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1. Introduction and Statement of results

Finding congruences between different arithmetic objects has always been a challenging
task. From Kummer we have beautiful relations between the Bernoulli numbers Bn which
have a wide range of important applications to different areas of mathematics. If n, m are
even positive integers and p is a prime with (p−1) - n and n ≡ m (mod p−1), then Bn

n ≡ Bm
m

(mod p). This leads directly to congruences for the Riemann zeta function ζ(s)

(1.1) ζ(1− n) ≡ ζ(1−m) (mod p)

and was the foundation for the construction of the p-adic L-function. Using Kummer con-
gruences for generalized Bernoulli numbers this has been generalized to the abelian Dedekind
zeta function [Le, Ca].

Another type of congruences involves the coefficients of modular forms. The most famous
ones are due to Ramanujan, and they assert that if n is a non-negative integer, then the
following congruences hold for p(n), the number of partitions of n,

p(5n + 4) ≡ 0 (mod 5),
p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

These congruences can be explained by the fact that certain Hecke operators annihilate
specific modular forms modulo p. Moreover Ramanujan showed congruences involving the
coefficients of the ∆-function

∆(z) =
∞∑

n=1

τ(n)qn := q
∞∏

n=1

(1− qn)24,

where q := e2πiz with z ∈ H, the Poincaré upper half-plane. For example Ramanujan proved
that

τ(n) ≡ nσ9(n) (mod 5),
τ(n) ≡ nσ3(n) (mod 7),
τ(n) ≡ σ11(n) (mod 691),
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where σk is the usual k-th divisor sum. For a complete list of these congruences we refer
the reader to [BO, SD]. One can show these congruences using identities between modular
forms. For example the congruence modulo 691 follows from the identity

E2
6(z) = E12(z)− 762048

691
∆(z),

where for k ≥ 4,

Ek(z) := 1− 2k

Bk

∞∑
l=1

σk−1(l) · e(lz)

is the usual weight k Eisenstein series. Here e(z) := e2πiz. Moreover these congruences
can be explained by the theory of `-adic Galois representation developed by Deligne, Serre,
and Swinnerton-Dyer. For details we refer the reader for example to [Ka2, Ri, Se, SD]. It
is known that these type of congruences are also related to special values of the standard
L-function (which will also play an important role in our paper) and the relations between
the denominators of certain L-functions. For example the famous Ramaujan 691 congruence
is related to the special value of the Rankin-Selberg zeta function attached to the Hecke
eigenform ∆. The above congruences can be used to prove that for allmost all integers
n, 5 · 7 · 691 divides τ(n) (see for example [Mo]). In 1978 Doi and Hida [DH1] discovered
nontrivial congruences among the Hecke eigenform (see also [DH2]). Recently progress has
been made also in the context of Siegel modular forms by Katsurada [Ka1], Mizumoto [Mi2],
and Böcherer and Nagaoka [BN].

In certain special cases congruences between modular forms of half-integer weight can
also be deduced from congruences of modular forms of integral weight (see e.g. [Ko, AK])
by “inverting” the Shimura map. To the authors knowledge there exists no general theory
which can be used to obtain congruences for half-integral weight modular forms from integer
weight ones in each single case. In the situation of Jacobi forms one could similarly as in
[Ko] find single congruences. Here we choose a different approach which leads to infinitely
many congruences. In Theorem 1.1 and Theorem 1.3 we obtain congruences between Jacobi
Eisenstein series and Jacobi cusp forms. Using results of [Tr] and the correspondence between
Jacobi forms of half-integer weight, one could also obtain that infinitely many coefficients of
Jacobi cusp forms are congruent to 0 modulo p for each prime p 6= 2, 3. Congruences for
Jacobi forms were also for example considered in [G1, G2]. In Theorem 1.4 we show that the
congruences for Jacobi forms considered in Theorem 1.1 are ”optimal”. In Theorem 1.5 we
prove congruences between special values of different kind of L-functions (Hecke- and Rankin
type) attached to elliptic cusp forms of different weights .

Let us illustrate our results with an example. Let f be the primitive elliptic cusp form of
weight 22 with Fourier coefficents af (n) and χ12,1 the Jacobi cusp form of weight 12 and index
1, normalized such that the Fourier coefficient associated to the fundamental discriminant
−3 is 1. Then Theorem 1.5 implies that

ζ(22)
∑∞

n=1 τ(n)2 n−22

ζ(11)π33 ‖ ∆ ‖2
≡ 394 · 593

∑∞
n=1 af (n) n−21

π21 ‖ χ12,1 ‖2
(mod 593).(1.2)
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Moreover

ζ(22)
∑∞

n=1 τ(n)2 n−22

ζ(11)π33 ‖ ∆ ‖2
∈ Z∗

131·593.

See also [Ka1].
In the following assume that m is a positive square-free integer. We let k and g be positive

integers with k even, and k > g + 2 and let (τ, z) ∈ Hg × Cg, where Hg denotes the Siegel
upper half plane of genus g. We define the Jacobi Eisenstein series of weight k, index m, and
degree g as

Eg
k,m(τ, z) :=

∑
γ∈ΓJ

∞\ΓJ
g

1|k,mγ(τ, z),

where ΓJ
g denotes the usual Jacobi group, |k,m is the slash operator for Jacobi forms, and

ΓJ
∞ is the stabilizer group of the function 1 in ΓJ

g . Moreover for a non-positive discriminant
D = D0f

2 (f ∈ N0, D0 a fundamental discriminant), we define for s ∈ C with Re(s) > 1

LD(s) :=
{

ζ(2s− 1) if D = 0,
LD0(s)

∑
d|f µ(d)χD0(d) d−s σ1−2s(f/d) if D 6= 0.

(1.3)

Here LD0(s) :=
∑

n>0 χD0(n) n−s, where χD0 is the primitive Dirichlet character associated
to D0, and µ(·) is the usual Möbius function. The function LD(s) has an analytic continuation
to the whole complex plane and the values LD(2 − k) for k even are known to be rational
and non-zero (see [Za] page 130). If g = 1, then we drop the index.

We now take the following basis for Jcusp
k,m , the vector space of Jacobi cusp forms on H×C

(see also [He]). For d|m, we let (Φjd,d)jd
be a primitive Hecke eigenbasis for the space of

new forms Jnew
k,d . As is well-known, this subspace is isomorphic as a Hecke module to a

subspace Mnew,−
2k−2 (m) of elliptic cusp forms (see [SZ] page 138 (ii)). Define the function

Ψjd,d := Φjd,d|T−
(

m
d

)
, where T−(·) is a certain Hecke type operator defined in [He]. Then

(Ψjd,d)jd,d is a Hecke eigenbasis for Jcusp
k,m . Each Φjd,d corresponds to an elliptic cusp form fjd

under the above described correspondence. In [He] (see Definition 2.4), the L-series L(s,Φjd,d)
is defined in such a way that it coincides with the Hecke L-series L(s, fjd

), where for a primitive
new form f(z) =

∑∞
n=1 a(n)qn, we define L(s, f) :=

∑∞
n=1 a(n)n−s. If m = 1, then we also

write (Φj)j and fj , where now fj is the primitive Hecke eigenform that corresponds to Φj

under the Saito-Kurokawa correspondence. In the following we mean by α ≡ β (mod pe)
for α, β ∈ Qp, e ∈ N that pe|(α − β). More generally we consider congruences modulo ideals
℘ lying above p in the sense of ideals in OK , the ring of integers of some number field K.
Usually we take OKf

where for we denote for a Hecke eigenform f ∈ Sk by Kf the totally real
number field generated by the Hecke eigenvalues λf of f . We now state our first theorem.

Theorem 1.1. Assume that m is a square-free integer and that k > 8 is even. Then there
exists a prime p and α ∈ N such that pα ‖ B2k−2·σk−1(m)

2k−2 and p|B2k−2

2k−2 , where Bk is the k−th
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Bernoulli number. Now define

ck,m,d :=
(−1)

k
2 (2k − 4)!σk−2(m/d) · dk−2

23k−5
.

Then we have for r2 − 4nm ≤ 0:

(1.4)
∑

d|(n,r,m)

dk−1L r2−4nm

d2

(2− k)pαEk,m(τ, z)

≡
∑
d|m

ck,m,d

dim Jnew
k,d∑

id=1

pα L(2k − 3,Φid,d)
π2k−3 ‖ Ψid,d ‖2

cid,d(n, r) ·Ψid,d(τ, z) (mod pα),

where cid,d(·) denote the Fourier coefficients of Ψid,d. Here ‖ · ‖ is the usual Petersson norm
for Jacobi forms. Note that both sides of (1.4) are in Zp.

From this we conclude.

Corollary 1.2. If m = 1, then we have for D0 := r2 − 4n < 0

LD0(2− k) · pαEk,1(τ, z)

≡ (−1)k/2 25−3k(2k − 4)!

dim Jcusp
k,1∑

j=1

pαL(2k − 3, fj)
π2k−3 ‖ Φj ‖2

cj(n, r) · Φj(τ, z) (mod pα).

We now illustrate Theorem 1.1 with an example (for details see Section 5). We let
χ10,1(τ, z) ∈ Jcusp

k,m be the unique element with (1, 1)-th Fourier coefficient equal to 1. Then
Theorem 1.1 implies the congruence

43867E10,1(τ, z) ≡ 16564 · χ10,1(τ, z) (mod 43867).

Following McGraw and Ono [MO] we call a prime p a congruence prime for a primitive Hecke
eigenform f(z) ∈ Sk if there is another primitive Hecke eigenform f1(z) ∈ Sk for which

f(z) ≡ f1(z) (mod ℘)

for some prime ideal ℘ above p in the ring of algebraic integers of a suitable large number
field. Congruence primes are rather rare. According to numerical data of W. Stein one has
for example that the only prime p < 104 that is a congruent prime for any primitive Hecke
eigenform in Sp+1 is p = 389. If p is not a congruence prime for any f ∈ Sk, we also call p a
non-congruence prime for Sk.

Let us first consider the case of elliptic modular forms. We put Gk(z) := Bk
−2k Ek(z). Let p

a prime number which divides Bk/k and let ℘ be a prime ideal above p. Then there exist a
primitive Hecke eigenform f ∈ Sk such that

Gk(z) ≡ f(z) (mod ℘).

This depends mainly on the fact, that Fourier coefficients are equal to the eigenvalues and
that the algebra of elliptic modular forms is generated be E4 and E6. In the setting of
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Jacobiforms or modular forms of half-integral weight, the situation is different. It is an open
question in the theory of Jacobi forms and Siegel modular forms (this is related to the Maass
conjecture of Siegel modular forms [Ma]) if pαEk,1 is not congruent to zero modulo pα in
general. On the other hand if if pαEk,1 is congruent to zero modulo pα we can by trivial
reasons always find an eigen cuspform φ ∈ Jcusp

k,1 which is congruent to the “deformed” Jacobi
Eisenstein series. Therefore, we assume in the following that pαEk,1(τ, z) 6≡ 0 (mod pα). In
contrast to the case of elliptic modular forms where for a Hecke eigenform one can choose the
first coefficient to be 1, there is no uniqe normalization for coefficients for Jacobi forms. Let
D0 := r2 − 4n < 0 then we fix a certain normalization attached to D0 of Jacobi Eisenstein
series of index 1:

GD0
k,1(τ, z) := LD0(2− k) · pαEk,1(τ, z).

Theorem 1.3. Let k be an even positive integer. Let p a prime number which divides B2k−2

2k−2
and which is a non-congruence prime for S2k−2. Let ℘ be an ideal above p in the number
field generated by all the Hecke eigenvalues of the primitive Hecke eigenbasis of S2k−2. Then
there exists a Hecke eigenform with totally real coefficients Φ ∈ Jcusp

k,1 such that we have for
all D0

(1.5) GD0
k,1(τ, z) ≡ L̃(2k − 3, f)p,D0 · cΦ(n, r)Φ(τ, z) (mod ℘),

where f ∈ S2k−2 is the form corresponding to Φ, and where we put for simplification

L̃(2k − 3, f)p,D0 := (−1)k/2 25−3k(2k − 4)!
pαL(2k − 3, f)
π2k−3 ‖ Ψ ‖2

∈ Kf .

In particular there exists a D0 such that

GD0
k,1(τ, z) ≡ L̃(2k − 3, f)p,D0 · Φ(τ, z) (mod ℘),

Moreover if we evaluate the congruence (1.5) at the Fourier coefficient c(n, r) we get a
congruence for the special value L̃. It is maybe worthwile to note that the normalization
constant to get an explicit congruence is given by a certain special value of a L-function of
Hecke type. For Jacobi forms of general index a similar statement would be possible. Since
this would lead to more technical complications, we chose not to address this question here.

We next show that for infinitely many k,m, and D = r2 − 4nm that Theorem 1.1 is
optimal, i.e., the (n, r)-th coefficient of the left-hand side of (1.4) is an element of Z∗

p.

Theorem 1.4. There exist infinitely many positive integers k and m, such that for a prime
p with pα ‖ B2k−2

2k−2 we have for infinitely many discriminants D = r2 − 4nm < 0

(2k − 4)!
∑
d|m

∑
id

pα L(2k − 3,Φid,d)
2ω(d) ‖ Ψid,d ‖2 π2k−3

cid,d(n, r)2 ≡ ε (mod pα),(1.6)

where ε ∈ Z∗
p is explicitely computable, and where ω(d) denotes the number of prime divisors

of d.
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To state our next theorem which gives congruences between L-functions, we define for
f(z) =

∑∞
n=1 a(n)qn ∈ Sk the Dirichlet series

Df (s) :=
ζ(2s− 2k + 2)
ζ(s− k + 1)

∞∑
n=1

a(n)2n−s.

Theorem 1.5. Assume that k > 8 is an even integer and p a prime with pα ‖ B2k−2

2k−2 , where

α ∈ N and
(
p, Bk

k

)
= 1. Let further D0 < 0 be a fundamental discriminant such that

νp(LD0(2 − k)) = 0. Let {Φj}j be a primitive Hecke-Jacobi eigenbasis of Jcusp
k,1 , which is

ordered and normalized in such a way that for d′k ∈ N we have that cj(D0) = 1 if and only
if 1 ≤ j ≤ d′k and 0 otherwise. Here cj(D0) is the Fourier coefficient of Φf corresponding to
the discriminant D0. Moreover let (gj)j be a primitive Hecke eigenbasis of Sk. Then we have

(1.7) εk,p,D0 (k − 2)!(2k − 3)!
dim Sk∑

j=1

Dgj (2k − 2)
π3k−3 ‖ gj ‖2

≡ (2k − 4)!
d′k∑

j=1

pα L(2k − 3, fj)
π2k−3 ‖ Φj ‖2

aWΦj (1) (mod pα),

where aWΦj (1) is the first coefficient of Φ(τ, 0), and

εk,p,D0 := (−1)
k
2
+1pα 21−k ζ(3− 2k)−1LD0(2− k) ∈ Z∗

p.

Remark. Formulae of type (1.7) which involve congruences between special values of L-
functions of different type seem to be new. From the proof of the theorem the existence
can be expected without going into concrete calculations. But the pattern behind our result
is not clear and will hopefully give inspiration to further study of such congruences. We
believe that applying the method used in the proof of theorem 1.3 will reduce the sum on
the left side of (1.7) to single special value by going to congruences to prime ideals above p.

Acknowledgements

The authors thank the referee for many helpful suggestions in particular to those which
lead to Theorem 1.3.

2. Basic facts about Jacobi forms

Let us recall some basic facts about Jacobi forms. For details we refer the reader to [EZ]
and [Zi]. The Jacobi group ΓJ

g := Γg n (Zg × Zg), where g ∈ N and Γg := Spg(Z), acts on
Hg × Cg via

(M, (λ, µ)) ◦ (τ, z) :=
(
(Aτ + B)(Cτ + D)−1, (z + λτ + µ)(Cτ + D)−1

)
.
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Let k and m be positive integers, and Φ a complex valued function on Hg × Cg. If
γ =

((
A B
C D

)
, (λ, µ)

)
∈ ΓJ

g , we define

Φ|k,mγ(τ, z)

:= det(Cτ + D)−ke
(
−m(Cτ + D)−1C[(z + λτ + µ)t] + mτ [λt] + 2mλzt

)
· Φ (γ ◦ (τ, z)) ,

where A[B] := BtAB for matrices of compatible sizes and e(A) := e2πitr A for a square matrix
A. Let Jg

k,m be the space of Jacobi form of weight k, degree g, and index m with respect to
ΓJ

g , i.e., the space of holomorphic functions Φ : Hg × Cg → C satisfying Φ|k,mγ = Φ for all
γ ∈ ΓJ

g that have a Fourier expansion of the form

Φ(τ, z) =
∑

„
n r/2

rt/2 m

«
∈Ag+1

c(n, r)e (nτ + rz) ,(2.1)

where Ag denote the set of half-integral, symmetric, semi-positive g × g matrices. Moreover
Jg,cusp

k,m denotes the vector space of those Jacobi forms for which in (2.1) the sum only runs
over positive definite matrices. If g = 1, then we drop the index.

The space Jg,cusp
k,m is a finite dimensional Hilbert space with the Petersson scalar product

〈Φ,Ψ〉 :=
∫

ΓJ
g \Hg×C(1,g)

Φ(τ, z) ·Ψ(τ, z) · (det v)k exp
(
−4πtr

(
mv−1[yt]

))
dV J

g ,

where τ = u + iv, z = x + iy, and dV J
g := (det v)−(g+2)dx dy du dv.

Let Φ ∈ Jcusp
k,m be a Hecke Jacobi eigenform and for simplificity we let m be square-free. Let

KΦ be the totally real field generated by its Hecke eigenvalues. Then by standard arguments
(see for example [Ga] and [Mi1]) one shows that it is possible to normalize Φ in such a way
that all its Fourier coefficients lie in KΦ. Such Hecke-Jacobi eigenforms we call primitive. In
this setting we say that KΦ is the coefficient field of Φ.

3. Jacobi and Siegel Eisenstein series

Here we recall basic facts on Jacobi and Siegel Eisenstein series and explain their connec-
tion. For details we refer the reader to [Kl] and [Zi].

Define for Z ∈ Hg and even k > g + 1 the Siegel Eisenstein series

Eg
k(Z) :=

∑
“

A B
C D

”
∈Γ∞\Γg

det(CZ + D)−k,

where Γ∞ :=
{(

A B
0 D

)
∈ Γg

}
. This series is absolutely and locally uniformly convergent and

an element of Mk(Γg), the vector space of Siegel modular forms of weight k and genus g. We
denote its Fourier coefficients by AEg

k (T ), where T ∈ Ag. Here AEg
k (0) = 1. Siegel [S1, S2]

proved that the coefficients AEg
k (T ) are rational and have bounded denominators. If g = 1,

then we drop the index.
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Let

N∗
2k−g :=

∏
p|D2k−g

p1+νp(k−g/2),

N∗∗
2k−g :=

∏
p|D2k−g

p≡3 (mod 4)

p1+νp(k−g/2),

where Dk denotes the denominator of Bk and where νp(n) for a rational number n is the
p-order of n. Moreover let

Dk,g :=


2g k

Bk

∏(g−1)/2
i=1

k−i
B2k−2i

if g is odd,

2g k
Bk

1
N∗

2k−g

∏g/2
i=1

k−i
B2k−2i

if g ≡ 0 (mod 4),

2g−1 k
Bk

1
N∗∗

2k−g

∏g/2
i=1

k−i
B2k−2i

if g ≡ 2 (mod 4).

Böcherer showed that Dk,g is a common divisor of all aEg
k (T ) with T positive definite. This

generalizes the case g = 2 done by [Ma]. For odd g it is known that Dk,g is the greatest
common divisor of all aEg

k (T ) with T positive definite. The case that g is even is still open
but numerical evidence suggests that Dk,g(T ) is also a greatest common divisor of AEg

k (T )
with T positive definite. We also need the common divisors of AEg

k (T ) with rank(T ) < g. If
rank(T ) = r < g, then there exists a unimodular matrix U such that T [U ] =

(
T1 0
0 0g−r

)
with

T1 positive definite and we have

AEg
k (T ) = AEr

k(T1).

In particular Dk,r is a common divisor of AEg
k (T ) with rank(T ) = r.

Let us next consider Jacobi Eisenstein series. Define for k, m, g ∈ N with k even and
k > g + 2 the Jacobi Eisenstein series of weight k, index m, and degree g as

Eg
k,m(τ, z) :=

∑
γ∈ΓJ

∞\ΓJ
g

1|k,mγ(τ, z),

where ΓJ
∞ :=

{((
A B
0 D

)
, (0, µ)

)
∈ ΓJ

g

}
. This series is absolutely and locally uniformly conver-

gent and an element of Jg
k,m. We denote its Fourier coefficients by AEg

k,m(n, r).
To see the connection between the Jacobi and Siegel Eisenstein series we consider the

Fourier-Jacobi expansion of the Siegel Eisenstein series. Writing
(

τ zt

z eτ )
, we get

Eg+1
k (Z) =:

∞∑
m=0

eg
k,m(τ, z) · q̃ m ,
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where q̃ := e(τ̃). Clearly eg
k,m(τ, z) ∈ Jg

k,m. For square-free m and n, r such that
(

n r/2

rt/2 m

)
∈

Ag+1, we have (see [Zi] Section 4.4)

AEg
k,m(n, r) =

(
− 2k

Bk
σk−1(m)

)−1

AEg+1
k

((
n r/2

rt/2 m

))
.(3.1)

In this case, we have (see [EZ] Section 6)

AEk,m(n, r) = − 2k − 2
B2k−2 · σk−1(m)

∑
d|(n,r,m)

dk−1L r2−4nm

d2

(2− k).(3.2)

4. Pullback formula of Jacobi Eisenstein series

Define the Witt operator W : J2
k,m → Sym2Jk,m by

(WΦ) ((τ, z), (τ̃ , z̃)) := Φ
((

τ 0
0 τ̃

)
, (z, z̃)

)
.

If Φ(τ, z) =
∑

c(n, r) · e (nτ + rz) , then the ((n1, r1), (n2, r2))-th Fourier coefficient of WΦ
related to ((τ, z) , (τ̃ , z̃)) equals

∑
l c(nl, r), where r = (r1, r2) and l runs through all integers

such that nl =
(

n1 l/2
l/2 n2

)
and

(
nl rt

r m

)
∈ A3.

Proposition 4.1. Let k > 4 be even and let m ∈ N be square-free. Let (Φi)i be an orthogonal
normalized Hecke eigenbasis of Jcusp

k,m . Then we have

(4.1) WE2
k,m = Ek,m ⊗ Ek,m +

∑
i

αiΦi ⊗ Φi,

where

αi =
(−1)k/2π 21−k

m (k − 3/2)
ZJ(k, Φi)
‖ Φi ‖2

.

Here ZJ(s,Φi) :=
∑

n λ(Φi, n) n−s with λ(Φi, n) the eigenvalue of Φi under the n-th Hecke-
Jacobi operator.

Proof. We recall the basic fact that WE2
k,m ∈ Sym2Jk,m. This was first observed by Witt

in the context of Siegel modular forms of genus 2. Projecting WE2
k,m against Φj shows by a

result of Arakawa (Theorem 2.8 of [Ar])〈
Φi(·) , WE2

k,m ((−τ , z), ·)
〉

=
(−1)k/2π 21−k

m (k − 3/2)
ZJ(k, Φi) Φi(τ, z).(4.2)

This gives that the proposition is true up to the Eisenstein series part. Here we used the
technical assumption that the involved Jacobi forms have totally real Fourier coefficients
which leads to Φ(−τ , z) = Φ(τ, z). Comparing the constant term shows the proposition. �

In [He] it has been shown that αi 6= 0, hence we have
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Corollary 4.2. Let Φi be as in the proposition with coefficient field KΦi. Then

πZJ(k, Φi)
‖ Φi ‖2

∈ K∗
Φi

.

If Φi is a primitive new form with related elliptic cusp form fi of weight 2k − 2, then

πL(2k − 3, fi)
ζ(2k − 2) ‖ Φi ‖2

∈ K∗
fi

.

For the case m = 1 see also Yasushi Tokuno [To].

5. Proof of Theorem 1.1

5.1. Proof of the Theorem.

Proof. Since
∣∣∣Bk

k

∣∣∣ > 1 for k > 14 there exists always a prime p such that p|
∣∣∣Bk

k

∣∣∣. We apply
Proposition 4.1 and use as a Hecke eigenbasis the functions (Ψid,d)id,d defined in the intro-

duction. Then αid,d =
(−1)k/2π·ZJ (k,Ψid,d)

2k−2·m·(2k−3)‖Ψid,d‖2
, where we write αid,d instead of αd in Proposition

4.1. Moreover we conclude from [He] Theorem 3.1

ZJ(k, Ψid,d) =

∏
p|m

d

(
1 + p−(k−2)

)
ζ(2k − 2)

∏
p|m

(
1 + p−(k−1)

)L(2k − 3,Φid,d).

This gives that

αid,d =
(−1)k/2 (2k − 2)! · dk−2 · σk−2(m/d) · L(2k − 3,Φid,d)
23k−5 · π2k−3 · (2k − 3) · σk−1(m) ·B2k−2· ‖ Ψid,d ‖2

.

Now formula (4.1) leads to

AWE2
k,m ((n1, r1), (n2, r2))

= AEk,m (n1, r1) AEk,m (n2, r2) +
∑
d|m

dim Jnew
k,d∑

id=1

αid,d · cid,d(n1, r1) · cid,d(n2, r2),

where AWE2
k,m (·) denote the Fourier coefficients of WE2

k,m. Now let pα ‖ B2k−2·σk−1(m)
2k−2 with

p|B2k−2

2k−2 be given. From [Ma] and [Bo] one can see that

pαAWE2
k,m ((n1, r1), (n2, r2)) ∈ Zp.(5.1)

For this we distinguish the possible ranks of Tl :=
(

n1 l/2 r1

l/2 n2 r2
r1 r2 m

)
∈ A3 and show that

pαAE2
k,m

((
n1 l/2
l/2 n2

)
, (r1, r2)

)
∈ Zp.(5.2)
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If rank(Tl) = 1, then Tl[U ] =
(

t 0
0 02

)
for some unimodular matrix U and t ∈ N and

AE2
k,m

((
n1 l/2
l/2 n2

)
, (r1, r2)

)
= − Bk

2kσk−1(m)
AEk(t) =

σk−1(t)
σk−1(m)

,

which directly implies that (5.2) holds. If rank(Tl) = 2, then Tl[U ] =
(

T 0
0 01

)
for some

unimodular matrix U and a positive definite matrix T , and we have

AE2
k,m

((
n1 l/2
l/2 n2

)
, (r1, r2)

)
= − Bk

2kσk−1(m)
AE2

k(T ).(5.3)

From [Bo] it follows that (5.3) equals

up
(2k − 2) ·B(k − 1, ηT )
σk−1(m) ·B2k−2(k − 1)

,

where up is in Zp, ηT is some character, and B(k − 1, ηT ) is a generalized Bernoulli num-
ber. From the properties of generalized Bernoulli numbers [Ca, Le] it is well-known that
B(k−1,ηT )

(k−1) ∈ Zp. Here we need that (p − 1) - 2(k − 1) which follows from the assumptions in

the theorem. This gives (5.2). If rank(T ) = 3, then (5.2) follows since D−1
k,3 · A

E3
k(T ) ∈ Zp if

T is positive definite.
Using (3.2) and (5.1) gives that

pα 2k − 2
B2k−2 · σk−1(m)

∑
d|(n1,r1,m)

dk−1 · pαL r2
1−4n1m

d2

(2− k) ·AEk,m(n2, r2)

≡ p2α
∑
d|m

dim Jnew
k,d∑

id=1

αid,d · cid,d(n1, r1) · cid,d(n2, r2) (mod pα).

This leads to the Theorem. �

Proof of Corollary 1.2. It follows from Arakawa [Ar] Section 6.1 that

ZJ(k, Φj) =
L(2k − 3, fj)

ζ(2k − 2)
.

Thus we get

αj =
(−1)k/2(2k − 2)! · L(2k − 3, fj)

23k−5 · π2k−3 · (2k − 3) ·B2k−2· ‖ Φj ‖2
(5.4)

which implies the corollary. �

5.2. Example. We apply Theorem 1.1 with k = 10 and m = 1. We have that dimJcusp
10,1 = 1

and we let χ10,1(τ, z) be the unique element in Jcusp
10,1 normalized with cχ10,1(1, 1) = 1, where

cχ10,1(·) denote the Fourier coefficients of χ10,1 (see [EZ]). We have that B18 = 43867
798 , and let

p = 43867, α = 1. Theorem 1.1 gives that

(5.5) 43867 · L−3(−8) ·AE10,1(n, r) ≡ 43867 · c10,1,1
L(17, χ10,1)
‖ χ10,1 ‖2 π17

cχ10,1(n, r) (mod 43867).
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We have in particular for n = r = 1, using that AE10,1(1, 1) = −18L−3(−8)
B18

,

−43867
18
B18

L2
−3(−8) ≡ 43867 · c10,1,1

L(17, χ10,1)
‖ χ10,1 ‖2 π17

(mod 43867).

Plugging this back into (5.5) gives that

−18 · 798 · L−3(−8)χ10,1(τ, z) ≡ 43867 · E10,1(τ, z) (mod 43867).

Here L−3(−8) can be calculated with Pari and gives the value 2·809
33 . Thus

16564 · χ10,1(τ, z) ≡ 43867 · E10,1(τ, z) (mod 43867).

6. Proof of Theorem 1.3

Proof. Assume the notation in Theorem 1.3. Corollary 1.2 implies that

(6.1) GJ,D0

k,1 (τ, z) ≡
d∑

j=1

L̃(2k − 3, fj)p,D0cΦj (n, r) · Φj(τ, z) (mod ℘),

where d := dim S2k−2. Without loss of generality we may now assume that f1 ≡ GJ,D0

k,1 (τ, z)
(mod ℘), i.e., we have for all n

λf1(n) ≡ σ2k−3(n) (mod ℘).

Moreover, since p is a non-congruence prime for S2k−2, there exists l1 ∈ N such that

λfd
(l1) 6≡ λf1(l1) (mod ℘).

Applying the T J(l1) Hecke operator to equation (6.1) gives

0 ≡ (σ2k−3(l1)− λf1(l1)) ·G
J,D0

k,1 (τ, z)

≡
d∑

j=2

(
λfj

(l1)− λf1(l1)
)
L̃(2k − 3, fj)p,D0 · cΦj (n, r)Φj(τ, z) (mod ℘).

Next choose lj ∈ N (2 ≤ j ≤ d) such that

λfd
(lj) 6≡ λfj

(lj) (mod ℘).

Succesively applying the T J(lj) Hecke operator and subtracting λfj
(lj) times the previous

equation gives
d−1∏
j=1

(
λfd

(lj)− λfj
(lj)

)
L̃(2k − 3, fd)p,D0 · cΦd(n, r)Φd(τ, z) ≡ 0 (mod ℘).

By the choice of the lj this leads to

L̃(2k − 3, fd)p,D0 · cΦd(n, r)Φd(τ, z) ≡ 0 (mod ℘).
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Plugging this back into (6.1) gives

GJ,D0

k,1 (τ, z) ≡
d−1∑
j=1

L̃(2k − 3, fj)p,D0cΦj (n, r) · Φj(τ, z) (mod ℘).

In the same way, we show that for 2 ≤ j ≤ d− 1

L̃(2k − 3, fj)p,D0 · cΦj (n, r)Φj(τ, z) ≡ 0 (mod ℘).

This yields
GJ,D0

k,1 (τ, z) ≡ L̃(2k − 3, f1)p,D0cΦ1(n, r) · Φ1(τ, z) (mod ℘)

as claimed. �

7. Proof of Theorem 1.4

As before we have for n1, n2, r1, r2 ∈ Z with r2
i − 4nim ≤ 0 (i = 1, 2)

(7.1) AWE2
k,m ((n1, r1), (n2, r2))

= AEk,m (n1, r1) AEk,m (n2, r2) +
∑
d|m

dim Jnew
k,d∑

id=1

αid,d · cid,d(n1, r1) · cid,d(n2, r2).

Now fix a fundamental discriminant D0 and a weight k0 such that B2k0−2

2k0−2 has a prime divisor
p that does not divide LD0(2 − k0) and construct from this a sequence of infinitely many
integers k with this property. For example we can take k0 = 12 and D0 = −3 which can
be checked using Pari. Indeed: let p be a prime dividing B22

22 , then p is either 131 or 593.

Moreover L−3(−10) = −2·1847
3 , thus L−3(−10) ∈ Z∗

p. Now assume that pα ‖ B2k0−2

2k0−2 . Let

k := k0 + rpα−1(p − 1) with r ∈ Z. We claim that pα ‖ B2k−2

2k−2 and p - LD0(2 − k). Indeed,

since p|B2k0−2

2k0−2 and k ≡ k0 (mod pα−1(p− 1)) we have (see [Ca, Le])

LD0(2− k) ≡ LD0(2− k0) (mod p),(
1− p2k−3

) B2k−2

2k − 2
≡

(
1− p2k0−3

) B2k0−2

2k0 − 2
(mod pα).

In particular, we have that pα ‖ B2k−2

2k−2 and p - LD0(2 − k) as claimed. For a fixed triple
(k, p,D0) with this property we now construct infinitely many discriminants D and positive
integers m such that the claim of the theorem holds. In order to do so, let f and m be coprime
integers that are the product of distinct prime divisors congruent to 1 modulo pα|D0| such
that d(m), the number of divisors of m, is not divisible by p. Clearly there are infinitely
many such m and f . We write now D0 =: r2

0 − 4n0 and D := D0f
2m2 = r2 − 4nm, where

n := f2mn0 and r0 := r0fm. We have by (3.2)

AEk,m(n0f
2m, r0fm) = − 2k − 2

B2k−2 · σk−1(m)

∑
d|m

dk−1LD0f2m2

d2

(2− k).(7.2)
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Since m is square-free, we have

σk−1(m) =
∏
q|m

q prime

σk−1(q) ≡ 2ω(m) (mod pα).

Moreover by (1.3) we have

LD0f2m2

d2

(2− k) = LD0(2− k)
∑
l| fm

d

µ(l)χD0(l) lk−2 σ2k−3

(
fm

dl

)
.(7.3)

Now the sum over l is multiplicative in fm
d since fm

d is square-free. Moreover for a prime
fm
d = q with q ≡ 1 (mod pα|D0|) we have∑

l|q

µ(l)χD0(l) lk−2 σ2k−3

(q

l

)
= σ2k−3(q)− 1 ≡ 1 (mod pα).

Thus we get from (7.3)

LD0f2m2

d2

(2− k) ≡ LD0(2− k) (mod pα).

Thus (7.2) gives

AEk,m(n0f
2m, r0fm) ≡ −(2k − 2) · d(m) · LD0(2− k)

2ω(m) ·B2k−2
(mod pα).

Moreover since p - σk−1(m), we see as in the proof of Theorem 1.1 that

pαAWE2
k,m

(
(n0f

2m, r0mf), (n0f
2m, r0fm)

)
∈ Zp.

Using the above results, we can conclude from (7.1)

− 2−2ω(m)d2(m)p2α

(
2k − 2
B2k−2

)2

L2
D0

(2− k)

≡ p2α (−1)k/2(2k − 2)!
23k−5(2k − 3) ·B2k−2

∑
d|m

∑
id

(
cid(n0f

2m,mfr0)
)2

2ω(d) ‖ Ψid,d ‖2 π2k−3
L(2k − 3,Φid,d) (mod pα).

From this the claim follows directly.

8. Proof of Theorem 1.5

Proof. We let p and α be chosen as in the theorem. Similar as before we get

−pαEk,1 ⊗ pαEk,1 ≡ p2α
∑

j

αjΦj ⊗ Φj (mod pα).

Using (3.2) and the fact that p - LD0(2− k), this leads to

(8.1) u2
p,k ≡

∑
j

p2ααjc
j(D0)2 (mod pα),
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where up,k ∈ Z∗
p. Since the left hand side of (8.1) is in Z∗

p there exists at least one j0 such
that cj0(D0) = 1. Thus

pα LD0(2− k)(2k − 2)
B2k−2

pαEk,1 ≡ p2α

d′k∑
j=1

αjΦj (mod pα).

For a Jacobi form Φ on H× C there is also a Witt operator W defined by

(WΦ) (τ) := Φ(τ, 0).

We first show that

WEk,1 = Ek +
∑

i

βJ
i gi,(8.2)

where (gi)i is a primitive Hecke eigenbasis of Sk and

βJ
i :=

(k − 2)!(2k − 2)!Dgj (2k − 2)
‖ gj ‖2 24k−6π3k−3B2k−2

.

It can be deduced that the βJ
j are algebraic (see also [Za]). Clearly

WEk,1 = aEk +
dim Sk∑

j=1

β̃j gj

with some constant a and with β̃j given by

〈WEk,1, gj〉 = β̃j ‖ gj ‖2 .

Since AEk,m(0, 0) = AEk(0) = 1 we have that a = 1. Moreover from [Ga] it is known that

E2
k

((
τ 0
0 τ̃

))
= Ek(τ)Ek(τ̃) +

∑
j

βj gj(τ)gj(τ̃).

The βj can be explicitely computed (for details see also [Bo]) as

βj = −27−4k · (k − 2)!(2k − 3)!
k(2k − 2)
BkB2k−2

Dgj (2k − 2)
π3k−3 ‖ gj ‖2

.

This directly implies that〈〈
E2

k

(
· 0
0 ·

)
, gj

〉
, gj

〉
= βj ‖ gj ‖4 .(8.3)

Moreover, for Z ∈ H2 (see [EZ] Section 6), we have the Fourier Jacobi expansion

E2
k(Z) =

∞∑
l=0

ek,1(τ, z)|Vl q̃ l ,
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where Vl is defined in [EZ] page 41, and where ek,1|V0 = Ek. Here the Jacobi Eisenstein series
shows up:

E2
k(Z) = − 2k

Bk

∞∑
l=0

Ek,1(τ, z)|Vl q̃ l .

It is well-known how l-th Hecke operator for Mk (l ∈ N) Tl and W interchange

W (Ek,1|Vl) = (WEk,1) |Tl.

Using that Tl is self-adjoint and gj is a Hecke eigenform, gives〈
E2

k

(
· 0
0 τ̃

)
, gj(·)

〉
= − 2k

Bk

∞∑
l=1

q̃ l 〈WEk,1|Tl, gj〉 = − 2k

Bk
gj(τ̃) 〈WEk,1, gj〉 .

Here we used the orthogonality of Eisenstein series and cusp forms. Thus〈〈
E2

k

(
· 0
0 ·

)
, gj

〉
, gj

〉
= − 2k

Bk
‖ gj ‖2 〈WEk,1, gj〉 .(8.4)

Setting (8.4) and (8.3) equal gives that〈
WE2

k,1, gj

〉
= −Bk

2k
βj ‖ gj ‖2

which implies (8.2). Writing WΦj =
∑

i γi,j gi gives

−pα LD0(2− k)
ζ(3− 2k)

∑
i

pαβJ
i gi ≡

∑
i

 d′k∑
j=1

p2ααjγi,j

 gi (mod pα).

Plugging in αi and βJ
i we conclude:

−pα LD0(2− k)
ζ(3− 2k)

∑
i

pα (k − 2)!(2k − 2)!
24k−6B2k−2

Dgi(2k − 2)
π3k−3 ‖ gi ‖2

gi

≡
∑

i

 d′k∑
j=1

p2α (−1)k/2(2k − 2)! · L(2k − 3, fj)
23k−5 · π2k−3 · (2k − 3) ·B2k−2· ‖ Φj ‖2

γi,j

 gi (mod pα)

A short calculation now implies

−pα(−1)k/2 LD0(2− k) · (k − 2)!(2k − 3)!
ζ(3− 2k) · 2k−1

dimSk∑
j=1

Dgj (2k − 2)
π3k−3 ‖ gj ‖2

≡ (2k − 4)!
d′k∑

j=1

pα L(2k − 3, fj)
π2k−3 ‖ Φj ‖2

aWΦj (1) (mod pα),

which leads to the desired result. �
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