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GENERALIZED L-FUNCTIONS RELATED TO THE RIEMANN

ZETA FUNCTION

KATHRIN BRINGMANN, BEN KANE, AND SRIMATHI VARADHARAJAN

Abstract. In this paper, we construct generalized L-functions associated to mero-
morphic modular forms of weight 1

2
for the theta group with a single simple pole in

the fundamental domain. We then consider their behaviour towards i∞ and relate
this to the Riemann zeta function.

1. Introduction and statement of results

Arithmetic information c(n) for n ∈ N can be naturally encoded in a so-called
Dirichlet series, defined for Re(s) sufficiently large,

L(s) =

∞
∑

n=1

c(n)

ns
.

One calls the function L a (classical) L-function if it satisfies the following three
properties:

(1) It has a meromorphic continuation to the whole complex plane.
(2) It has an Euler product, for Re(s) sufficiently large,

L(s) =
∏

p

1

1− fp (p−s) p−s
.

where the product runs over all primes and fp is a polynomial.
(3) There is some archimedean information L∞(s) such that the function

Λ(s) := L∞(s)L(s)
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satisfies, for some k and ε = ±1, a functional equation

Λ(k − s) = εΛ(s).

In [1], the first two authors constructed functions Lz via regularized Mellin transforms
of weight two meromorphic modular forms on SL2(Z) with a single simple pole at one
point z in the fundamental domain (not on the imaginary axis). These functions
satisfy a functional equation and their behaviour as z → i∞ was shown to be related
to a classical L-function (see [1, Theorem 1.1 and Theorem 4.3]), so they were named
generalized L-functions.

Slightly more formally, for k ∈ 1
2
Z we call a collection of functions s 7→ Lz(s)

defined for s ∈ C for almost all z ∈ H generalized L-functions of weight k if they
satisfy the following properties:

(1) We have the functional equations

Lz(k − s) = ±Lz(s).

(2) There exist “simple” functions Cℓ,s and Dℓ,s such that, for almost all x ∈ [0, 1],

lim
y→∞

(

Lz(s)−
∑

ℓ≥0

Cℓ,s(x)y
s−ℓ −

∑

ℓ≥0

Dℓ,s(x)y
k−s−ℓ

)

(1.1)

is a classical completed L-function.

We call the classical L-function whose completion one obtains from the limit (1.1),
the L-function associated to Lz(s).

Letting jϑ be the Hauptmodul for Γϑ, explicitly given in (3.3), we (formally) define

Fz(s) := s

(

1

2
− s

)

jϑ(z)

∫ ∞

0

ϑ(it)

jϑ(it)− jϑ(z)
ts−1dt. (1.2)

The main result in this paper is the fact that the functions Fz give a collection of
generalized L-functions related to the Riemann zeta function in the sense that (1.1)
is the Riemann ξ-function

ξ(s) :=
s(s− 1)

2π
s
2

Γ
(s

2

)

ζ(s),

which satisfies the functional equation

ξ(1− s) = ξ(s). (1.3)

Here Γ(s) is the Γ-function, defined by Γ(s) :=
∫∞
0

ts−1e−tdt for Re(s) > 1 and
extended meromorphically to the entire complex plane.
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Theorem 1.1. The functions Fz are a collection of generalized L-functions related

to the Riemann zeta function in the following sense:

(1) If z is not Γϑ-equivalent to a point on iR+, then the integral in (1.2) converges

for all s ∈ C.

(2) If z is not Γϑ-equivalent to a point on iR+, then we have

Fz

(

1

2
− s

)

= Fz(s).

(3) With Cℓ,s(x) and Dℓ,s(x) defined in (4.12) and (4.13), respectively, the limit (1.1)
is ξ(2s).

The paper is organized as follows. In Section 2, we recall the properties of the
theta function and the zeta function. In Section 3, we construct the Hauptmodul jϑ
for Γϑ. In Section 4, we show that Fz converges absolutely for all s ∈ C under a mild
assumption on z and then finally, for z = x + iy with x /∈ Z fixed, take the limit
y → ∞ to prove Theorem 1.1.
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2. Preliminaries

2.1. The theta function. Define the theta function (q := e2πiτ )

ϑ(τ) :=
∑

n∈Z
q

n2

2 .

It is well-known that ϑ is a modular form of weight 1
2

for the theta group

Γϑ :=
〈

S, T 2
〉

=

{(

a b
c d

)

∈ SL2(Z) : a ≡ d (mod 2) and c ≡ b (mod 2)

}

,

where S := ( 0 −1
1 0 ) and T := ( 1 1

0 1 ). The theta function has the following growth
behavior.

Lemma 2.1. Let τ = u+ iv.



4 KATHRIN BRINGMANN, BEN KANE, AND SRIMATHI VARADHARAJAN

(1) As v → ∞, we have

ϑ(τ) = 1 +O
(

e−πv
)

.

(2) As v → 0+, we have

ϑ(iv) =
1√
v
+O

(

e−
π
v

√
v

)

.

Proof.

(1) The claim follows directly from the Fourier expansion of ϑ.
(2) It is well-known that we have

ϑ(τ) = (−iτ)−
1
2ϑ

(

−1

τ

)

. (2.1)

Taking τ = it and plugging in the Fourier expansion for ϑ( i
t
) yields the claim. �

2.2. A regularized Mellin transform of the theta function. We recall the fol-
lowing well-known relation between the theta function and the Riemann zeta function
that goes back to Riemann.1

Lemma 2.2. For any t0 > 0, we have

2

s(2s− 1)
ξ(2s) =

∫ ∞

t0

(ϑ(it)− 1)ts−1dt+

∫ t0

0

(

ϑ(it)− 1√
t

)

ts−1dt− ts0
s
+

t
s− 1

2
0

s− 1
2

.

2.3. Asymptotics for special functions. For y > 0 and s ∈ C we define the
incomplete gamma function by

Γ(s, y) :=

∫ ∞

y

ts−1e−tdt.

Denoting, for ℓ ∈ N, the rising factorial by (a)ℓ :=
∏ℓ−1

j=0(a + j), we require the

following asymptotic behavior for Γ(s, y), which may be found in [2, 8.11.2].

Lemma 2.3. For s ∈ C and N ∈ N we have, as y → ∞,

Γ(s, y) = ys−1e−y

(

N−1
∑

j=0

(−1)j(1− s)j
yj

+O
(

y−N
)

)

.

1See [3, Subsection 2.6] for a modern reference.
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We also require bounds for the confluent hypergeometric function 1F1. Assuming
that s /∈ Z, [2, 13.7.1] implies that, as y → ∞, for any N ∈ N0

1F1(s; s+ 1; y) ∼ sey

y

(

N
∑

j=0

(1− s)j
yj

+Os,N

(

y−N−1
)

)

.

3. Construction of meromorphic modular forms

In this section, we construct meromorphic modular forms Hz whose regularized
Mellin transforms give the collection of generalized L-functions that are used to prove
Theorem 1.1.

3.1. The Hauptmodul jϑ for the theta group. In this subsection, we construct
a Hauptmodul for the theta group Γϑ and discuss its properties. We recall that a
Hauptmodul for a congruence subgroup Γ ⊆ SL2(Z) is a Γ-invariant meromorphic
function jΓ for which every Γ-invariant meromorphic function may be written as a
rational function in jΓ. For this, we require the modular lambda function

λ(τ) :=
θ2(τ)

4

ϑ(τ)4
,

where

θ2(τ) :=
∑

n∈Z
eπi(n+

1
2)

2
τ .

It is well-known that λ is a Hauptmodul for Γ(2) and satisfies the identities

λ

(

−1

τ

)

= 1− λ(τ), λ(τ + 1) =
λ(τ)

λ(τ)− 1
, λ

(

1

1− τ

)

=
1

1− λ(τ)
. (3.1)

We have the following growth towards the cusps.2 For this, let H∗ := H ∪Q ∪ {i∞}
and C∗ := C ∪ {i∞}.
Lemma 3.1.

(1) As v → ∞, we have

λ(τ) = 16eπiτ +O
(

e−2πv
)

,
1

λ(τ)
=

e−πiτ

16
+O(1).

2There are three cusps of Γ(2), namely, 0, 1, and i∞, each with cusp width 2.
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(2) As v → ∞, we have

λ

(

−1

τ

)

= 1− 16eπiτ +O
(

e−2πv
)

,
1

λ
(

− 1
τ

)

− 1
= −e−πiτ

16
+O(1).

(3) As v → ∞, we have

λ

(

τ

τ + 1

)

=
e−πiτ

16
+O(1).

(4) The function λ is a bijection from Γ(2) \H∗ to C∗.

Proof.

(1) The statements follow immediately from the Fourier expansion of λ.
(2) The first claim follows from (3.1) and part (1) and the second follows by subtract-
ing 1 from both sides and dividing.
(3) Similarly, we combine the first and second equations of (3.1) to obtain

λ

(

τ

τ + 1

)

=
1

λ(τ)
. (3.2)

The claim now follows immediately from part (1).
(4) This follows since a Γ-invariant meromorphic function is a Hauptmodul for Γ if
and only if it is a bijection from Γ \H∗ to C∗. �

Define

jϑ(τ) :=
1

λ(τ) (1− λ(τ))
. (3.3)

We now show that jϑ is a Hauptmodul for Γϑ, and give its growth towards the cusps.

Lemma 3.2.

(1) The function jϑ is Γϑ-invariant.

(2) As v → ∞, we have

jϑ

(

−1

τ

)

= jϑ(τ) =
e−πiτ

16
+O(1).

In particular, as v → 0+,

jϑ(iv) = e
π
v +O(1).
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(3) As v → ∞, we have

jϑ

(

τ

τ + 1

)

= −256e2πiτ +O
(

e−3πv
)

.

(4) The function jϑ is a bijection from Γϑ \ H∗ to C∗. Every meromorphic modular

function on Γϑ \H can be written as a rational function in jϑ.

Proof.

(1) It is enough to show that jϑ is invariant under the generators of Γθ, S, and T 2,
which follows from the first equation in (3.1) by a direct calculation.
(2) The first identity follows immediately from (1). For the second identity, we first
note that, by (3.1),

1

1− λ(τ)
= 1 +O

(

eπiτ
)

. (3.4)

Combining (3.4) with (3.2) and Lemma 3.1 (3), we conclude that, as v → ∞,

jϑ(τ) =
1

λ(τ)

1

1− λ(τ)
=

(

e−πiτ

16
+O(1)

)

(

1 +O
(

eπiτ
))

=
e−πiτ

16
+O(1).

(3) A short calculation using (3.2) and (3.4) shows that

jϑ

(

τ

τ + 1

)

= −256e2πiτ +O
(

e−3πv
)

.

(4) To show surjectivity, let c ∈ C∗ \ {0}. Then we have

jϑ(τ) = c ⇔ λ(τ)2 − λ(τ) +
1

c
= 0.

By Lemma 3.1 (4), for any root α of the polynomial x2 − x + 1
c

there exists τ ∈ H

such that λ(τ) = α. For c = 0, letting τ → i∞ in part (3) implies that jϑ(1) = 0. So
jϑ is surjective.

To show that jϑ is injective, suppose for contradiction that jϑ(τ1) = jϑ(τ2) with τ1
and τ2 not Γϑ-equivalent. Then

λ (τ1) (1− λ(τ1)) = λ(τ2) (1− λ(τ2)) .

Setting α1 := λ(τ1) and α2 := λ(τ2) and rearranging, we have

α2
2 − α2 + α1 − α2

1 = 0. (3.5)

Since we have a quadratic equation in α2, this has exactly two solutions (counting
multiplicity) in C. One directly checks that α2 = α1 and α2 = 1 − α1 are both
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solutions to (3.5). If α1 6= 1
2
, then these are distinct solutions, while for α1 =

1
2

we see

that (3.5) becomes α2
2 − α2 +

1
4
= 0, in which case α2 =

1
2
= α1 = 1− α1 is a double

root. We see that in both cases the two solutions (counting multiplicity) to (3.5) are
α2 = α1 and α2 = 1− α1.

If α2 = α1, then by Lemma 3.1 (4) we conclude that τ2 is Γ(2)-equivalent to τ1.
Since Γ(2) ⊆ Γϑ, this contradicts the assumption that τ1 and τ2 are not Γϑ-equivalent.
Hence α2 = 1−α1. From the first equation of (3.1), we conclude that λ(τ2) = λ(− 1

τ1
).

By Lemma 3.1 (4), there exists γ ∈ Γ(2) such that

τ2 = γ
−1

τ1
= γ ◦ Sτ1.

Since γ ∈ Γ(2) ⊂ Γϑ and S ∈ Γϑ, we have γ ◦ S ∈ Γϑ, which contradicts the
assumption that τ1 and τ2 are not Γϑ-equivalent. We therefore conclude that jϑ is a
Γϑ-invariant meromorphic function and is a bijection from Γϑ \H∗ to C∗. Hence it is
a Hauptmodul for Γϑ by the equivalence noted in the proof of Lemma 3.1 (4). �

3.2. Definition of the meromorphic modular forms. For z ∈ H, define

Hz(τ) :=
jϑ(z)ϑ(τ)

jϑ(τ)− jϑ(z)
.

A direct calculation yields the following properties of Hz.

Lemma 3.3.

(1) The function Hz is modular for Γϑ of weight 1
2
. Moreover, it has a pole at τ = z

if and only if z is Γϑ-equivalent to z.
(2) The function z 7→ Hz(τ) is Γϑ-invariant.

(3) For τ ∈ H fixed, we have

lim
z→i∞

Hz(τ) = ϑ(τ).

4. Regularized Mellin transforms and the proof of Theorem 1.1

In this section, we investigate the properties of Fz defined in (1.2) and prove The-
orem 1.1.



GENERALIZED L-FUNCTIONS RELATED TO THE RIEMANN ZETA FUNCTION 9

4.1. Convergence and functional equation. We first show that, under a mild
assumption on z, the function Fz converges for all s ∈ C.

Proposition 4.1. The function Fz is well-defined for z ∈ H that is not Γϑ-equivalent

to any point on iR+. Moreover, we have

Fz

(

1

2
− s

)

= Fz(s). (4.1)

Proof. We first show that Fz is well-defined. Since jϑ is Γϑ-invariant, we may assume
that z lies in the fundamental domain Fϑ := F ∪T−1F ∪ (−T−1SF) for Γϑ, where F
is the standard fundamental domain for SL2(Z). Since z 6= it by assumption, Lemma
3.2 (4) moreover implies that

jϑ(it)− jϑ(z) 6= 0.

Hence the integrand is finite for every t > 0 and therefore, for any 0 < t1 < t2 < ∞,
the integral

∫ t2

t1

ϑ(it)

jϑ(it)− jϑ(z)
ts−1dt

is well-defined and finite. Taking t1 = 1
2(y+y−1)

and t2 = 2(y + y−1), it remains to

show that
∫ 1

2(y+y−1)

0

ϑ(it)

jϑ(it)− jϑ(z)
ts−1dt < ∞ and

∫ ∞

2(y+y−1)

ϑ(it)

jϑ(it)− jϑ(z)
ts−1dt < ∞.

For 0 < t < 1
2(y+y−1)

, Lemma 3.2 (2) implies that
∣

∣

∣

∣

1

jϑ(it)− jϑ(z)

∣

∣

∣

∣

≪ e−
π
t .

Combining this with Lemma 2.1 (2) hence yields, that for t → 0+,
∣

∣

∣

∣

ϑ(it)

jϑ(it)− jϑ(z)
ts−1

∣

∣

∣

∣

≪ tσ−
3
2 e−

π
t ,

where here and throughout σ := Re(s). Therefore

∫ 1
2(y+y−1)

0

∣

∣

∣

∣

ϑ(it)

jϑ(it)− jϑ(z)
ts−1

∣

∣

∣

∣

dt ≪
∫ 1

2(y+y−1)

0

tσ−
3
2 e−

π
t dt < ∞.



10 KATHRIN BRINGMANN, BEN KANE, AND SRIMATHI VARADHARAJAN

Similarly, for t > 2(y + y−1), Lemma 3.2 (2) implies that, as t → ∞,
∣

∣

∣

∣

1

jϑ(it)− jϑ(z)

∣

∣

∣

∣

≪ 1

|eπt − eπ(y+y−1)|+O(1)
≪ 1

eπt − e
πt
2

≪ e−πt.

Combining this with Lemma 2.1 (1) hence yields that for t → ∞
∣

∣

∣

∣

ϑ(it)

jϑ(it)− jϑ(z)
ts−1

∣

∣

∣

∣

≪ tσ−1e−πt.

Therefore
∫ ∞

2y

∣

∣

∣

∣

ϑ(it)

jϑ(it)− jϑ(z)
ts−1

∣

∣

∣

∣

dt ≪
∫ ∞

2y

tσ−
3
2 e−πtdt < ∞.

The functional equation (4.1) now follows by the change of variables t 7→ 1
t
, (2.1),

and the invariance of jϑ under inversion. �

4.2. Proof of Theorem 1.1. To show Theorem 1.1, we require the following.

Proposition 4.2. For every x /∈ Z, we have, with z = x+ iy,

lim
y→∞






Fz(s) +

(

1

2
− s

)

ys + sy
1
2
−s − s

(

1

2
− s

) ⌊σ⌋
∑

ℓ=1

(1− s)ℓ−1

πℓ
Liℓ
(

eπix
)

ys−ℓ

+ s

(

1

2
− s

) ⌊σ⌋
∑

ℓ=1

(s+ 1− ℓ)ℓ−1

πℓ
Liℓ
(

e−πix
)

ys−ℓ

− s

(

1

2
− s

) ⌊ 1
2
−σ⌋
∑

ℓ=1

(

s+ 1
2

)

ℓ−1

πℓ
Liℓ
(

eπix
)

y
1
2
−s−ℓ

+s

(

1

2
− s

) ⌊ 1
2
−σ⌋
∑

ℓ=1

(

3
2
− s− ℓ

)

ℓ−1

πℓ
Liℓ
(

e−πix
)

y
1
2
−s−ℓ






= ξ(2s).

Proof. We split, for some t0 > 0,

Fz(s) = s

(

1

2
− s

)

(

Fz,0, 1
y
(s) + Fz, 1

y
,t0
(s) + Fz,t0,y(s) + Fz,y,∞(s)

)

,
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where for 0 ≤ y1 ≤ y2 ≤ ∞ we define

Fz,y1,y2(s) := jϑ(z)

∫ y2

y1

ϑ(τ)

jϑ(τ)− jϑ(z)
ts−1dt.

Since both sides of the claim are invariant under s 7→ 1
2
− s by Proposition 4.1 and

(1.3), we may assume without loss of generality that σ ≥ 1
4
.

We claim that in this case, we have

Fz,0, 1
y
(s) =

⌊ 1
2
−σ⌋
∑

ℓ=1

(

3
2
− s− ℓ

)

ℓ−1

πℓ
Liℓ
(

e−πix
)

y
1
2
−s−ℓ + ox,s(1), (4.2)

Fz, 1
y
,t0
(s) = −

∫ t0

1
y

(

ϑ(it)− 1√
t

)

ts−1dt+
y

1
2
−s

s− 1
2

− t
s− 1

2
0

s− 1
2

− Li1 (e
πix)

πys+
1
2

+ox,s(1), (4.3)

Fz,t0,y(s) = −
∫ y

t0

(ϑ(it)− 1)ts−1dt+
ts0
s
− ys

s

−
⌊σ⌋
∑

ℓ=1

(1− s)ℓ−1

πℓ
Liℓ
(

eπix
)

ys−ℓ + ox,s(1),

Fz,y,∞(s) =

⌊σ⌋
∑

ℓ=1

(s+ 1− ℓ)ℓ−1

πℓ
Liℓ
(

e−πix
)

ys−ℓ + ox,s(1). (4.4)

The proofs of (4.2)–(4.4) are all similar and also analogous to the proofs of [1,
(4.5)–(4.8)]. We hence only show (4.3) (we choose the case (4.3) instead of (4.2)
to demonstrate how the Mellin transform of ϑ naturally appears), leaving the other
cases to the interested reader. We split

Fz, 1
y
,t0
(s) =

∫ t0

1
y

jϑ(z)
(

ϑ(it)− 1√
t

)

jϑ(it)− jϑ(z)
ts−1dt+

∫ t0

1
y

jϑ(z)

jϑ(it)− jϑ(z)
ts−

3
2dt, (4.5)

Fz,t0,y(s) =

∫ y

t0

jϑ(z)(ϑ(it)− 1)

jϑ(it)− jϑ(z)
ts−1dt+

∫ y

t0

jϑ(z)

jϑ(it)− jϑ(z)
ts−1dt.

Rewriting

jϑ(z)

jϑ(it)− jϑ(z)
= −1 +

jϑ(it)

jϑ(it)− jϑ(z)
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in (4.5) yields

Fz, 1
y
,t0
(s) = −

∫ t0

1
y

(

ϑ(it)− 1√
t

)

ts−1dt+

∫ t0

1
y

jϑ(it)
(

ϑ(it)− 1√
t

)

jϑ(it)− jϑ(z)
ts−1dt

−
∫ t0

1
y

ts−
3
2dt+

∫ t0

1
y

jϑ(it)

jϑ(it)− jϑ(z)
ts−

3
2dt. (4.6)

The first and the third term contribute the first three terms in (4.3).
We next claim that

lim
y→∞

∫ t0

1
y

jϑ(it)
(

ϑ(it)− 1√
t

)

jϑ(it)− jϑ(z)
ts−1dt = 0. (4.7)

We split the integral into two parts, one from 1
y

to 1√
y

and one from 1√
y

to t0, and

then use Lemma 2.1 (2) and Lemma 3.2 (2). For the integral from 1√
y

to t0, Lemma

3.2 (2) implies that
∣

∣

∣

∣

jϑ(it)

jϑ(it)− jϑ(z)

∣

∣

∣

∣

≪ eπ
√
y

eπy − eπ
√
y
≪ e−πy+π

√
y.

Combining this with Lemma 2.1 (2) yields, as y → ∞,
∣

∣

∣

∣

∣

∣

∫ t0

1
√
y

jϑ(it)
(

ϑ(it)− 1√
t

)

jϑ(it)− jϑ(z)
ts−1dt

∣

∣

∣

∣

∣

∣

≪s,t0 e
−πy+π

√
y → 0. (4.8)

Lemma 3.2 (2) implies that for 1
y
< t < t0

jϑ(it)

jϑ(it)− jϑ(z)
= − eπ(

1
t
+iz)

1− eπ(
1
t
+iz)

(

1 +O
(

e−
π
t

))

. (4.9)

Lemma 2.1 (2) and (4.9) then gives that

jϑ(it)
(

ϑ(it)− 1√
t

)

jϑ(it)− jϑ(z)
ts−1 = O

(

eπ(
1
t
+iz)

1− eπ(
1
t
+iz)

(

1 +O
(

e−
π
t

))

tσ−
3
2 e−

π
t

)

. (4.10)
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We then note that, for t > 1
y

and x /∈ Z, we have

1

1− eπ(
1
t
+iz)

≪x 1,

Therefore (4.10) becomes Ox(e
−πytσ−

3
2 ). Hence, as

∫ 1
√
y

1
y

jϑ(it)
(

ϑ(it)− 1√
t

)

jϑ(it)− jϑ(z)
ts−1dt ≪x e−πy

∫ 1
√

y

1
y

tσ−
3
2dt → 0,

where we use the fact that
∫

1
√
y

1
y

tσ−
3
2dt grows at most polynomially in y. Combining

this with (4.8) establishes (4.7).
To evaluate the final term in (4.6), we plug in (4.9) to rewrite it as

− lim
ε→0+

∫ t0

1
(1−ε)y

eπ(
1
t
+iz)

1− eπ(
1
t
+iz)

(

1 +O
(

e−
π
t

))

ts−
3
2dt.

Making the change of variables t 7→ 1
2t

, this becomes

− 2
1
2
−s lim

ε→0+

∫ (1−ε) y
2

1
2t0

e2π(t+
iz
2 )

1− e2π(t+
iz
2 )

(

1 +O
(

e−2πt
))

t−s− 1
2dt. (4.11)

Up to the factor −2
1
2
−s in front, this is precisely [1, (4.13)] with s 7→ s + 3

2
, z 7→ z

2
,

and t0 7→ 2t0. If σ + 3
2
≥ 1 (i.e., σ ≥ −1

2
), then we can follow [1, (4.14)–(4.17)] and

use [1, (2.4) with x 7→ −x] to obtain that the integral in (4.11) equals the second and
third terms in [1, (4.6)] with s 7→ s+ 3

2
and z 7→ z

2
, giving that for σ ≥ −1

2

lim
ε→0+

∫ (1−ε) y
2

1
2t0

e2π(t+
iz
2 )

1− e2π(t+
iz
2 )

(

1 +O
(

e−2πt
))

t−s− 1
2dt =

1

2π
Li1
(

eπix
)

(y

2

)−s− 1
2
+ ox,s(1).

This completes the proof of (4.3). �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Parts (1) and (2) are given in Proposition 4.1. Taking k = 1
2

and

Cℓ,s(x) :=

{

1
s

if ℓ = 0,
1
π
((s + 1− ℓ)ℓ−1 Liℓ (e

−πix)− (1− s)ℓ−1 Liℓ (e
−πix)) if ℓ ∈ N,

(4.12)
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Dℓ,s(x) := Cℓ, 1
2
−s(x), (4.13)

the statement of part (3) is precisely the statement of Proposition 4.2. �
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