∞∑
n=0

N2(`n+ β`)q24n+r` ≡ ηr`(24z)G`,2(24z) (mod `),

where G`,2(z) is a sum of level 1 modular forms with `-integral coefficients, each of weight at
most `(`+3)−r`−1

2 .
(2) For 2 ≤ k ≤ `−3

2 ,

∞∑
n=0

N2k(`n+ β`)q24n+r` ≡ ck
∞∑
n=0

N2(`n+ β`)q24n+r` + ηr`(24z)G`,2k(24z) (mod `),

where ck is an integer, and G`,2k(z) is a sum of level 1 modular forms with `-integral coeffi-
cients and weight at most k(`+ 1)− 1 + 1

2(`− r`).
(3) Finally,

∞∑
n=0

N`−1(`n+ β`)q24n+r` ≡ c`−1

∞∑
n=0

N2(`n+ β`)q24n+r` + ηr`(24z)G`,`−1(24z)

+
1
`
ηr`(24z) (H1,`(24z)−H2,`(24z)) (mod `),

where G`,`−1(z) is a sum of level 1 integral modular forms of weight at most `(`+1)−r`−3
2 ; c`−1

is some integer; and H1,`(z), H2,`(z) are integral modular forms of weight `(`−1)−r`−1
2 and

`(`+1)−r`−3
2 respectively such that

H1,`(z) ≡ H2,`(z) (mod `).
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We illustrate parts (1) and (2) of this theorem for the case ` = 11 (see [13])

∞∑
n=0

N2(11n+ 6)q24n+13 ≡ 3η13(24z) (mod 11),

∞∑
n=0

N4(11n+ 6)q24n+13 ≡ 7η13(24z) (mod 11),

∞∑
n=0

N6(11n+ 6)q24n+13 ≡ η13(24z)(4 + E4(24z)) (mod 11),

∞∑
n=0

N8(11n+ 6)q24n+13 ≡ η13(24z)(5 + 6E4(24z) + 6E6(24z)) (mod 11).

The theory of harmonic Maass forms can also be employed to show identities for differences of
rank moments. Relations between non-holomorphic parts are responsible for the existence of such
identities. To state our results, let

R
(k)
r,s,t,d(q) :=

∞∑
n=1

(NFk(r, t; tn+ d)−NFk(s, t; tn+ d)) q24(tn+d)−1.

We show that in certain cases this function is a weakly holomorphic modular form whose poles (if
there are any) are supported on the cusps. Similar results for Dyson’s rank were shown in [11].

Theorem 1.5. Assume that t ≥ 5 is a prime, 0 ≤ r, s < t, and 0 ≤ d < t. Then the following are
true.

(1) If
(

1−24d
t

)
= −1, then R

(k)
r,s,t,d(q) is a quasimodular form on Γ1(576t6). If k ≤ pt

2 , then it is
weakly holomorphic.

(2) If
(

1−24d
t

)
= 1, and 2r, 2s 6≡ 3(1−d+2u) (mod 2t), r, s 6≡ 2+3u, 1+3u, 2−3d+3u, 1−3d+3u

(mod t) for all 0 ≤ u ≤ d − 1, then R
(2)
r,s,t,3d(q) is a weakly holomorphic modular form on

Γ1(576t6).

One can use Theorem 1.5 along with the valence formula to prove concrete identities.

Remark. For each t there exists at least one 0 ≤ d < t such that the statement of Theorem 1.5 is
nontrivial.

The paper is organized as follows. In Section 2 we recall facts about marked Durfee symbols. In
Section 3, we give the connection between rank generating functions and harmonic Maass forms. We
then relate rank and crank moments via a differential equation in Section 4. Next, in Section 5 we
introduce a certain twisted moment function that shows up in the case k ≥ pt

2 . Section 6 is devoted
the proofs of Theorems 1.1 and 1.2. In Section 7 we prove Theorem 1.4 by first making a detailed
`-adic analysis of the rank-crank moment relation. Section 8 provides identities for rank differences.
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2. Combinatorial results on marked Durfee symbols

Here we give some of the facts about marked Durfee symbols shown in [1]. Recall that the largest
square of nodes in the Ferrers graph of a partition is called the Durfee square. The Durfee symbol
consists of 2 rows and a subscript, where the top row consists of the columns to the right of the Durfee
square, the bottom row consists of the rows below the Durfee square and the subscript denotes the
side length of the Durfee square. The number being partitioned is equal to the sum of the rows of
the symbol plus the number of nodes in the Durfee square. Note that the parts in both rows must
be non-increasing. As an example, the Durfee symbol(

2
3 3 1

)
4

represents a partition of 2 + 3 + 3 + 1 + 42 = 25.
Andrews defined k-marked Durfee symbols by using k distinct copies (or colors) of the integers

designated by {11, 21, · · · }, {12, 22, · · · }, · · · , {1k, 2k, · · · }. We form Durfee symbols as before and
use the k copies of integers for parts in both rows. We additionally demand that:

(1) The sequence of subscripts in each row are non-increasing.
(2) Each of the subscript 1, · · · , k − 1 occurs at least once in the top row.
(3) If M1, · · · ,Mk−1 are the largest parts with their respective subscripts in the top row, then all

parts in the bottom row with subscript 1 lie in [1,M1], with subscript 2 lie in [M1,M2], · · · ,
and with subscript k lie in [Mk−1, S], where S is the side of the Durfee square.

The size of a k-marked Durfee symbol is simply the size of the partition that is obtained by ignoring
the colors; we let Dk(n) denote the number of k-marked Durfee symbols of size n.

In [1] Andrews showed that k-marked Durfee symbols arise naturally in the combinatorial study
of the rank moment functions; in particular, for k ≥ 1,

Dk+1(n) = η2k(n).

He also proved some striking congruences for Durfee symbols, including

D2(5n+ a) ≡ 0 (mod 5) a ∈ {1, 4},
D2(7n+ a) ≡ 0 (mod 7) a ∈ {1, 5},
D3(7n+ a) ≡ 0 (mod 7) a ∈ {1, 5}.

Following Dyson’s lead, Andrews next associated a collection of “ranks” to k-marked Durfee
symbols. For such a Durfee symbol δ, we define the full rank FR(δ) by

FR(δ) := ρ1(δ) + · · ·+ kρk(δ),

where the i-th rank ρi(δ) is given by

ρi(δ) :=
{
τi(δ)− βi(δ)− 1 for 1 ≤ i < k,
τi(δ)− βi(δ) for i = k.

Here τi(δ) (resp. βi(δ)) denotes the number of entries in the top (resp. bottom) row of δ with
subscript i. We let NFk(m,n) denote the number of k-marked Durfee symbols of size n with full
rank m, and NFk(r, t;n) denote the number of k-marked Durfee symbols of size n with full rank
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congruent to r modulo t. Finally, define the generating function

Rk(w; q) :=
∞∑
n=1

∑
m∈Z

NFk(m,n)wm qn.

In particular

Rk(1; q) = Rk(q).

3. Ranks and harmonic Maass forms

Here we recall results of [10] and [5]. Let us first give the definition of a harmonic Maass form. If
k ∈ 1

2Z \ Z, z = x+ iy with x, y ∈ R, then the weight k hyperbolic Laplacian is given by

(3.1) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

If v is odd, then define εv by

(3.2) εv :=

{
1 if v ≡ 1 (mod 4),
i if v ≡ 3 (mod 4).

Moreover, we let χ be a Dirichlet character.
An harmonic Maass form of weight k with Nebentypus χ on a subgroup Γ ⊂ Γ0(4) is any smooth

function g : H→ C satisfying the following:
(1) For all A =

(
a b
c d

)
∈ Γ and all z ∈ H, we have

g(Az) =
(
c

d

)2k

ε−2k
d χ(d) (cz + d)k g(z).

(2) We have that ∆kg = 0.
(3) The function g(z) has at most linear exponential growth at all the cusps of Γ.

Now let 0 < a < c and define

D
(a
c

; q
)

:= −S
(a
c

; z
)

+ q−
`c
24 R

(
ζac ; q`c

)
,

S
(a
c

; z
)

:= −
i sin

(
πa
c

)
`

1
2
c√

3

∫ i∞

−z̄

Θ
(
a
c ; `cτ

)√
i(τ + z)

dτ,

where `c := lcm(2c2, 24), ζc := e
2πi
c , and Θ

(
a
c ; τ
)

is a certain weight 3
2 cuspidal theta function (for

the exact definition see [10]).

Theorem 3.1. If 0 < a < c, then D
(
a
c ; q
)

is a harmonic Maass form of weight 1
2 on Γc :=〈

( 1 1
0 1 ) ,

(
1 0
`2c 1

)〉
. If c is odd, then it is on Γ1

(
6f2
c lc
)
, where fc := 2c

gcd(c,6) . Its non-holomorphic part
has the expansion

− 2√
π

sin
(πa
c

) ∑
m (mod fc)

(−1)m sin
(
πa(6m+ 1)

c

) ∑
n≡6m+1 (mod 6fc)

Γ
(

1
2

;
`cn

2y

6

)
q−

`cn
2

24 ,

where
Γ(α;x) :=

∫ ∞
x

e−t ta−1 dt.
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We next turn to R2(q). Define

R(q) := R2

(
q24
)
q−1,

N (z) :=
i

4
√

2π

∫ i∞

−z̄

η(24τ)

(−i(τ + z))
3
2

dτ,(3.3)

and

M(z) := R(q)−N (z)− 1
24η(24z)

+
E2(24z)
8η(24z)

,(3.4)

where as usual

E2(z) := 1− 24
∞∑
n=1

σ1(n) qn

with σ1(n) :=
∑

d|n d. This function is a quasimodular form.
The following result is shown in [5].

Theorem 3.2. The function M(z) is a harmonic Maass form of weight 3
2 on Γ0(576) with Neben-

typus character χ12 :=
(

12
·
)
. Its non-holomorphic part has the expansion

N (z) =
1

4
√
π

∑
k∈Z

(−1)k(6k + 1)Γ
(
−1

2
; 4π(6k + 1)2y

)
q−(6k+1)2 .

4. Relation between rank and crank moments

In this section we recall certain relations between rank and crank moments and consider twisted
generalisations. For details we refer the reader to [2]. The j-th rank moment Nj is defined in (1.3).
Note that the symmetrized moment η2k(n) can easily be written as a linear combination of N2j(n)
with j ≤ k (again, N2j+1(n) = 0 due to symmetry). Define the generating function

Rj(q) :=
∑
n≥1

Nj(n)qn.

We will see that these functions are related to certain quasiharmonic Maass forms.
We next consider crank moments. Recall that the crank of a partition is defined to be the largest

part if the partition contains no ones, and is otherwise the difference between the number of parts
larger than the number of ones and the number of ones. For n > 1, we denote by M(m,n) the
number of partitions of n with crank equal to m, and define the boundary values by M(0, 1) := −1,
M(−1, 1) := M(1, 1) := 1, with M(m, 1) := 0 otherwise. The generating function for the crank is
then

C(w; q) :=
∑
n≥0

∑
m∈Z

M(m,n)wm qn =
∞∏
n=1

(1− qn)
(1− wqn) (1− w−1qn)

.

This function is essentially a modular form when w is the root of unity ζac . The numerator is
η(z)q−1/24, and the denominator is an algebraic integer times a weight zero Siegel function of level
2c2 (see [14]); this implies that q−1C

(
ζac ; q24

)
is a weight 1

2 weakly holomorphic modular form on
Γ1(2 · lcm(c2, 288)).
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Analogous to the development above, define the j-th crank moment as

Mj(n) :=
∑
k∈Z

kjM(k, n),

which again satisfies M2j+1(n) = 0. Denote the crank moment generating function by

Cj(q) :=
∑
n≥1

Mj(n)qn.

Now define the differential operators

δq = δz := q
d

dq
=

1
2πi

d

dz
,

δw := w
d

dw
.

In [2], Atkin and the second author derived a recurrence relation for the functions Ca:

Ca(q) = 2

a
2
−1∑
j=1

(
a− 1
2j − 1

)
Φ2j−1(q)Ca−2j(q) + 2Φa−1(q)P (q).(4.1)

Here

Φ2j−1(q) :=
∞∑
n=1

σ2j−1(n)qn,

where σj(n) :=
∑

d|n d
j . These functions are simply a rescaling of the classical weight j Eisenstein

series minus their constant terms, since

Ej(z) := 1− 2j
Bj

Φj−1(q),

where Bj is the jth Bernoulli number. For even j > 2, the function Ej(z) is a modular form of level
1, whereas E2(z) is a quasimodular form. Thus we conclude inductively from (4.1) that q−1Ca(q24)
is a quasimodular form.

Atkin and the second author also proved a differential equation for the crank and rank generating
functions, called the “rank-crank PDE”:

(4.2) w(q; q)2
∞C(w; q)3 =

(
3(1− w)2δq +

1
2

(1− w)2δ2
w −

1
2

(w2 − 1)δw + w

)
R(w; q).
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For our current purposes, we are most interested in an identity that they derived by repeatedly
applying δw to (4.2) and setting w = 1, namely that for a ≥ 2,

(4.3)
a/2−1∑
i=0

(
a
2i

) ∑
α+β+γ=a−2i
α,β,γ≥0 even

(
a− 2i
α, β, γ

)
Cα(z)Cβ(z)Cγ(z)P−2(z)− 3(2a−1 − 1)C2(z)

=
1
2

(a− 1)(a− 2)Ra(z) + 6
a/2−1∑
i=1

(
a
2i

)
(22i−1 − 1)δq (Ra−2i(z))

+
a/2−1∑
i=1

[(
a

2i+ 2

)
(22i+1 − 1)− 22i

(
a

2i+ 1

)
+
(
a
2i

)]
Ra−2i(z).

Therefore modularity properties of Ra can be inductively concluded from modularity properties of
Ca and R2. In particular, the functions Ra are related to the quasiharmonic Maass forms that we
describe in more detail later.

We next turn to twisted rank and crank moments. We have

δw (C(w; q)) = L(w; q)C(w; q),

where

L(w; q) :=
∑
n,m≥1

(
wmqnm − w−mqnm

)
.

Thus [
δjwL(w; q)

]
w=ζ

=
∑
n,m≥1

(
mjζmqnm − (−m)jζ−mqnm

)
.(4.4)

Now recall the theory of Eisenstein series on congruence subgroups (see section III.3 in [15]). The
(0, a) Eisenstein series of weight j + 1 and level c is given by

G
(0,a)
j+1 (z) := b

(0,a)
j+1 + cj+1

∑
n≥1

∑
d|n

dj
(
ζadc − (−1)jζ−adc

) qn,

where

b
(0,a)
j+1 =

∑
n≥1

n≡a (mod c)

n−j−1 +
∑
n≥1

n≡−a (mod c)

(−n)−j−1·

and

cj+1 =
2(j + 1)(−1)jζ(j + 1)

cj+1Bj+1
.

These Eisenstein series are in Mj+1(Γ1(c)) for j ≥ 2 (as before, they may be quasimodular at weight
2), and thus the series from (4.4) is again a rescaled quasimodular form minus its constant coefficient.
Note also that the constant b(0,a)

j+1 /cj+1 must be an algebraic integer since all of the other terms in
the rescaled series are.
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Using (4.3) and results from Section 5, one can prove modularity properties of the twisted moment
functions

Rj,a,c(q) :=
∑
n∈N
Rj
(a
c

;n
)
qn,

Cj,a,c(q) :=
∑
n∈N

Cj

(a
c

;n
)
qn,

where

Rj
(a
c

;n
)

:=
∑
k∈Z

kjζakc N(k, n),

Cj

(a
c

;n
)

:=
∑
k∈Z

kjζakc M(k, n).

5. A twisted moment function

Define for coprime integers 0 < a < c the twisted second moment rank generating function

R2

(a
c

; q
)

:=
ζa2c

2(q; q)∞

∑
n∈Z

(−1)n+1q
n
2

(3n+1)

(1− ζac qn)
+

ζ3a
2c

(q; q)∞

∑
n∈Z

(−1)n+1q
3n
2

(n+1)

(1− ζac qn)2 .(5.1)

We relate this function to a harmonic Maass form. For this, let

Ma
c
(z) = R

(a
c

; q
)

+Na
c
(z).

Here

R
(a
c

; q
)

:= q−1R2

(a
c

; q24
)
,

Na
c
(z) := − i

64
√

3π

∫ i∞

−z̄

Θa,c

(
− 1

16d2cτ

)
(−iτ)−

1
2

(−i(τ + z))
3
2

dτ,

where dc := lcm(6, c), and where

Θa,c(τ) :=
∑

m≡ dc
6
± dca

c
(mod dc)

(−1)m e2πim2τ .

Theorem 5.1. The function Ma
c
(z) is a weight 3

2 harmonic Maass form on Γ1

(
96d2

c

)
.

The first step in proving Theorem 5.1 is to show a transformation law for R2

(
a
c ; q
)
. Due to double

poles, we cannot work directly with this function, but use a function of an additional parameter w
that is related and only has single poles. Define

R2

(a
c
, q;w

)
:= ζa2c

eπiw

(q; q)∞

∑
n∈Z

(−1)n+1q
n
2

(3n+1)

(1− ζac e2πiwqn)
.

This function is connected to R2

(
a
c ; q
)

by

L
(
R2

(a
c
, q;w

))
= R2

(a
c

; q
)
,
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where for a function g that is differentiable in some neighborhood of 0, we define

L(g) :=
[

1
2πi

∂

∂w
g(w)

]
w=0

.

We prove a transformation law for R2

(
a
c , q;w

)
and then apply L. Some of the calculations are similar

to those in [5], therefore we skip some of the details here and refer the reader to that paper.
We begin with some useful notation. For a

c 6∈
{

0, 1
6 ,

1
2 ,

5
6

}
, let

s = s(a, c) :=


0 if 0 < a

c <
1
6 ,

1 if 1
6 <

a
c <

1
2 ,

2 if 1
2 <

a
c <

5
6 ,

3 if 5
6 <

a
c < 1.

Moreover define

ωh,k := exp (πit(h, k)) ,

where we have denoted the standard Dedekind sum by

t(h, k) :=
∑

µ (mod k)

((µ
k

))((hµ
k

))
,

with

((x)) :=
{
x− bxc − 1

2 if x ∈ R \ Z,
0 if x ∈ Z.

Let

T2

(a
c
, q;w

)
:=

1
(q; q)∞

∑
±
±e±πiw q±

a
2c

∑
m≥0

(−1)m
q
m
2

(3m+1)±ms

1− e±2πiwq±
a
c

+m
,

I±k,ν,a,c(z;w) := ±
∫

R

e−
3πzx2

k

sinh
(
πzx
k + πi

6k −
πiν
k ∓ πi

(
w + a

c

)) dx.
Theorem 5.2. Assume the notation above. Moreover for coprime integers h and k, with k > 0 and
either k = 1 or 2c2|k, let q := e

2πi
k

(h+iz) and q1 := e
2πi
k (h′+ i

z ), with z ∈ C, Re(z) > 0, where h′ = 0
for k = 1, and hh′ ≡ −1 (mod 2k) and h′ ≡ 1 (mod 2c2) for 2c2|k. Then

R2

(a
c
, q;w

)
= S1 −

z
1
2

2k
ωh,k e

− πz
12k

∑
ν (mod k)

±

(−1)νe
πih′
k

(−3ν2+ν)I±k,ν,a,c(z;w),

where

S1 :=

 −iz−
1
2 e

π
12(z−1−z)− 2πs

z (w+a
c )+ 3π

z (w+a
c )

2

T2

(
a
c , q1; iwz

)
if k = 1,

− i

z
1
2
ωh,ke

3πkw2

z
+ π

12k (z−1−z)R2

(
a
c , q1; wiz

)
if 2c2|k.

Proof. Let

R̃2

(a
c
, q;w

)
:= ζa2c e

πiw
∑
n∈Z

(−1)n+1q
n
2

(3n+1)

(1− ζac e2πiwqn)
.
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Poisson summation yields

(5.2) R̃2

(a
c
, q;w

)
= − 1

2k

∑
ν (mod k)

±

±(−1)νe
3πihν2

k

∑
n≥0

∫
R

e−
3πzx2

k
+πi
k

(2n+1)(x−ν)

sinh
(
πzx
k −

πihν
k ∓ πi

(
w + a

c

)) dx.
We shift the path of integration through ωn := (2n+1)i

6z . Using the residue theorem yields

R̃2

(a
c
, q;w

)
=
∑

1

+
∑

2

.

Here ∑
1

:= 2πi
∑

residues

,

where the sum runs over all residues of the integrand in (5.2), and where∑
2

:= − 1
2k

∑
ν (mod k)

±

±(−1)νe
3πihν2

k

∑
n≥0

∫
R+ωn

e−
3πzx2

k
+πi
k

(2n+1)(x−ν)

sinh
(
πzx
k −

πihν
k ∓ πi

(
w + a

c

)) dx.
To compute

∑
2, we observe that for the computation of

∑
2 in [5] one does not need the fact that

w is small, therefore we may change w 7→ w + a
c . This yields∑

2

= −(q1; q1)∞
2k

e−
π

12kz

∑
ν (mod k)

±

(−1)ν e
πih′
k

(−3ν2+ν)I±k,ν,a,c(z;w).

We next turn to
∑

1. First we consider the case k = 1. In this case poles of the integrand can
only lie in points

x±m :=
i

z

(
m±

(a
c

+ w
))

.

If we shift the path of integration through ωn, we have to take those x±m into account for which
n ≥ 3m ± s and m ≥ 1

2(1 ∓ 1). We denote the residues of each summand by λ±n,m. Then one can
easily see that

λ±n,m = ∓ e−3πzx±2
m +πi(2n+1)x±m

2πz cosh
(
πzx±m ∓ πi

(
w + a

c

)) .
Using that λ±n+1,m = e2πix±mλ±n,m, one can compute that

∑
1

=
1
iz
e

3π
z (w+a

c )
2− 2πs

z (w+a
c )

∑
m≥0

(−1)m
e−

3πm2

z
− 2πsm

z
−πm

z
−π
z (w+a

c )

1− e−
2π
z (w+a

c )− 2πm
z

−
∑
m>0

(−1)m
e−

3πm2

z
+ 2πsm

z
−πm

z
+π
z (w+a

c )

1− e
2π
z (w+a

c )− 2πm
z

 .

We next consider the case 2c2|k. Define the entire function

S±w (x) :=
sinh(x± πikw)
sinh

(
x
k ± πiw

) .
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From this one can see that poles of the integrand in (5.2) only lie in points

x±m :=
i

z
(m± kw),

and a non-trivial residue occurs for at most one ν modulo k, which we may chose as

ν±m := −h′
(
m∓ ak

c

)
.

Shifting the path of integration through ωn, we have to take those m into account for which n ≥
3m ≥ 1

2(1∓ 1). A lengthy calculation using the same methods as before gives

∑
1

:=
1
iz
ζa2c e

3πkw2

z
+πw

z

∑
m∈Z

(−1)m+1 q
m
2

(3m+1)

1

1− ζac e
2πw
z qm1

.

Now the theorem follows using

(q1; q1)∞ = ωh,kz
1
2 e

π
12k (z−1−z) (q; q)∞.

�

Next we realize the integrals occurring in Theorem 5.2 as theta integrals. For this let

I±a,c(w; z) := ζa2ce
πiwe∓

πi
6

∫
R
e−

3πix2

z
e∓

πix
z

1− e∓
πi
3

+2πi(w+a
c )∓ 2πix

z

dx.

As in [5], we show.

Lemma 5.3. We have

L
(
I+
a,c(w; z) + I−a,c(w; z)

)
=
√

3(−iz)2

4π

∫ ∞
0

Θa,c

(
3iu
2d2c

)
(−i(iu+ z))

3
2

du.

To finish the proof of Theorem 5.1, we change in Theorem 5.2 z 7→ i
z and apply the operator L

on both sides. Observe that

L

(
e2πis(w+a

c )z−3πiz(w+a
c )

2±πizw

1− e±2πiwzq
±a
c

+m

1

)
= z e2πisa

c
z−3πia

c
z

(s− 3a
c ±

1
2

)
1− qm±

a
c

1

± q
m±a

c
1(

1− qm±
a
c

1

)2

 .

In the sum over the − sign, we change m 7→ −m, yielding

L
(
e2πis(w+a

c )z−3πiz(w+a
c )

2

T2

(a
c
, q; zw

))
= z q

sa
c
− 3a2

2c2 T2

(a
c

; q
)
,

where

T2

(a
c

; q
)

:=
1

(q; q)∞

(s− 3a
c

)
q
a
2c

∑
m∈Z

(−1)m
q
m
2

(3m+1)+ms

1− qm+a
c

+ q
3a
2c

∑
m∈Z

(−1)m
q

3m
2

(m+1)+ms(
1− qm+a

c

)2

 .

Now Lemma 5.3 implies the following decomposition of the second rank moment; the subsequent
lemma describes the corresponding theta integral component.
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Corollary 5.4. We have

R
(a
c

; q1

)
=

(−iz)
3
2

48
√

6
e−

πiz
288

+πisaz
12c
−πia

2z
8c2 T2

(a
c

; q
1
24

)
+

(−iz)
3
2

64
√

3

∫ ∞
0

Θa,c

(
iu

16d2c

)
(−i(iu+ z))

3
2

du.

Lemma 5.5.

Na
c

(z + 1) = Na
c
(z),

Na
c

(
−1
z

)
= − i

64
√

3π

∫ i∞

−τ̄

Θa,c

(
τ

16d2c

)
(−i(τ + z))

3
2

dτ +
i

64
√

3π

∫ ∞
0

Θa,c

(
it

16d2c

)
(−i(z + it))

3
2

dt.

By work of Shimura it now follows that Θa,c

(
− 1

16d2cz

)
(−iz)

1
2 is a modular form of weight 1

2 on

Γ1

(
64d2

c

)
. Moreover observe that

L
(
e−3πiγw2zR2

(a
c
, q;−zw

))
= −zR2

(a
c

; q
)
.

That Ma
c

is annihilated under ∆ 3
2

can be seen as in [5]. Combining the above now easily gives the
theorem.

6. Proof of Theorems 1.1 and 1.2

6.1. Proof of Theorem 1.1. First observe that the function Rk(q) is a linear combination of the
functions Rj(q) given in Section 4. We use the rank-crank relation (4.3) and the modularity of the
occurring functions. The functions Cα(q24)q−1 are quasimodular forms and η(24z) is a modular
form. Since R2

(
q24
)
q−1 is a quasimock theta function, it follows inductively that the functions

Rα
(
q24
)
q−1 are also quasimock theta functions.

For the readers convenience we give more details in the case k = 3. We obtain from (4.3)

3R4(q) = −2 (3δq + 1)C2(q) + 8C4(q) + 3 (−12δq + 1)R2(q).

Since

η2(n) =
1
2
N2(n), and

η4(n) =
1
24

(N4(n)−N2(n)),

this implies that

(6.1) 36q−1R3

(
q24
)

= −9
8
q−1C2

(
q24
)
− 1

8
δq
(
q−1C2

(
q24
))

+ 4q−1C4

(
q24
)
− 3

2
q−1R2

(
q24
)
− 3

2
δq
(
q−1R2

(
q24
))
.

From Section 4, we know that the functions q−1Cj
(
q24
)

are also quasimodular forms. This fur-
ther implies that the function δq

(
q−1C2(q24)

)
is as well, since differentiation preserves the space of

quasimodular forms. Moreover

q−1R2

(
q24
)

= R(q) =M(z) +N (z) +
1

24η(24z)
− E2(24z)

8η(24z)
.

Therefore q−1R3

(
q24
)

can be written as the sum of a quasimodular form and the derivative of the
holomorphic part of a harmonic Maass form, and is thus a quasimock theta function.
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6.2. Proof of Theorem 1.2. Denote by Dk(m1,m2, · · · ,mk;n) the number of k-marked Durfee
symbols arising from partitions of n with ith rank equal to mi. Let

Rk(z1, · · · , zk; q) :=
∑

m1,··· ,mk∈Z

∞∑
n=0

Dk(m1,m2, · · · ,mk;n) zm1
1 zm2

2 · · · zmkk qn.

In particular
Rk(w; q) = Rk

(
w,w2, · · · , wk; q

)
.

If xi 6= xj and xixj 6= 1, then Andrews showed that the generating function for the Durfee symbols
is actually a linear combination of rank functions [1]:

Rk(x1, x2, · · · , xk; q) =
k∑
i=1

R(xi; q)∏k
j=1
j 6=i

(xi − xj)
(

1− 1
xixj

) .(6.2)

Standard techniques for dissections of q-series then give

(6.3)
∞∑
n=0

NFk(r, t;n) q24n−1 =
1
t

Rk (q24
)

+
t−1∑
j=1

ζ−rjt q−1Rk

(
ζjt ; q24

) .

Thus, if ζ ljt 6= ζmjt and ζ
j(l+m)
t 6= 1 for all 0 < l 6= m ≤ k, which is guaranteed if k ≤ pt

2 , then we
obtain by (6.2)

Rk

(
ζjt ; q

)
=

k∑
l=1

R
(
ζ ljt ; q

)
∏k
m=1
m 6=l

(
ζjmt − ζjlt

)(
1− ζ−j(l+m)

t

) .(6.4)

Otherwise, for “large” k we need a modified version of (6.2). Namely if xi = xj or xixj = 1,
then Rk(x1, x2, · · · , xk; q) can be related to R(x; q) via analytic continuation of (6.2). One can show
that the new function is a linear combination of

[
∂rR(y;q)
∂yr

]
y=xi

. For example if k = 2, x1 = x2, and

x1x2 6= 1, then

R2(x1, x2; q) = lim
x2→x1

 R(x1; q)

(x1 − x2)
(

1− 1
x1x2

) +
R(x2; q)

(x2 − x1)
(

1− 1
x1x2

)
 =

[
∂
∂yR(y; q)

]
y=x1(

1− x−2
1

) .

In general, Rk(x1, . . . , xk; q) will be a linear combination of various derivatives of R(y; q) for any
values assigned to the xi. This can be seen by comparing the two sides of (6.2); since the left side
has no poles, all of the singularities on the right side must be removable, and thus L’Hospital’s rule
can be applied (at most 2k times).

We largely restrict our argument to the case that k ≤ pt
2 , and then make some comments on the

general case. Fix a prime p > 3 with p - t. We treat the two summands in (6.4) separately. From
Subsection 6.1, we know that Rα

(
q24
)
q−1 is a quasimock theta function. Moreover one can conclude

from Theorem 3.2 that the holomorphic part of the associated harmonic Maass form is supported
on negative squares. Thus the restriction to coefficients lying in

Sp :=
{
n ∈ Z :

(
24n− 1

p

)
= −

(
−1
p

)}
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is a weakly holomorphic modular form on Γ1

(
96d2

t p
2
)
. Moreover from the work of the first author

and Ono [10], we know that the restriction of R
(
ζjt ; q`t

)
q−

`t
24 to those coefficients lying in Sp is a

weakly holomorphic modular form on Γ1

(
6f2
t ltp

2
)
. Finally, work of Serre implies that quasimodular

forms are actually p-adic modular forms, and the proof concludes as in [5].
To prove the general case, we first consider the function

[
∂
∂wR(w; q)

]
w=ζac

which is again the base
case for induction. We have[

∂

∂w
R(w; q)

]
w=ζac

=
1

(q; q)∞

∑
n∈Z

(−1)n+1q
n
2

(3n+1)

(1− ζac qn)
− ζac (1− ζac )

(q; q)∞

∑
n∈Z

(−1)n+1q
3n
2

(n+1)

(1− ζac qn)2 .

Since we know that R
(
a
c ; q
)

is related to a harmonic Maass form, it is enough to consider the function
R2

(
a
c ; q
)

defined in (5.1). Theorem 3.2 implies that R
(
a
c ; q
)

is the holomorphic part of a harmonic
Maass form. Moreover as in [10], one can compute that the non-holomorphic part is supported on
negative squares. Now we argue as before, utilizing the easy shown technical result that for these
Maass forms, the quadratic twist operator commutes with differentiation (due to the form of the
non-holomorphic coefficients). For higher derivatives, it is enough to relate the functions Rj,a,c(q) to
quasiharmonic Maass forms. For this we apply ∂jw to (4.3), set w = ζac , and then argue inductively.
The case k = 2 again begins the induction. The claim now follows, using the relation of the functions
Cj,a,c(q) to quasimodular forms, and the modularity of the twisted Eisenstein series G(0,a)

j+1 (z).

7. Explicit differential operators and rank moment differences

In this section, we show more explicitly how the modularity and holomorphicity of the higher rank
moments R2k are determined by the derivatives of R2. We describe the differential operator that
naturally acts onR2, and then prove Theorem 1.4 by considering the operator `-adically. Throughout
this section we assume that ` > 3 is prime.

7.1. Higher rank moments and derivatives of R2. We begin by defining by what we mean by an
“`-integral quasimodular form of level 1.” We consider functions Ea2 (z)Fb(z), where Fb(z) ∈Mb(1),
the coefficients in the q-expansion of Fb(z) are `-integral and have bounded denominators, and a
and b are nonnegative integers. We call such a function an `-integral quasi-modular form of weight
2a+ b. Let k be a nonnegative integer. In general, an `-integral quasi-modular form of weight k and
level 1 is sum of such functions where 2a+ b = k. For k an even nonnegative integer, let Xk denote
the set of functions that are sums of `-integral quasi-modular forms of weight ≤ k. Let

PXk = {GP : G ∈ Xk}.

In equation (4.3), replace a by 2k and denote the left side by Y2k, so that

(7.1) Y2k :=
k−1∑
i=0

(
2k
2i

) ∑
α+β+γ=2k−2i
α,β,γ even ≥0

(
2k − 2i
α, β, γ

)
CαCβ Cγ P

−2 − 3
(

22k−1 − 1
)
C2.
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With this notation, the relation (4.3) can be solved for R2k, yielding

R2k =
1

(2k − 1)(k − 1)
Y2k −

1
(2k − 1)(k − 1)

(
k−1∑
i=1

6
(

2k
2i

)(
22i−1 − 1

)
δq(R2k−2i)(7.2)

+
k−1∑
i=1

[(
2k

2i+ 2

)(
22i+1 − 1

)
− 22i

(
2k

2i+ 1

)
+
(

2k
2i

)]
R2k−2i

)
.

An easy induction argument shows that the differential operator that acts on R2 is a polynomial
Pk(δq) with rational coefficients and degree k − 1, so that

(7.3) R2k = Pk(δq)R2 +
k∑
j=2

Qk,j(δq)Y2j ,

where Qk,j ∈ Q[x] has degree k − j.
We now focus on Pk(x); we will see shortly that the other terms in (7.3) may be absorbed into

the quasimodular component of R2k.

Proposition 7.1. Let P0(x) := 0 and P1(x) := 1. For k ≥ 2 we have the recurrence relation

Pk(x) = (1− 12x)Pk−1(x)− 36x2 Pk−2(x),

and the explicit formula

Pk(x) = 21−2k
k−1∑
j=0

(
2k

2j + 1

)
(1− 24x)j =

1√
1− 24x

((
1 +
√

1− 24x
2

)2k

−
(

1−
√

1− 24x
2

)2k
)
.

Proof. From (7.2) and (7.3) we see that for k ≥ 0,

Pk(x) = − 1
(2k − 1)(k − 1)

k−1∑
i=1

(
6x
(

2k
2i

)(
22i−1 − 1

)
+
(

2k
2i+ 2

)(
22i+1 − 1

))
−22i

(
2k

2i+ 1

)
+
(

2k
2i

))
Pk−i(x).

For k ≥ 0 we define

Vk(z) := Pk

(
1− z2

24

)
.

Using some elementary (though lengthy) binomial sum evaluations and an induction argument, one
can show that

Vk(z) =
1
z

((
1 + z

2

)2k

−
(

1− z
2

)2k
)
.

From this one can conclude that for k ≥ 2,

Vk(z) =
(

1 + z2

2

)
Vk−1(z)−

(
1− z2

4

)2

Vk−2(z).

Letting z =
√

1− 24x (taking any fixed branch of the square root), we obtain the results. �

By letting 2k = ` + 1 and reducing the formula from Proposition 7.1 modulo ` we obtain the
following result.
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Corollary 7.2. For k ≥ 2 the polynomial Pk(x) has integer coefficients. If ` > 3 is prime then

P `+1
2

(x) ≡ `+ 1
2

(
1 + (1− 24x)

`−1
2

)
(mod `).

We will need precise expansions of the rank and crank moments into `-integral components.

Proposition 7.3. Let ` > 3 be prime.
(1) For k ≥ 0 even we have δq (Xk) ⊂ Xk+2.
(2) For k ≥ 0 even and m ≥ 0 we have δmq (PXk) ⊂ PXk+2m.
(3) For 1 ≤ j ≤ `+1

2 except j = `−1
2 we have C2j ∈ PX2j.

(4) C`−1 = 2PΦ`−2 + PG for some G ∈ X`−1.
(5) For 1 ≤ j ≤ `−3

2 we have Y2j ∈ PX2j.
(6) Y`−1 = 6PΦ`−2 + PG for some G ∈ X`−1.

Proof. Suppose ` > 3 is prime and k ≥ 0 is even. Our goal is to write the crank moments C2j and
hence the Y2j in terms of `-integral quasimodular forms. Throughout the proof, we will only write
the components that are not obviously `-integral, with trailing ellipses representing the remaining
terms which are `-integral quasimodular forms.

(1) This result is well known. It follows from the fact that

12δqE2 = E2
2 − E4 and 12δqF − kE2F ∈Mk+2 if F ∈Mk.

(2) From [2, (2.11)] we have

(7.4) δqP = Φ1P = 1
24(1− E2)P ∈ PX2.

The result follows from (1) and (7.4) by an induction argument.
(3) Suppose 1 ≤ j ≤ `−3

2 . Then Φ2j−1 = B2j

4j (E2j − 1) ∈ X2j by the von-Staudt and Kummer
congruences [4], [18, p.20]. Hence C2j ∈ PX2j by (4.1). Similarly, C`+1 ∈ PX`+1 by (4.1), since

C`+1 = 2Φ`P + 2`C`−1Φ1 + · · ·+ 2Φ`−2C2,

= 2Φ`P + 8`Φ`−2Φ1 + · · ·

and

`Φ`−2Φ1 =
`B`−1

2(`− 1)
(1− E`−1)Φ1 ∈ X`+2,

again by the von-Staudt and Kummer congruences.
(4) The result follows from (4.1) and (3).
(5) The result follows from (7.1) and (3).
(6) The result follows from (7.1), (3), (4) and since

Y`−1 = 3C`−1 + · · · = 6Φ`−2P + · · · .

�

We can now prove that the `-adic behavior of the higher rank moments comes from that of R2.

Theorem 7.4. Let ` > 3 be prime. Then

(7.5) R`+1 − P `+1
2

(δq)R2 ∈ PX`+1.
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Proof. The idea of the proof is to use (7.3), and rewrite the Y2j in terms of `-integral quasi-modular
forms, keeping track of when ` occurs in denominator of a coefficient. We consider the equations
(7.2) for 2 ≤ k ≤ `+1

2 . In these equations the only time ` occurs in a denominator is when k = `+1
2 ,

and only the term of the right side which is not `-integral is the term involving Y`+1. We note that
all coefficients in the sum are `-integral. The only term which could rise to a non-`-integral quasi-
modular form is the term with i = 1. Equation (7.1) gives Y`+1 in terms of crank moments. We
wish to write 1

`Y`+1 in terms of quasi-modular forms identifying which terms that are not `-integral.
As usual, we will only write the components that are not obviously `-integral, with trailing ellipses
representing the remaining `-integral portion. We find that

1
`Y`+1 = 3

` (C`+1 − C2) + 3(`+ 1)C`−1C2P
−1 + 3

2(`+ 1)C`−1 + · · ·
= 6

`P (Φ` − Φ1) + 18(`+ 1)Φ`−2Φ1P + 3(`+ 1)Φ`−2P + · · · .

Therefore by (7.1), (7.2), (7.3), and Proposition 7.3

R`+1 − Pk(δq)R2 =
2

`(`− 1)
Y`+1 −

(`+ 1)(72δq + 7`2 − 37`+ 42)
6(`− 1)(`− 2)(`− 3)

Y`−1 + · · ·(7.6)

= F1 +
(`+1)/2∑
j=2

∼
Q`,j(δq)PZ2j ,

where the
∼
Q`,j are polynomials of degree `− j with integer coefficients, the Z2j ∈ X2j (2 ≤ j ≤ `+1

2 ),
and

F1 =
2

`− 1
(

6
`P (Φ` − Φ1) + 18(`+ 1)Φ`−2Φ1P + 3(`+ 1)Φ`−2P

)
− (`+ 1)(72δq + 7`2 − 37`+ 42)

6(`− 1)(`− 2)(`− 3)
(6Φ`−2P )

= F2P +
1
`
F3,

where F2 ∈ X`+1 and after some calculation we find that

F3 = (1
2 − 12δq)

∼
E`−1P + 12

∼
E`+1P − 3

2E2

∼
E`−1P.

Here we have defined the `-integral modular forms
∼
E`−1(z) := `B`−1

2(`−1)−`Φ`−2 and
∼
E`+1(z) := B`+1

2(`+1)−
Φ`, and we have used the von-Staudt and Kummer congruences `B`−1 ≡ −1 (mod `), and 12B`+1 ≡ 1
(mod `). Since

∼
E`−1 ∈M`−1(1),

V` = 12δq
∼
E`−1 − (`− 1)E2

∼
E`−1

is an `-integral modular form of weight (`+ 1). Now

12δq
∼
E`−1P = 12

(
δq
∼
E`−1

)
P + 12

∼
E`−1δqP = V`P + (`− 3

2)E2

∼
E`−1P + 1

2

∼
E`−1P.

Hence
F3 = (−V` + 12

∼
E`+1)P − `E2

∼
El−1P.

Now
−V` + 12

∼
E`+1 ≡ −E2

∼
E`−1 + 12

∼
E`+1 ≡ 0 (mod `),
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by the well known congruences 2
∼
E`−1 ≡ 1 and 24

∼
E`+1 ≡ E2 (mod `), and we note that −V` +

12
∼
E`+1 ∈M`+1(1). Hence

F1 = F4P,

where F4 ∈ X`+1. The function
(`+1)/2∑
j=2

∼
Q`,j(δq)PZ2j

has the same property by Proposition 7.3, and the result (7.5) follows from (7.6). �

For ` > 3 prime and ε ∈ {−1, 0, 1} we define the operator U∗ε,`, which acts on q-series by

U∗ε,`

(∑
n

a(n)qn
)

:=
∑

(1−24n
` )=ε

a(n)qn.

The following corollary of Theorem 7.4 follows from Corollary 7.2.

Corollary 7.5. Let ` > 3 be prime and suppose ε = −1 or 0. Then

U∗ε,` (R2) ≡ U∗ε,` (G`P ) (mod `),

where G` ∈ X`+1.

Proof. Let ε = −1 or 0. We define

cε,` :=

{
`+1

2 if ε = 0,
1 if ε = −1.

If
(

1−24n
`

)
= ε we have

(7.7)
(

1− P `+1
2

(n)
)
≡ cε,` (mod `),

by Corollary 7.2. Since R`+1 ≡ R2 (mod `), from Theorem 7.4 we have

U∗ε,`

((
1− P `+1

2
(δq)

)
R2

)
≡ U∗ε,` (G`P ) (mod `),

where G` ∈ X`+1. Finally by (7.7) we have

U∗ε,`

((
1− P `+1

2
(δq)

)
R2

)
=

∑
(1−24n

` )=ε

(
1− P `+1

2
(n)
)
N2(n)qn

≡ cε,`
∑

(1−24n
` )=ε

N2(n)qn ≡ cε,`U∗ε,` (R2) (mod `),

and the result follows since cε,` 6≡ 0 (mod `). �

The following theorem describes the relation between R2k and R2 for other k. The proof is entirely
analogous to Theorem 7.4, with an extra term that is not `-integral appearing when k = (`− 1)/2.

Theorem 7.6. Let ` > 3 be prime.
(1) For 1 ≤ k ≤ `−3

2 we have C2k ∈ PX2k, whereas C`−1 = 2PΦ`−2 +PGC for some GC ∈ X`−1.
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(2) For 2 ≤ k ≤ `−3
2 we have

R2k − Pk(δq)R2 ∈ PX2k,

whereas
R`−1 − P `−1

2
(δq)R2 = 2PΦ`−2 + PGR

for some GR ∈ X`−1.

7.2. Proof of Theorem 1.4. We are now ready to prove Theorem 1.4 by combining the above
results with the theory of `-adic modular forms.
(1) By Corollary 7.5,

U∗0,`(R2) ≡ U∗0,`(G`P ) (mod `)

for some G` ∈ X`+1. By reduction mod ` we may assume that all forms involved have integer
coefficients. The function G`P is a sum of functions of the form

∼
E
a

2FP ≡
∼
E
a

`+1FP ≡ q
1
24

∼
F a(z)
η(z)

(mod `),

where
∼
E2 = 1

24E2 and F (z) is an integral modular form F ∈Mb(1), with total weight 2a+ b ≤ `+ 1.

Define the associated `-adic modular form
∼
F a,b(z) :=

∼
E
a

`+1(z)F (z) ∈Mb+a(`+1)(1), which has weight

at most 1
2(`+1)2. Define the coefficients p

(∼
F , n

)
by
∑

n p
(∼
F , n

)
qn =

∼
F (z)

(q;q)∞
. By standard arguments

using Hecke operators (see [13]), we have
∞∑
n=0

N2(`n+ β`)q24n+r` ≡
∑

2a+b≤`+1

∞∑
n=0

p
(∼
F a,b, `n+ β`

)
q24n+r` ≡ ηr`(24z)G`,2(24z) (mod `),

where G`,2 ∈ X(`2+3`−r`−1)/2.
(2) This claim follows immediately using the same arguments as above and the relation between
R2k and R2 found in Theorem 7.6.
(3) To find `-adic modular forms associated with R`−1, we again use Theorem 7.6. The difference
is that there is now an extra term that is not `-integral, namely 2PΦ`−2 = 1

`

(
`B`−1

(`−1) − 2
∼
E`−1

)
P .

Define α` such that α` ≡ `B`−1

(`−1) (mod `2), so that the first part of the contribution from 2PΦ`−2

is

α`

∞∑
n=0

p(n)q24n−1 ≡ α`
1

η(24z)
≡ α`

1
η(24z)

(
η`(24z)
η(24`z)

)`
≡ α`

∆
`2−1
24 (24z)

η`(24`z)
(mod `2).

This implies that

α`

∞∑
n=0

p(`n+ β`)q24n+r` ≡ α`
∆(`2−1)/24(24z) | U(`)

η`(24z)
(mod `2).

Observe that ∆(`2−1)/24(z) ∈ S1
2 (`2−1)

(1), and recall that T (`) ≡ U(`) (mod `), so

f`(z) := α`∆(`2−1)/24(z) | T (`) = (q(`2−1)/24 + · · · ) | T (`) = c3q
λ` + · · · ,
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where λ` := `2+24β`−1
24` , and c3 is an integer. Since Hecke operators preserve spaces of modular forms,

it must be that f`(z) = ∆λ`(z)H1(z) for some H1(z) ∈M1
2 (`(`−1)−r`−1)

(1). We conclude that

α`

∞∑
n=0

p(`n+ β`)q24n+r` ≡ ∆λ`(24z)H1(24z)
η`(24z)

≡ ηr`(24z)H1(24z) (mod `2).

We proceed in a similar fashion for the term 2
∼
E`−1P. Define the coefficients e`−1(n) so that

2
∼
E`−1P ≡

∑∞
n=0 e`−1(n)qn (mod `2). As before, we find that

∞∑
n=0

e`−1(n)q24n−1 ≡ 2
∆(`2−1)/24(24z)

∼
E`−1(24z)

η`(24`z)
(mod `2),

and
∞∑
n=0

e`−1(`n+ β`)q24n+r` ≡ 2
∆(`2−1)/24(24z)

∼
E`−1(24z) | U(`)

η`(24z)
(mod `2)

≡ ηr`(24z)H2(24z) (mod `2),

where H2(z) ∈M1
2 (`(`+1)−r`−3)

(1) and

∆λ`(z)H2(z) ≡ 2∆(`2−1)/24(z)
∼
E`−1(z) | U(`) (mod `2).

Since 2
∼
E`−1 ≡ α` ≡ 1 (mod `), we have H1(24z) ≡ H2(24z) (mod `), so the overall the contribution

to the congruence for U∗0,`(R`−1) is

1
`
ηr`(24z) (H1(24z)−H2(24z))

as claimed, completing the proof.

8. Proof of Theorem 1.5

Using (6.3), we observe that
∞∑
n=0

(NFk(r, t;n)−NFk(s, t;n)) q24n−1 =
1
t

t−1∑
j=1

(
ζ−rjt − ζ−sjt

)
q−1Rk

(
ζjt ; q24

)
.

Without loss of generality, we assume that k ≤ pt
2 , the general case is proven similarly. In this

case we may use (6.4). The functions R
(
ζjt ; q`t

)
q−

`t
24 are the holomorphic parts of harmonic Maass

forms on Γ1

(
576t4

)
. One can generalize the usual Atkin U(t2)-operator to harmonic Maass forms.

This gives that q−1R
(
ζjt ; q24

)
are the holomorphic parts of harmonic Maass forms on Γ1

(
576t4

)
.

Moreover by Theorem 3.1, the non-holomorphic parts of those forms are supported on negative
squares. Generalizing the theory of twists of modular forms to twists of harmonic Maass forms,
we obtain that the restriction of those form to the coefficients supported on arithmetic progression
congruent to d modulo t satisfying

(
1−24d
t

)
= −1 is a weakly holomorphic modular form on Γ1

(
576t6

)
.

Thus (1) follows.
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In order to conclude (2), we have to show that the restriction of the function
t−1∑
j=1

(
ζ−rjt − ζ−sjt

) ζ2j
t

(1− ζjt )(ζ3j
t − 1)

(
q−1R

(
ζjt ; q24

)
− q−1R

(
ζ2j
t ; q24

))
to those arithmetic progressions stated in the theorem doesn’t have a non-holomorphic part. The
correct group follows as in (1). Using Theorem 3.1, we see that this is equivalent to the identity

(8.1) 0 =
t−1∑
j=1

(
ζ−rjt − ζ−sjt

) ζ2j
t

(1− ζjt )(ζ3j
t − 1)

(
sin
(
πj

t

)
sin
(

3πjd
t

)
− sin

(
2πj
t

)
sin
(

6πjd
t

))
.

Since sin(x) = 1
2i

(
eix + e−ix

)
, identity (8.1) is equivalent to

(8.2) 0 =
t−1∑
j=1

(
ζ−rjt − ζ−sjt

)(
1− ζ3dj

t

)
(

1− ζ3j
t

) ζ
3j(1−d)
2t

(
1−

(
ζj2t + ζ−j2t

)(
ζ3dj

2t + ζ−3dj
2t

))
.

This is further equivalent to

(8.3) 0 =
t−1∑
j=1

(
ζ−rjt − ζ−sjt

)
ζ

3j(1−d)
2t(

1 + ζ3j
t + · · ·+ ζ

3j(d−1)
t

)(
1− ζj(3d+1)

2t − ζj(−3d+1)
2t − ζj(3d−1)

2t − ζ−j(3d+1)
2t

)
.

Identity (8.3) can be verified using the conditions in the theorem and the standard orthogonality of
roots of unity.
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