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Abstract. Suppose that p ≡ 1 (mod 4) is a prime, and that OK is the ring of inte-
gers of K := Q(

√
p). A classical result of Hirzebruch and Zagier asserts that certain

generating functions for the intersection numbers of Hirzebruch-Zagier divisors on the
Hilbert modular surface (h× h)/SL2(OK) are weight 2 holomorphic modular forms.
Using recent work of Bruinier and Funke, we show that the generating functions of
traces of singular moduli over these intersection points are often weakly holomorphic
weight 2 modular forms. For the singular moduli of J1(z) = j(z)− 744, we explicitly
determine these generating functions using classical Weber functions, and we factorize
their “norms” as products of Hilbert class polynomials. We also explicitly compute
all such generating functions in the “SL2(Z) case” for the primes p = 5, 13, and 17.

1. Introduction and Statement of Results

For primes p ≡ 1 (mod 4), let OK := Z
[

1+
√

p

2

]
be the ring of integers of the real

quadratic field K := Q(
√
p). The group SL2(OK), i.e., the group of 2×2 matrices with

entries in OK and determinant 1, acts on h×h, the product of two complex upper half
planes h, by (

α β
γ δ

)
◦ (z1, z2) :=

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
.

Here ν ′ denotes the conjugate of ν in Q(
√
p). The quotient Xp := (h×h)/SL2(OK) is a

non-compact surface with finitely many singularities. It can be naturally compactified
by adding finitely many points (i.e. cusps), and Hirzebruch showed [6] how to resolve
the singularities introduced by adding cusps using cyclic configurations of rational
curves. The resulting modular surface Yp is a nearly smooth compact algebraic surface
with quotient singularities supported at those points in h×h with a non-trivial isotropy
subgroup within PSL2(OK).

In their famous work [7] on these surfaces, Hirzebruch and Zagier introduced a

sequence of algebraic curves Z
(p)
1 , Z

(p)
2 , · · · ⊂ Xp, and studied the generating functions
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for their intersection numbers. They proved the striking fact that these generating
functions are weight 2 modular forms, an observation which allowed them to identify
spaces of modular forms with certain homology groups for Yp. To define these curves,
for a positive integer N , consider the points (z1, z2) ∈ h × h satisfying an equation of
the form

(1.1) Az1z2
√
p+ λz1 − λ′z2 +B

√
p = 0,

where A,B ∈ Z, λ ∈ OK , and λλ′ + ABp = N . Each such equation defines a curve in
h × h isomorphic to h, and their union is invariant under SL2(OK). The Hirzebruch-

Zagier divisor Z
(p)
N is defined to be the image of this union in Xp. If

(
N
p

)
= −1, then

one easily sees from (1.1) that Z
(p)
N is empty.

We let Z̃
(p)
N denote the closure of Z

(p)
N in Yp. If (Z̃

(p)
m , Z̃

(p)
n ) denotes the intersection

number of Z̃
(p)
m and Z̃

(p)
n in Yp (see [7] for the precise formulation), then Hirzebruch and

Zagier proved in [7], for every positive integer m, that

(1.2) Φ(p)
m (z) := a(p)

m (0) +
∞∑

n=1

(Z̃
(p)
m , Z̃

(p)
n )qn

(note q = e2πiz throughout) is a holomorphic weight 2 modular form on Γ0(p) with

Nebentypus
( ·

p

)
. Here a

(p)
m (0) is a simple constant arising from a volume computation.

More precisely, Φ
(p)
m (z) is in the plus space M+

2

(
Γ0(p),

( ·
p

))
, the space of holomorphic

weight 2 modular forms F (z) =
∑∞

n=0 a(n)qn on Γ0(p) with Nebentypus
( ·

p

)
, with the

additional property that

a(n) = 0 if

(
n

p

)
= −1.(1.3)

In the present paper, we require the space M2

(
Γ0(p),

( ·
p

))
, the space of weakly holo-

morphic modular forms of weight 2 on Γ0(p) with Nebentypus
( ·

p

)
. LetM+

2

(
Γ0(p),

( ·
p

))
be the subspace of those forms inM2

(
Γ0(p),

( ·
p

))
that satisfy (1.3). Recall that a func-

tion is weakly holomorphic if its poles (if there are any) are supported at cusps.
The geometric part of the proof of the modularity of (1.2) provides a concrete de-

scription of the intersection points Z̃
(p)
m ∩ Z̃(p)

n . Loosely speaking, the “finite points”

Z
(p)
m ∩Z(p)

n are identified with CM points in h which are the “roots” of Γ0(m) equivalence
classes of binary quadratic forms with negative discriminants of the form−(4mn−x2)/p
(see Section 2.1). The values of modular functions at such CM points are known as
singular moduli, and in view of the modularity of (1.2), it is natural to consider gen-
erating functions for the values of singular moduli over the CM points constituting

Z
(p)
m ∩ Z(p)

n .
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Suppose that ` = 1 or that ` is an odd prime with
(

`
p

)
6= −1, and let Γ∗0(`) be

the projective image of the extension of Γ0(`) by the Fricke involution W` = ( 0 −1
` 0 ) in

PSL2(R). Suppose that f(z) =
∑

n�−∞ a(n)qn ∈M0(Γ
∗
0(`)), the space of weakly holo-

morphic modular functions with respect to Γ∗0(`). Furthermore, suppose that a(0) = 0.

We define the “trace” of f(z) over Z
(p)
` ∩ Z(p)

n by

(1.4) (Z
(p)
` , Z(p)

n )tr
f :=

∑
τ∈Z

(p)
` ∩Z

(p)
n

f(τ)

#Γ∗0(`)τ

,

where Γ∗0(`)τ denotes the stabilizer of τ in Γ∗0(`). For these traces, we consider the
analog of the generating functions in (1.2) defined by

(1.5) Φ
(p)
`,f (z) := A

(p)
`,f (z) +B

(p)
`,f (z) +

∞∑
n=1

(Z
(p)
` , Z(p)

n )tr
f q

n,

where

A
(p)
`,f (z) := −ε(`)

∑
m,n≥1

ma(−mn)

 ∑
x∈Z

x2≡m2p (mod 2`)

q
x2−m2p

4` +
∑
x∈Z

x≡m (mod 2)

q
x2`−m2p`

4

 ,

B
(p)
`,f (z) := 2ε(`)

∑
n≥1

(σ1(n) + `σ1(n/`))a(−n)
∑
x∈Z

q`x2

,

where ε(`) = 1/2 for ` = 1, and is 1 otherwise. As usual, σ1(x) denotes the sum of the
positive divisors of x if x is an integer, and is zero if x is not an integer.

Using recent works of Zagier [13], and Bruinier and Funke [4], we show that these
generating functions are also modular forms of weight 2.

Theorem 1.1. Suppose that p ≡ 1 (mod 4) is prime, and that ` = 1 or is an odd
prime with

(
`
p

)
6= −1. If f(z) =

∑
n�−∞ a(n)qn ∈M0(Γ

∗
0(`)) , with a(0) = 0, then the

generating function Φ
(p)
`,f (z) is in M2

(
Γ0(p`

2),
( ·

p

))
.

Remark. If we allow the constant term of f(z) to be non-zero, non-holomorphic terms
would be included, as in [4]. In particular, if f(z) = 1, then we obtain the Hirzebruch-
Zagier modular forms restricted to the “finite” points of intersection.

We turn to the problem of explicitly computing natural examples of these modular

forms Φ
(p)
`,f (z). Let J1(z) = j(z)−744, where j(z) is the usual elliptic modular function

(1.6) j(z) =
E4(z)

3

η(z)24
= q−1 + 744 + 196884q + · · · ,
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where η(z) = q1/24
∏∞

n=1(1− qn) is Dedekind’s eta-function and

E4(z) = 1 + 240
∞∑

n=1

∑
d|n

d3qn

is the usual Eisenstein series of weight 4. The modular forms Φ
(p)
1,J1

(z) can be described
in terms of η(z), E4(z), and the classical Weber functions

(1.7) f1(z) =
η(z/2)

η(z)
and f2(z) =

√
2 · η(2z)

η(z)
.

Theorem 1.2. If p ≡ 1 (mod 4) is prime, then

Φ
(p)
1,J1

(z) =
η(2z)η(2pz)E4(pz)f2(2z)

2f2(2pz)
2

4η(pz)6
·
(
f1(4z)

4f2(z)
2 − f1(4pz)

4f2(pz)
2
)
.

Remark. Using the classical theta functions Θ(z) and Θodd(z) (see (3.1) and (3.3)), the
formula in Theorem 1.2 may be reformulated as

Φ
(p)
1,J1

(z) = −2E4(pz)

η(pz)6
· (Θ(pz)Θodd(z/4)−Θ(z)Θodd(pz/4)) .

It turns out that the forms Φ
(p)
1,J1

(z), the generating functions for the traces of singular
moduli on Xp, are closely related to Hilbert class polynomials. The singular moduli
j(τ), as τ ranges over CD, the equivalence classes of CM points with discriminant −D,
are the roots of the Hilbert class polynomial

(1.8) HD(x) =
∏

τ∈CD

(x− j(τ)) ∈ Z[x].

Each HD(x) is an irreducible polynomial in Z[x] which generates a class field extension

of Q(
√
−D). To relate the forms Φ

(p)
1,J1

(z) to Hilbert class polynomials, define Np(z) as
the “multiplicative norm” of Φ1,J1(z)

(1.9) Np(z) :=
∏

M∈Γ0(p)\SL2(Z)

Φ
(p)
1,J1
|M.

If N∗
p (z) is the normalization of Np(z) with leading coefficient 1, then

N∗
p (z) =


∆(z)H75(j(z)) if p = 5,

E4(z)∆(z)2H3(j(z))H507(j(z)) if p = 13,

∆(z)3H4(j(z))H867(j(z)) if p = 17,

∆(z)5H7(j(z))
2H2523(j(z)) if p = 29,

where ∆(z) = η(z)24 is the usual Delta-function. These examples illustrate a general
phenomenon in which N∗

p (z) is essentially a product of certain Hilbert class polyno-
mials. Before we state the general result, we fix some notation. Define integers a(p),
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b(p), and c(p) by

a(p) =
1

2

((
3

p

)
+ 1

)
,(1.10)

b(p) =
1

2

((
2

p

)
+ 1

)
,(1.11)

c(p) =
1

6

(
p−

(
3

p

))
.(1.12)

Furthermore, let Dp be the set of negative discriminants −D 6= −3,−4 of the form
x2−4p
16f2 with x, f ≥ 1.

Theorem 1.3. Assume the notation above. If p ≡ 1 (mod 4) is prime, then

N∗
p (z) = (E4(z)H3(j(z)))

a(p)H4(j(z))
b(p)∆(z)c(p) ·H3·p2(j(z)) ·

∏
−D∈Dp

HD(j(z))2.

For the primes p = 5, 13, and 17, and when ` = 1, work of Bruinier and Bundschuh [3]
make it possible to obtain explicit formulas for the traces of every weakly holomorphic
level 1 function, with constant term 0, on Xp. There is a natural sequence of modular
functions Jm(z) which forms a basis of such functions. For every positive integer m
let Jm(z) be the unique modular function on SL2(Z) which is holomorphic on h with a
Fourier expansion of the form

(1.13) Jm(z) = q−m +
∞∑

n=1

cm(n)qn.

In particular, note that

J1(z) = j(z)− 744 = q−1 + 196884q + · · · .

Each Jm(z) is a monic degree m polynomial in j(z) with integer coefficients, and its
generating function is given by

∞∑
m=0

Jm(x)qm =
E4(z)

2E6(z)

∆(z)
· 1

j(z)− x
,

where E6(z) = 1− 504
∑∞

n=1

∑
d|n d

5qn.

To describe Φ
(p)
1,Jm

for p = 5, 13, and 17 we give a basis for M+
2

(
Γ0(p),

( ·
p

))
. In

particular, for m ≥ 0 with
(

m
p

)
6= −1 there is a unique function K

(p)
m (z) with Fourier

expansion of the form

(1.14) K(p)
m (z) = q−m +O(q) ∈M+

2

(
Γ0(p),

(
·
p

))
.
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In Section 4, we will provide formulas for K
(p)
0 (z) and K

(p)
1 (z). Furthermore, we provide

a description of each K
(p)
m (z), for m ≥ 1 in terms of the action of Hecke operators on

K
(p)
1 (z).

We have the following connection between the functions K
(p)
m (z) and Φ

(p)
1,Jm

(z).

Theorem 1.4. If p = 5, 13, or 17, and m ≥ 1, then

Φ
(p)
1,Jm

(z) = 2σ1(m)K
(p)
0 (z) +

∑
d|m

2d

bd√pc∑
x=1

x≡d (mod 2)

K
(p)

(x2−d2p)/4(z).

In Section 2.1, we recall the exact relation between the points in Z
(p)
m ∩Z(p)

n and CM
points (see Definition 2.1), and in Section 2.2 we recall works of Zagier, and Bruinier
and Funke which describe generating functions for traces of singular moduli on modular
curves as weight 3/2 weakly holomorphic modular forms. Using these facts, we prove
Theorem 1.1 in Section 2.3. In Section 3 we investigate the traces of J1(z) = j(z)−744,
and we prove Theorems 1.2 and 1.3. In Section 4, for p = 5, 13, and 17 we compute

each Φ
(p)
1,Jm

(z) using works of Bruinier and Bundschuh, and we prove Theorem 1.4.

Acknowledgements

The authors thank J. Funke and W. Kohnen for their helpful comments.

2. The modularity of Φ
(p)
`,f (z)

2.1. Intersection points on Hilbert modular surfaces as CM points. The goal
of this section is to provide (for ` = 1 or an odd prime with

(
`
p

)
6= −1) an interpretation

of Z
(p)
` ∩ Z(p)

n as a union of Γ∗0(`) equivalence classes of CM points. This is given by
Definition 2.1 below.

For −D ≡ 0, 1 (mod 4), D > 0 we denote by QD the set of all (not necessarily
primitive) binary quadratic forms

Q(x, y) = [a, b, c](x, y) := ax2 + bxy + cy2

with discriminant b2 − 4ac = −D. To each such from Q, we let the CM point αQ be
the unique point in h that satisfies Q(αQ, 1) = 0. The group SL2(Z) acts on QD in the

usual way, i.e., for M =
(

α β
γ δ

)
∈ SL2(Z) we define

[a, b, c] ◦
(
α β
γ δ

)
(x, y) := [a, b, c](αx+ βy, γx+ δy).

It is easy to see that QD is invariant under the action of SL2(Z).

For ` = 1 or an odd prime and D > 0, −D ≡ 0, 1 (mod 4) we define Q[`]
D to be the

subset of QD with the additional condition that `|a. It is easy to show that Q[`]
D is

invariant under Γ∗0(`).
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Suppose that ` = 1 or ` is an odd prime with
(

`
p

)
6= −1. Then, there exists a prime

ideal p ⊆ OK with norm `. Define

SL2(OK , p) :=

{(
α β
γ δ

)
∈ SL2(K) : α, δ ∈ OK , γ ∈ p, β ∈ p−1

}
.

In this case there is a matrix A ∈ GL+
2 (K) such that A−1SL2(OK , p)A = SL2(OK).

Define
φ : (h× h)/SL2(OK , p) → (h× h)/SL2(OK)

by
φ((z1, z2)) := (Az1, A

′z2).

Let Γ be the stabilizer of {(z, z) : z ∈ h} ⊆ h× h in SL2(OK , p). Then Γ = Γ0(`) if

` 6= p and Γ = Γ∗0(`) if ` = p. The image of {(z, z) : z ∈ h} under φ is Z
(p)
` . Hence, we

have a natural map ψ : h/Γ → Z
(p)
` . Using work of Hirzebruch and Zagier, we make

the following definition.

Definition 2.1. If ` = 1 or an odd prime with
(

`
p

)
6= −1, and n ≥ 1, then define

Z
(p)
` ∩ Z(p)

n :=
⋃
x∈Z

x2<4`n
x2≡4`n (mod p)

{
αQ : Q ∈ Q[`]

(4`n−x2)/p / Γ∗0(`)
}
.

Here the repetition of x and −x indicates that Z
(p)
` ∩ Z(p)

n is a multiset where a CM

point αQ occurs twice if Q ∈ Q[`]

(4`n−x2)/p for x 6= 0. In addition, if ` > 1 and `|n, then

we include ⋃
x∈Z

x2<4n/`
x2≡4n/` (mod p)

{
αQ : Q ∈ Q[`]

(4n/`−x2)/p / Γ∗0(`)
}
,

where each point with non-zero x is taken with multiplicity 2`, and a point where x = 0
is taken with multiplicity `.

To justify our definition we argue as follows. Hirzebruch and Zagier ([7], p. 66) show

that if t ∈ h, n ≥ 1 and ψ(t) ∈ Z(p)
` ∩ Z(p)

n , then

a`t2 +
`λ− `λ′
√
p

t+ b = 0

for (a, b, λ) ∈ Z⊕ Z⊕ p−1 with `λλ′ + abp = n. This follows as a result of considering

the inverse image φ−1(Z
(p)
` ) ⊆ (h× h)/SL2(OK , p).

Write `λ = c+d
1+

√
p

2
, we have that the discriminant of the equation above is d2−4ab`.

However, this implies that

(2c+ d)2 − 4n`

p
= d2 − 4ab`.
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Thus, the discriminant is of the form (x2 − 4n`)/p. From Hirzebruch and Zagier’s

Theorem 3 ([7], p. 77), computing the number of transverse intersections of Z
(p)
` and

Z
(p)
n , we see that each z ∈ h with discriminant of the form (x2 − 4n`)/p occurs with

the appropriate multiplicity.

Remark. We note that if f(z) = 1, then this definition gives the modular forms ap-
pearing in Hirzebruch and Zagier’s work when restricted to the finite points of the
corresponding Hilbert modular surface.

2.2. Generating functions for traces of singular moduli on modular curves.
Throughout we let ` be 1 or an odd prime. Motivated by Borcherds’ work [1] on the
infinite product expansions of certain automorphic forms on orthogonal groups, Zagier
[13] computed the generating functions for the “traces” of the Jm(z) singular moduli, as
well as several other classes of modular functions. If m,D are positive integers and −D
is a discriminant, then Zagier defined the trace of the singular moduli of discriminant
−D for Jm(z) by

(2.1) tm(D) :=
∑

Q∈QD/PSL2(Z)

1

ωQ

· Jm(αQ),

where ωQ is the order of the stabilizer of Q in PSL2(Z). He proved the striking fact
that these generating functions are essentially weight 3/2 weakly holomorphic modular
forms.

We now recall some of Zagier’s generating functions. Following Kohnen [8], for
integers k let M+

k+ 1
2

(Γ0(4)) be the space of weakly holomorphic weight k + 1
2

modular

forms on Γ0(4) with a Fourier expansion of the form

(2.2)
∑

n�−∞
(−1)kn≡0,1 (mod 4)

a(n)qn.

Zagier’s trace generating functions are described in terms of a special sequence of
weight 3/2 forms gm(z). For positive m ≡ 0, 1 (mod 4), gm(z) is the unique form in
M+

3
2

(Γ0(4)) with a Fourier expansion of the form

(2.3) gm(z) = q−m +
∞∑

n=0

B(m,n)qn.

Zagier proved that the forms gm(z) determine the generating functions for traces and
“twisted traces” of singular moduli on SL2(Z). For example, his work shows that

(2.4) g1(z) =
η(z)2E4(4z)

η(2z)η(4z)6
= q−1 − 2−

∑
D>0

t1(D)qD = q−1 − 2 + 248q3 − · · · .
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To state his more general result, for positive integers m, let

(2.5) Bm(1, D) := the coefficient of qD in g1(z)|T (m2),

where T (m2) is the usual Hecke operator on M+
3
2

(Γ0(4)). Zagier’s formulae for the

traces tm(D) are given by the following theorem (Theorem 5 of [13]).

Theorem 2.2. If m ≥ 1 and 0 < D ≡ 0, 3 (mod 4), then tm(D) = −Bm(1, D).

Recently, Bruinier and Funke [4] have generalized Zagier’s results to include traces
of singular moduli of modular functions on groups which do not necessarily possess a
Hauptmodul. A particularly elegant example of their work applies to modular functions
on Γ∗0(`). Suppose that f(z) =

∑
n�−∞ a(n)qn ∈M0(Γ

∗
0(`)) has constant term a(0) =

0. The discriminant −D trace is given by

(2.6) t∗f (D) :=
∑

Q∈QD,`/Γ∗0(`)

1

#Γ∗0(`)Q

· f(αQ).

Here Γ∗0(`)Q is the stabilizer of Q in Γ∗0(`). Following Kohnen [8], we let for ε ∈ {±1}
M+,ε

k+ 1
2

(Γ0(4`)) be the space of those weight k + 1
2

weakly holomorphic modular forms

f(z) =
∑

n�−∞ a(n)qn on Γ0(4`) whose Fourier coefficients satisfy

(2.7) a(n) = 0 whenever (−1)kn ≡ 2, 3 (mod 4) or

(
(−1)kn

`

)
= −ε.

Bruinier and Funke’s generalization of Zagier’s work (Theorem 1.1 of [4]) gives the
following theorem.

Theorem 2.3. If ` = 1 or is an odd prime and f(z) =
∑

n�−∞ a(n)qn ∈ M0(Γ
∗
0(`)),

with a(0) = 0, then

G`(f, z) := −
∑

m,n≥1

ma(−mn)q−m2

+
∑
n≥1

(σ1(n) + `σ1(n/`)) a(−n) +
∑
D>0

t∗f (D)qD

is an element of M+,+
3
2

(Γ0(4`)) .

Remark. Theorem 2.3 recovers Zagier’s Theorem 2.2 when ` = 1 and f = Jm.

2.3. Proof of Theorem 1.1. To prove Theorem 1.1 we require the classical Jacobi
theta function

(2.8) Θ(z) =
∑
x∈Z

qx2

= 1 + 2q + 2q4 + 2q9 + · · · .

It is well known that Θ(z) ∈M 1
2
(Γ0(4)).

Suppose that f(z) =
∑

n�−∞ a(n)qn ∈ M0(Γ
∗
0(`)) satisfies the hypotheses of The-

orem 1.1. By Definition 2.1 and Theorem 2.3, a straightforward calculation reveals
that

(2.9) Φ
(p)
`,f (z) = ε(`) (G`(f, pz)Θ(z)) | U(4) | (U(`) + `V (`)) ,
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where for d ≥ 1 the operators U(d) and V (d) are defined on formal power series by

(2.10)
(∑

a(n)qn
)
| U(d) :=

∑
a(dn)qn,

and

(2.11)
(∑

a(n)qn
)
| V (d) :=

∑
a(n)qdn.

It is well-known (for example, see [8, 12]) that V (p) maps G`(f, z) ∈M 3
2
(Γ0(4`)) to

the space M 3
2

(
Γ0(4p`),

( ·
p

))
. Since Θ(z) ∈ M 1

2
(Γ0(4)), it follows that G`(f, pz)Θ(z)

is in M2

(
Γ0(4p`),

( ·
p

))
.

Now, we apply the operator U(2) twice to G`(f, pz)Θ(z). Since 22 | 4p` and
( ·

p

)
has

conductor p, Lemma 1 of [9] implies that (G`(f, pz)Θ(z)) | U(2) is inM2

(
Γ0(2p`),

( ·
p

))
.

Since the non-zero coefficients of G`(f, z) are supported on exponents n ≡ 0, 3 (mod 4),
it follows that the non-zero coefficients of G`(f, pz)Θ(z) are supported on exponents
n ≡ 0, 1, 3 (mod 4). In particular, the non-zero coefficients of

(G`(f, pz)Θ(z)) | U(2)

are supported on exponents n ≡ 0 (mod 2). Lemma 4 (i) of [9] then implies that

(G`(f, pz)Θ(z)) | U(2) | U(2) = (G`(f, pz)Θ(z)) | U(4)

is in M2

(
Γ0(p`),

( ·
p

))
. The theorem follows since it is well-known that U(`) + `V (`)

maps (G`(f, pz)Θ(z)) | U(4) to M2

(
Γ0(p`

2),
( ·

p

))
.

Remark. Strictly speaking, Lemmas 1 and 4 of [9] are only stated for integer weight
cusp forms. However, it is simple to check that their proofs also hold for weakly
holomorphic integer weight forms.

3. The special case of J1(z) = j(z)− 744

Here we examine the modular forms Φ
(p)
1,J1

(z), the trace generating functions for
J1(z) = j(z) − 744 on the Hilbert modular surface Xp. In particular, we prove The-
orem 1.2 which describes these forms in terms of the classical Weber functions, and
Theorem 1.3 which relates these forms to products of Hilbert class polynomials.

3.1. Proof of Theorem 1.2. To prove Theorem 1.2, we work directly with Zagier’s
identity (2.4). We recall the following classical theta function identities:

(3.1) Θ(z) =
η(2z)5

η(z)2η(4z)2
=
∑
x∈Z

qx2

= 1 + 2q + 2q4 + · · · ,
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(3.2) Θ0(z) =
η(z)2

η(2z)
=
∑
x∈Z

(−1)xqx2

= 1− 2q + 2q4 − 2q9 + · · · ,

and

(3.3) Θodd(z) =
η(16z)2

η(8z)
=
∑
x≥0

q(2x+1)2 = q + q9 + q25 + q49 + · · · .

Proof of Theorem 1.2. By (2.4), (2.9), and (3.2), we have that

Φ
(p)
1,J1

(z) = − (g1(pz)Θ(z)) | U(4)

= −
(

Θ0(pz)E4(4pz)

η(4pz)6
·Θ(z)

)
| U(4).

By the definition of U(4), it is straightforward to rewrite this expression as

Φ
(p)
1,J1

(z) = −1

4

3∑
ν=0

(
Θ0(pz)E4(4pz)

η(4pz)6
·Θ(z)

) ∣∣∣∣ (1 ν
0 4

)

= −1

4

3∑
ν=0

(
Θ0(p(z + ν)/4)E4(p(z + ν))

η(p(z + ν))6
·Θ((z + ν)/4)

)
.

Using the fact that E4(p(z + ν)) = E4(pz), and that

η(p(z + ν))6 = iνη(pz)6,

we obtain

Φ
(p)
1,J1

(z) = − E4(pz)

4η(pz)6

3∑
ν=0

i−νΘ0(p(z + ν)/4)Θ((z + ν)/4).

By (3.2) and (3.3), one finds that

Φ
(p)
1,J1

(z) = − E4(pz)

4η(pz)6
·
∑
x,y∈Z

q(px2+y2)/4 · (−1)x

(
3∑

ν=0

ipνx2+y2ν−ν

)
.

Since we have that
3∑

ν=0

ipνx2+y2ν−ν =

{
0 if x ≡ y (mod 2),

4 if x 6≡ y (mod 2),

it follows that

Φ
(p)
1,J1

(z) = −E4(pz)

η(pz)6
·

(∑
x,y∈Z

q((2y+1)2+4px2)/4 −
∑
x,y∈Z

q(4y2+(2x+1)2p)/4

)

= −2E4(pz)

η(pz)6
· (Θ(pz)Θodd(z/4)−Θ(z)Θodd(pz/4)) .

The claimed formula now follows easily from (1.7), (3.1), and (3.3). �
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3.2. Proof of Theorem 1.3. Here we prove Theorem 1.3, the description of N∗
p (z)

in terms of products of Hilbert class polynomials.

Proposition 3.1. If p ≡ 1 (mod 4) is prime, then

N∗
p (z) = E4(z)

a(p)∆(z)c(p) · Fp(j(z)),(3.4)

where Fp(x) ∈ Z[x] is a monic polynomial with

deg(Fp(x)) =

{
(5p− 5)/12 if p ≡ 1 (mod 12),

(5p− 1)/12 if p ≡ 5 (mod 12).

Proof. ¿From Theorem 1.1 one easily sees that N∗
p (z) ∈ M2p+2(SL2(Z)). Lemma 2.34

of [10] then implies that N∗
p (z) has the desired factorization. Since

Φ
(p)
1,J1

(z) ∈M+
2

(
Γ0(p),

(
·
p

))
,

Lemma 3 of [3] implies that

Φ
(p)
1,J1

(z) | Wp =
1
√
p
· Φ(p)

1,J1
(z) | U(p).(3.5)

This implies in particular that N∗
p (z) has integer coefficients with leading coefficient

one. Since j(z) has integer coefficients with leading coefficient 1, it follows that Fp(x)
is a monic polynomial with integer coefficients.

To complete the proof, it suffices to compute the degree of Fp(x) which is equivalent
to computing the order of Np(z) at z = ∞. For this notice that (2.4) and (2.9) give

Φ
(p)
1,J1

(z) = −
((
q−p − 2 + · · ·

)
·Θ(z)

)
| U(4)

= −
(
q−p − 2q−p+1 + · · ·

)
| U(4) = 2q−(p−1)/4 + · · · .

(3.6)

We now use as a set of representatives for the coset space Γ0(p)\SL2(Z) the matrices{(
1 0
0 1

)}
∪
{(

0 −1
1 s

)
: 0 ≤ s ≤ p− 1

}
.

Moreover we have (
0 −1
1 s

)
= Wp ·

(
1/p s/p
0 1

)
.

Therefore, by (2.4), (2.9), and (3.5) it follows, since U(p)U(4) = U(4)U(p), that

Φ
(p)
1,J1

(z) | Wp =
1
√
p
· Φ(p)

1,J1
(z) | U(p) =

2
√
p

+ · · · .

Together with (3.6), this implies that

N∗
p (z) = q−(p−1)/4 + · · · .
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Using (3.4), we get

Fp(j(z)) =

{
q−(5p−5)/12 + · · · if p ≡ 1 (mod 12),

q−(5p−1)/12 + · · · if p ≡ 5 (mod 12).

The conclusion about deg(Fp(x)) follows from the fact that j(z) = q−1 +744+ · · · . �

To prove Theorem 1.3, it suffices to compute the factorization of Fp(x) over Z[x].
Loosely speaking, Fp(x) captures the divisor of the modular form N∗

p (z) in h. To
compute the points in the divisor, we shall make use of Theorem 1.2. Since η(z) is
non-vanishing on h, the factors of Fp(x) only arise from the zeros of the “norm” of
E4(pz) and of

f1(4z)
4f2(z)

2 − f1(4pz)
4f2(pz)

2.

To determine these zeros and their corresponding multiplicities, we first recall some
classical facts about class numbers. Let h(−D) denote the class number of primitive
positive definite binary quadratic forms with discriminant −D. These class numbers
have the property that h(−D) = deg(HD(x)). The following well known fact shall play
an important role (for example, see page 69 of [7]).

Proposition 3.2. If −D0 is a fundamental discriminant and f ≥ 1, then

h(−D0f
2)

ω(−D0f 2)
=
h(−D0)

ω(−D0)
· f
∏
p|f

prime

(
1−

(−D0

p

)
p

)
,

where ω(−D) is half the number of units in the imaginary quadratic order of discrim-
inant −D.

We shall require the following class number relation to prove Theorem 1.3.

Lemma 3.3. If p ≡ 1 (mod 4) is prime, then

∑
−2

√
p<s<2

√
p

f |t(s,p)

h
(

s2−4p
16f2

)
ω
(

s2−4p
16f2

) =
p− 5

12
,

where t(s, p) := t is the largest integer for which t2 | (s2 − 4p) and (s2 − 4p)/t2 ≡ 0, 1
(mod 4).

Proof. We use the Eichler-Selberg trace formula (for example, see [5], [11]), giving the
trace of Tp, where Tp is the usual Hecke operator, on S2(Γ0(16)). This trace is zero,
since S2(Γ0(16)) = {0}.

The Eichler-Selberg trace formula for this case gives the identity

(3.7)
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p+ 1− 1

p− 1

∑
f |p−1

φ((p− 1)/f) · c(p+ 1, f, 16, p)− 1

2

∑
s2<4p
f |t(s,p)

b(s, f, p)c(s, f, 16, p) = 0,

where φ is Euler’s totient. The number b(s, f, p) = h((s2 − 4p)/f2)/ω((s2 − 4p)/f2),
and the c(s, f, 16, p) count solutions to quadratic congruences modulo powers of 2
(These are explicitly given in [11]). It is straightforward to prove that c(s, f, 16, p) is

equal to 2, 6, 8, 4, 6 if s2−4p
f2 ≡ 1 (mod 8), 4 (mod 32), 16 (mod 128), 80 (mod 128), 0

(mod 64), respectively. Otherwise it is equal to 0. From this it is straightforward to
see that

1

p− 1

∑
f |p−1

φ((p− 1)/f)c(p+ 1, f, 16, p) = 6.

Hence, it suffices to consider the third term of (3.7). We have that∑
s2<4p
f |t(s,p)

b(s, f, p)c(s, f, 16, p) = 2(p− 5).

¿From the consideration above it follows that c(0, f, 16, p) = 0. Also,
b(s, f, p)c(s, f, 16, p) = b(−s, f, p)c(−s, f, 16, p) and hence∑

0<s<2
√

p
f |t(s,p)

b(s, f, p)c(s, f, 16, p) = p− 5.

Now, if we write t(s, p) = 2α(s)m(s) where m is odd and α ≥ 1, we have∑
0<s<2

√
p

∑
0≤i≤α(s)

g|m(s)

b(s, 2ig, p)c(s, 2ig, 16, p) = p− 5.

It suffices to prove for all g that
α∑

i=0

b(s, 2ig, p)c(s, 2ig, 16, p) = 24
α−2∑
i=0

h

(
s2 − 4p

16 · 22ig2

)
/ω

(
s2 − 4p

16 · 22ig2

)
.

If i ≤ α − 3, we have that that c(s, 2ig, 16, p) = 6. In this case, Proposition 3.2

implies that b(s, 2ig, p) = 4h
(

s2−4p
22ig2

)
/ω
(

s2−4p
22ig2

)
. This gives

b(s, 2ig, p)c(s, 2ig, 16, p) = 24h

(
s2 − 4p

22ig2

)
/ω

(
s2 − 4p

22ig2

)
.

Hence, it suffices to consider α − 2 ≤ i ≤ α. These may be argued on a case by case
basis. We give the argument when D = (s2 − 4p)/(22ig2) ≡ 1 (mod 8). The other
cases are similar and slightly simpler. Suppose that D ≡ 1 (mod 8). If α = 0, then
s2 − 4p ≡ 1 (mod 8) and hence s is odd, so s2 ≡ 1 + 4p ≡ 5 (mod 8), a contradiction.
If α = 1, then s2 − 4p ≡ 4D ≡ 4 (mod 16). Thus, s2 ≡ 4 + 4p ≡ 8 (mod 16), a
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contradiction. Hence, α ≥ 2. Now, we have that c(s, 2αg, 16, p) = 2, c(s, 2α−1, 16, p) =
6, and c(s, 2α−2g, 16, p) = 8. We also have by Proposition 3.2 that b(s, 2αg, 16, p) =
b(s, 2α−1g, 16, p) = h(−D)/ω(−D) and b(s, 2α−2g, 16, p) = 2h(−D)/ω(−D). Thus,

α∑
i=α−2

b(s, 2ig, p)c(s, 2ig, 16, p) =
24h(−D)

ω(−D)
= 24h

(
s2 − 4p

16 · 22α−4

)
/ω

(
s2 − 4p

16 · 22α−4

)
,

as desired. �

Now we determine the factor of Fp(x) arising from E4(pz).

Proposition 3.4. If p ≡ 1 (mod 4) is prime, then

Fp(x) = H3·p2(x) · Ip(x),

where Ip(x) ∈ Z[x] has

deg(Ip(x)) =

{
(p− 1)/12 if p ≡ 1 (mod 12),

(p− 5)/12 if p ≡ 5 (mod 12).

Proof. Since E4(ω) = 0 for ω = e2π/3 = −1+
√
−3

2
it follows that E4(pz) is zero for zp =

ω/p. Since zp has discriminant −3p2, by the integrality of Fp(x) and the irreducibility
of H3·p2(x), it follows that H3·p2(x) | Fp(x) in Z[x]. By Proposition 3.2, we have that

deg(H3·p2(x)) =

{
(p− 1)/3 if p ≡ 1 (mod 12),

(p+ 1)/3 if p ≡ 5 (mod 12),

and so the claimed formula for deg(Ip(x)) follows from Proposition 3.1. �

In view of Proposition 3.1 and Proposition 3.4, to prove Theorem 1.3 it suffices to
determine the polynomial Ip(x). To this end, we begin by observing that Ip(x) is the
polynomial which encodes the divisor of the norm of

f1(4z)
4f2(z)

2 − f1(4pz)
4f2(pz)

2.

To study this divisor, we first recall the following modular transformation properties.

Proposition 3.5. If ( a b
c d ) ∈ SL2(Z) with b ≡ c ≡ 0 (mod 4) and g(z) := f1(4z)

4f2(z)
2,

then g
(

az+b
cz+d

)
= g(z).

The proof of Theorem 1.3 is complete once we establish the following lemma.

Lemma 3.6. If p ≡ 1 (mod 4) is a prime, then we have

Ip(x) = H3(x)
a(p)H4(x)

b(p)
∏

D∈Dp

HD(x)2.
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Proof. By Proposition 3.5, z ∈ H is a root of g(z)−g(pz) if az+b
cz+d

= pz for ( a b
c d ) ∈ SL2(Z)

with b ≡ c ≡ 0 (mod 4). This leads to the quadratic equation

pc

4
z2 +

pd− a

4
z − b

4
= 0.

In view of Lemma 3.3 and since the Hilbert class polynomials are irreducible, we simply

need to show that for a negative discriminant of the form −D := x2−4p
16f2 with x, f ∈ Z

there exist two integral binary quadratic forms

Q1 :=
pc1
4f

x2 +
pd1 − a1

4f
xy − b1

4f
y2

Q2 :=
pc2
4f

x2 +
pd2 − a2

4f
xy − b2

4f
y2,

which are inequivalent under Γ0(p) with discriminants −D such that
(

a1 b1
c1 d1

)
,
(

a2 b2
c2 d2

)
∈ SL2(Z) with b1 ≡ b2 ≡ c1 ≡ c2 ≡ 0 (mod 4). We can easily show that there exist
a1, a2, d1, and d2 such that a1d1 ≡ a2d2 ≡ 1 (mod 16f 2) and pd1+a1 = −(pd2+a2) = x.
Moreover we can choose a1, a2, d1, and d2 such that pd1− a1 ≡ pd2− a2 ≡ 0 (mod 4f).
We let b1 = b2 = −4f , c1 = (a1d1 − 1)/(4f), and c2 = (a2d2 − 1)/(4f). Then
a1, a2, b1, b2, c1, c2, d1, and d2 are integral with b1 ≡ c1 ≡ b2 ≡ c2 ≡ 0 (mod 4) and
a1d1 − b1c1 = a2d2 − b2c2 = 1. It is well-known that if α1x

2 + α2xy + α3y
2 and

β1x
2 + β2xy + β3y

2 are two integral primitive binary quadratic forms with α3, β3 > 0,
which are equivalent under Γ0(p), then α2 ≡ β2 (mod p). This fact implies that Q1

and Q2 are not equivalent under Γ0(p) since pd1−a1

4f
≡ −4fx (mod p) and pd2−a2

4f
≡ 4fx

(mod p). Here 4f denotes the inverse of 4f (mod p). �

4. Traces of Jm(z) for p = 5, 13, and 17

In this section, we give formulas for theK
(p)
m (z) and prove Theorem 1.4. For p = 5, 13,

and 17 and m ≥ 0 with
(

m
p

)
6= −1 there is a unique

K(p)
m (z) = q−m +O(q) ∈M+

2

(
Γ0(p),

(
·
p

))
.

Let

E
(p)
1 (z) =

∞∑
n=1

∑
d|n

d ·
(
n/d

p

) qn

E
(p)
2 (z) =

L(−1,
( ·

p

)
)

2
+

∞∑
n=1

∑
d|n

d ·
(
d

p

) qn,
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be the two Eisenstein series in M2

(
Γ0(p),

( ·
p

))
corresponding to the cusps 0 and ∞.

Here L(s, χ) denotes the usual Dirichlet series with Dirichlet character χ. Then, we

can express K
(p)
0 as a linear combination of these two Eisenstein series.

(4.1) K
(p)
0 (z) =

2

L(−1,
( ·

p

)
)

(
E

(p)
1 (z) + E

(p)
2 (z)

)
.

In addition, for p = 5 and p = 13, we can express K
(p)
1 (z) in terms of E

(p)
1 (z) and

E
(p)
2 (z).

(4.2) K
(5)
1 (z) =

25E
(5)
2 (z)2 − 55E

(5)
1 (z)E

(5)
2 (z)

E
(5)
1 (z)

,

and

(4.3) K
(13)
1 (z) =

E
(13)
2 (z)2 − 3E

(13)
1 (z)E

(13)
2 (z)

E
(13)
1 (z)

.

For p = 17, we need

M17(z) = 1 +
3

2

∞∑
n=1

(σ1(n)− 17σ1(n/17))qn

the Eisenstein series for M2(Γ0(17)) and

S17(z) = q − q2 − q4 − 2q5 + · · · ,
the cusp form associated to the elliptic curve X0(17). Then,

(4.4) K
(17)
1 (z) = −E

(17)
2 (z)M17(z)

2S17(z)
+
E

(17)
2 (z)

4
− 17E

(17)
1 (z)

4
.

All the K
(p)
m (z) can be expressed in terms of K

(p)
1 (z) using Hecke operators. For this

description, suppose that m ≥ 1 and
(

m
p

)
6= 1. Let

K̃(p)
m (z) = q−m +

∞∑
n=1

am(n)qn ∈M2

(
Γ0(p),

(
·
p

))
be the unique form such that am(n) = 0 if

(
n
p

)
= 1. It is straightforward to verify the

following facts about the K
(p)
m (z) and K̃

(p)
m (z).

Lemma 4.1. If gcd(m, p) = 1, then

1

m

(
K

(p)
1 (z) | Tm

)
=

{
K

(p)
m (z)

(
m
p

)
= 1,

−K̃(p)
m (z)

(
m
p

)
= −1,

where Tm is the usual Hecke operator on M2

(
Γ0(p),

( ·
p

))
.
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Lemma 4.2. If gcd(m, p) = 1 and b ≥ 1, then

1

2

(
K

(p)

mpb(z)− K̃
(p)

mpb(z)
)

=

{
K

(p)
m (z) | U(pb)

(
m
p

)
= 1,

−K̃(p)
m (z) | U(pb)

(
m
p

)
= −1.

Lemma 4.3. If gcd(m, p) = 1 and b ≥ 1, then

1

2

(
K

(p)

mpb(z) + K̃
(p)

mpb(z)
)
| U(pb) =

{
K

(p)
m (z)

(
m
p

)
= 1,

K̃
(p)
m (z)

(
m
p

)
= −1.

Using these lemmas, one can determine the q-expansions of all the K
(p)
m (z) and

K̃
(p)
m (z) in terms of the q-expansion of K

(p)
1 (z). Now we prove Theorem 1.4.

Proof of Theorem 1.4. ¿From (3.5) it follows that f(z) is holomorphic at infinity if
and only if it is holomorphic at zero. From this fact, and the fact that for p = 5, 13,

and 17, the space S2

(
Γ0(p),

( ·
p

))
= {0}, it follows that the K

(p)
m (z) form a basis for

M+
2

(
Γ0(p),

( ·
p

))
. Hence, a function f(z) ∈ M+

2

(
Γ0(p),

( ·
p

))
is determined by its

principal part and constant term.

The principal part of Φ
(p)
1,Jm

(z) comes from A
(p)
`,f (z), and the constant term comes

from B
(p)
`,f (z). Knowing the principal part of Jm(z) determines the principal part and

constant term of Φ
(p)
1,Jm

(z) and knowing these, the result follows. �
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