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1. Introduction

The goal of this article is to provide an overview on mock theta functions and their connection to
weak Maass forms.

The theory of modular forms has important applications to many areas of mathematics, e.g. qua-
dratic forms, elliptic curves, partitions as well as other areas throughout mathematics. Let me explain
this with the example of partitions. If p(n) denotes the number of partitions of an integer n, then by
Euler, we have

P (q) :=
∞∑
n=0

p(n) q24n−1 =
1

η(24z)
,

where η(z) is Dedekind’s η-functions, a weight 1
2 cusp form (q = e2πiz throughout). The theory of

modular forms can be employed to show many important properties of p(n). For example Rademacher
used the circle method to prove that if n is a positive integer, then

(1.1) p(n) =
2π

(24n− 1)3/4

∞∑
k=1

Ak(n)
k
· I 3

2

(
π
√

24n− 1
6k

)
.

Here Is(x) is the usual I-Bessel function of order s. Furthermore, if k ≥ 1 and n are integers and
e(x) := e2πix, then define

Ak(n) :=
∑

h (mod k)∗

ωh,k e
− 2πihn

k ,

where h runs through all primitive elements modulo k, and where

ωh,k := exp (πis(h, k)) .

Here

s(h, k) :=
∑

µ (mod k)

((µ
k

))((hµ
k

))
with

((x)) :=
{
x− bxc − 1

2 if x ∈ R \ Z,
0 if x ∈ Z.

Moreover p(n) satisfies some nice congruence properties. The most famous ones are the Ramanujan
congruences:

p(5n+ 4) ≡ 0 (mod 5),(1.2)
p(7n+ 5) ≡ 0 (mod 7),(1.3)
p(11n+ 6) ≡ 0 (mod 11).(1.4)
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In a celebrated paper Ono [32] treated these kinds of congruences systematically. Combining Shimura’s
theory of modular forms of half-integral weight with results of Serre on modular forms modulo ` he
showed that for any prime ` ≥ 5 there exist infinitely many non-nested arithmetic progressions of the
form An+B such that

p(An+B) ≡ 0 (mod `).

Moreover partitions are related to Eulerian series. For example we have

(1.5)
∞∑
n=0

p(n)qn = 1 +
∞∑
n=1

qn
2

(1− q)2(1− q2)2 · · · (1− qn)2
.

Other examples that relate Eulerian series to modular forms are the Rogers-Ramanujan identities

1 +
∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=

1∏∞
n=1(1− q5n−1)(1− q5n−4)

,

1 +
∞∑
n=1

qn
2+n

(1− q)(1− q2) · · · (1− qn)
=

1∏∞
n=1(1− q5n−2)(1− q5n−3)

.

(1.6)

Mock theta functions, which can also be defined as Eulerian series, stand out of this context. For
example the mock theta function f(q), defined by Ramanujan [34] in his last letter to Hardy, is given
by

(1.7) f(q) := 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

Even if (1.5) and (1.7) have a similar shape P (q) is modular whereas f(q) is not. The mock theta
functions were mysterious objects for a long time, for example there was even a discussion how to
rigorously define them. Despite those problems they have applications in vast areas of mathematics
(e.g. [2, 3, 4, 18, 20, 28, 39] just to mention a few). In this context one has to understand Dyson’s
quote given 1987 at the Ramanujan’s Centary Conference:
“The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered. Somehow
it should be possible to build them into a coherent group-theoretical structure, analogous to the structure
of modular forms which Hecke built around the old theta-functions of Jacobi. This remains a challenge
for the future.”
Zwegers [39, 40] made a first step towards solving this challenge. He observed that Ramanujan’s
mock theta functions can be interpreted as part of a real analytic vector valued modular form. The
author and Ono build on those results to relate functions like f(q) to weak Maass forms (see Section
2 for the definition of a weak Maass form). It turns out that f(q) is the “holomorphic part” of
a weak Maass form, the “non-holomorphic part” is a Mordell type integral involving weight 3

2 theta
functions. This is the special case of an infinite family of weak Maass forms that arise from Dyson’s rank
generating functions (see Section 3). This new theory has a wide range of applications. For example
we obtain exact formulas for Ramanujan’s mock theta function f(q) (see Section 4), congruences for
Dyson’s ranks (see Section 5), asymptotics and inequalities for ranks (see Section 6) and identities
for rank differences that involve modular forms (see Section 8). In Section 7 we show furthermore a
correspondence between weight 3

2 weak Maass forms and weight 1
2 theta functions.

This paper is an extended version of a talk given at the conference “Modular forms” held in October
2006 in Schiermonnikoog. The author thanks the organizers B. Edixhoven, G. van der Geer, and B.
Moonen for a stimulating athmosphere.
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2. General facts on weak Maass forms

Here we recall basic facts on weak Maass forms, first studied by Bruinier and Funke [17]. For
k ∈ 1

2Z \ Z and z = x+ iy with x, y ∈ R, the weight k hyperbolic Laplacian is given by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

If v is odd, then define εv by

εv :=

{
1 if v ≡ 1 (mod 4),
i if v ≡ 3 (mod 4).

A (harmonic) weak Maass form of weight k on a subgroup Γ ⊂ Γ0(4) is any smooth function f : H→ C
satisfying the following:

(1) For all A =
(
a b
c d

)
∈ Γ and all z ∈ H, we have

f(Az) =
(
c

d

)2k

ε−2k
d (cz + d)k f(z).

(2) We have that ∆kf = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps of Γ.

In a similar manner one defines weak Maass forms on Γ0(4N) (N a positive integer) with Nebentypus
χ (a Dirichlet character) by requiring

f(Az) = χ(d)
(
c

d

)2k

ε−2k
d (cz + d)k f(z)

instead of (1). Harmonic weak Maass forms have Fourier expansions of the form

f(z) =
∞∑

n=n0

γy(n)q−n +
∞∑

n=n1

a(n)qn,

with n0, n1 ∈ Z. The γy(n) are functions in y, the imaginary part of z. We refer to
∑∞

n=n0
γy(n)q−n

as the non-holomorphic part of f(z), and we refer to
∑∞

n=n1
a(n)qn as its holomorphic part.

Moreover we need the anti-linear differential operator ξk defined by

ξk(g)(z) := 2iyk ∂
∂z̄g(z).

If g is a harmonic weak Maass form of weight k for the group Γ, then ξk(g) is a weakly holomorphic
modular form (i.e, a modular form with poles at most at the cusps of Γ) of weight 2 − k on Γ.
Furthermore, ξk has the property that its kernel consists of those weight k weak Maass forms which
are weakly holomorphic modular forms.

3. Dyson’s ranks and weak Maass forms

In order to explain the Ramanujan congruences Dyson introduced the so-called rank of a partition
[23]. The rank of a partition is defined to be its largest part minus the number of its parts. In his
famous paper Dyson conjectured that ranks could be used to “explain” the congruences (1.2) and
(1.3) with modulus 5 and 7. More precisely, he conjectured that the partitions of 5n+ 4 (resp. 7n+ 5)
form 5 (resp. 7) groups of equal size when sorted by their ranks modulo 5 (resp. 7). In 1954, Atkin
and Swinnerton-Dyer proved Dyson’s rank conjecture [7].
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To study ranks, it is natural to investigate a generating function. If N(m,n) denotes the number
of partitions of n with rank m, then it is well known that

R(w; q) := 1 +
∞∑
n=1

∞∑
m=−∞

N(m,n)wmqn = 1 +
∞∑
n=1

qn
2

(wq; q)n(w−1q; q)n
,

where
(a; q)n = (a)n := (1− a)(1− aq) · · · (1− aqn−1).

If we let w = 1 we recover P (q) in its Eulerian form (1.5), i.e., (up to a q-power) a weight −1
2 modular

form. Moreover R(−1; q) is the generating function for the number of partitions with even rank minus
the number of partitions with odd rank and equals

R(−1; q) = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
= f(q)

with f(q) as in (1.7). The author and Ono [12] showed that the functions R(w; q) for w 6= 1 a root of
unity are the holomorphic parts of weak Maass forms. To make this statement more precise suppose
that 0 < a < c are integers, and let ζc := e

2πi
c . If fc := 2c

gcd(c,6) , then define for τ ∈ H the weight 3
2

cuspidal theta function Θ
(
a
c ; τ
)

by

Θ
(a
c

; τ
)

:=
∑

m (mod fc)

(−1)m sin
(
aπ(6m+ 1)

c

)
· θ
(

6m+ 1, 6fc;
τ

24

)
,

where
θ(α, β; τ) :=

∑
n≡α (mod β)

ne2πiτn2
.

Moreover let `c := lcm(2c2, 24) and define

(3.1) D
(a
c

; q
)

= D
(a
c

; z
)

:= −S1

(a
c

; z
)

+ q−
`c
24R(ζac ; q`c),

where the period integral S1

(
a
c ; z
)

is given by

(3.2) S1

(a
c

; z
)

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

Θ
(
a
c ; `cτ

)√
−i(τ + z)

dτ.

Theorem 3.1. (1) If 0 < a < c, then D
(
a
c ; z
)

is a weak Maass form of weight 1
2 on

Γc :=
〈

( 1 1
0 1 ) ,

(
1 0
`2c 1

)〉
.

(2) If c is odd, then D
(
a
c ; z
)

is a weak Maass form of weight 1
2 on Γ1

(
6f2
c `c
)
.

If a
c = 1

2 , it turns out, using results of Zwegers [39], that D
(

1
2 ; z
)

is a weak Maass form on Γ0(144)
with Nebentypus χ12(·) :=

(
12
·
)
.

A similar phenomenon as in Theorem 3.1 occurs in the case of overpartitions. Recall that an
overpartition is a partition, where the first occurance of a summand may be overlined. For a non-
negative integer n we denote by p(n) the number of overpartions of n. We have the generating function
[21]

P (q) :=
∑
n≥0

p(n) qn =
η(2z)
η(z)2

,(3.3)
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which is a weight −1
2 modular form. Moreover the generating function for N(m,n), the number of

overpartitions of n with rank m, is given by

O(w; q) := 1 +
∞∑
n=1

N(m,n)wmqn =
∞∑
n=0

(−1)nq
1
2
n(n+1)

(wq; q)n
( q
w ; q

)
n

.

In particular the case w = 1 gives by (3.3) a modular form. Moreover it turns out [10] that for
w 6∈ {−1, 1} a root of unity O(w; q) is the holomorphic part of a weight 1

2 weak Maass form. In
contrast to the case of usual partitions one obtains in the case w = −1 the holomorphic part of a
weight 3

2 weak Maass form.

Sketch of proof of Theorem 3.1. We first determine the transformation law of R (ζac ; q). For this we
define certain related functions. For q := e2πiz let

M
(a
c

; q
)

:=
1

(q; q)∞

∞∑
n=−∞

(−1)nqn+a
c

1− qn+a
c

· q
3
2
n(n+1),

M1

(a
c

; q
)

:=
1

(q; q)∞

∞∑
n=−∞

(−1)n+1qn+a
c

1 + qn+a
c

· q
3
2
n(n+1),

N
(a
c

; q
)

:=
(1− ζac )
(q; q)∞

∑
n∈Z

(−1)n q
n
2

(3n+1)

1− ζac qn
,

N1

(a
c

; q
)

:=
∑
n∈Z

(−1)n q
3n
2

(n+1)

1− ζac qn+ 1
2

.

As an abuse of notation we also write M
(
a
c ; z
)

instead of M
(
a
c ; q
)

and in the same way we treat the
other functions. One can show [27] that

R (ζac ; q) = N
(a
c

; q
)
.

Moreover for 0 ≤ b < c, define M(a, b, c; z) by

M(a, b, c; q) :=
1

(q; q)∞

∞∑
n=−∞

(−1)nqn+a
c

1− ζbcqn+a
c

· q
3
2
n(n+1).

In addition, if b
c 6∈

{
0, 1

2 ,
1
6 ,

5
6

}
, then define the integer k(b, c) by

(3.4) k(b, c) :=


0 if 0 < b

c <
1
6 ,

1 if 1
6 <

b
c <

1
2 ,

2 if 1
2 <

b
c <

5
6 ,

3 if 5
6 <

b
c < 1,

and let

N(a, b, c; q) := − iζ
a
2c q
− b

2c

2 (q; q)∞

∞∑
n=−∞

(−1)nq
n
2

(3n+1)−k(b,c)n

1− ζac qn−
b
c

.

Remark. The above defined functions can also be rewritten in terms of the functions

Tk(x; q) :=
1

(q; q)∞

∑
n∈Z

(−1)n q
n
2

(3n+2k+1)

1− xqn
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with k ∈ Z. These functions can all be expressed in terms of T0:

Tm(x; q)− xTm+1(x; q) = (−1)mχ3(1−m)q−
m
6

(m+1)

with

χ3(m) :=

 1 if m ≡ 1 (mod 3),
−1 if m ≡ −1 (mod 3),
0 if m ≡ 0 (mod 3).

Also
Tm
(
x−1; q

)
= −xT−m(x; q).

Moreover we need the following Mordell type integrals.

J
(a
c

;α
)

:=
∫ ∞

0
e−

3
2
αx2 cosh

((
3a
c − 2

)
αx
)

+ cosh
((

3a
c − 1

)
αx
)

cosh(3αx/2)
dx,

J1

(a
c

;α
)

:=
∫ ∞

0
e−

3
2
αx2 sinh

((
3a
c − 2

)
αx
)
− sinh

((
3a
c − 1

)
αx
)

sinh(3αx/2)
dx,

J(a, b, c;α) :=
∫ ∞
−∞

e−
3
2
αx2+3αxa

c

(
ζbce
−αx + ζ2b

c e
−2αx

)
cosh

(
3αx/2− 3πi bc

) dx.
Modifying an argument of Watson [38] one can show using contour integration.

Lemma 3.2. Suppose that 0 < a < c are coprime integers, and that α and β have the property that
αβ = π2. If q := e−α and q1 := e−β, then we have

q
3a
2c (1−a

c )− 1
24 ·M

(a
c

; q
)

=
√

π

2α
csc
(aπ
c

)
q
− 1

6
1 ·N

(a
c

; q4
1

)
−
√

3α
2π
· J
(a
c

;α
)
,

q
3a
2c (1−a

c )− 1
24 ·M1

(a
c

; q
)

= −
√

2π
α
q

4
3
1 ·N1

(a
c

; q2
1

)
−
√

3α
2π
· J1

(a
c

;α
)
.

If moreover b
c 6∈

{
1
2 ,

1
6 ,

5
6

}
, then

q
3a
2c (1−a

c )− 1
24 ·M(a, b, c; q) =√

8π
α
e−2πia

c
k(b,c)+3πi b

c( 2a
c
−1)ζ−bc q

4b
c
k(b,c)− 6b2

c2
− 1

6

1 ·N(a, b, c; q4
1)−

√
3α
8π
ζ−5b

2c · J(a, b, c;α).

Two remarks.
1) The case b = 0 is contained in [27].
2) It is nowadays more common to write modular transformation laws in terms of τ and − 1

τ than in
q and q1.

The above transformation laws allow us to construct an infinite family of a vector valued weight 1
2

weak Maass forms (see [12] for the definition of vector valued weak Maass form). For simplicity we
assume for the remainder of this section that c is odd. Using the functions

N
(a
c

; q
)

= N
(a
c

; z
)

:= csc
(aπ
c

)
· q−

1
24 ·N

(a
c

; q
)
,

M
(a
c

; q
)

=M
(a
c

; z
)

:= 2q
3a
2c
·(1−a

c )− 1
24 ·M

(a
c

; q
)
,

we define the vector valued (holomorphic) function F
(
a
c ; z
)

by

F
(a
c

; z
)

:=
(
F1

(a
c

; z
)
, F2

(a
c

; z
))T

=
(

sin
(πa
c

)
N
(a
c

; `cz
)
, sin

(πa
c

)
M
(a
c

; `cz
))T

.
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Similarly, define the vector valued (non-holomorphic) function G
(
a
c ; z
)

by

G
(a
c

; z
)

=
(
G1

(a
c

; z
)
, G2

(a
c

; z
))T

:=

(
2
√

3 sin
(πa
c

)√
−i`cz · J

(a
c

;−2πi`cz
)
,
2
√

3 sin
(
πa
c

)
i`cz

· J
(
a

c
;
2πi
`cz

))T
.

Following a method of Zwegers [39], which uses the Mittag-Leffler partial fraction decomposition, we
can realize the function G

(
a
c ; z
)

as a vector valued theta integral.

Lemma 3.3. For z ∈ H, we have

G
(a
c

; z
)

=
i`

1
2
c sin

(
πa
c

)
√

3

∫ i∞

0

(
(−i`cτ)−

3
2 Θ
(
a
c ;− 1

`cτ

)
,Θ
(
a
c ; `cτ

))T√
−i(τ + z)

dτ.

We next determine the necessary modular transformation properties of the vector

S
(a
c

; z
)

=
(
S1

(a
c

; z
)
, S2

(a
c

; z
))

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

(
Θ
(
a
c ; `cτ

)
, (−i`cτ)−

3
2 Θ
(
a
c ;− 1

`cτ

))T
√
−i(τ + z)

dτ.

Lemma 3.4. We have

S
(a
c

; z + 1
)

= S
(a
c

; z
)
,

1√
−i`cz

· S
(
a

c
;− 1

`c
2z

)
=

(
0 1
1 0

)
· S
(a
c

; z
)

+G
(a
c

; z
)
.

Combining the above and using the transformation law for Θ
(
a
c ; τ
)

[35], one can now conclude
that D

(
a
c ; z
)

satisfies the correct transformation law under the stated group. To see that D
(
a
c ; z
)

is
annihilated by ∆ 1

2
, we write

∆ 1
2

= −4y
3
2
∂

∂z

√
y
∂

∂z̄
.(3.5)

Since q−
`c
24R(ζab ; q`c) is a holomorphic function in z, it is thus clearly annihilated by ∆ 1

2
. Moreover

∂

∂z̄

(
S1

(a
c

; z
))

= −
sin
(
πa
c

)
`

1
2
c√

6y
·Θ
(a
c

;−`cz̄
)
.

Hence, we find that
√
y ∂
∂z̄

(
D
(
a
c ; z
))

is anti-holomorphic, and therefore by (3.5) annihilated by ∆ 1
2
.

Using that Θ
(
a
c ; τ
)

is a weight 3
2 cusp form it is not hard to conclude that D

(
a
c ; z
)

has at most linear
exponential growth at the cusps. �

4. The Andrews-Dragonette-Conjecture

One can use the theory of weak Maass form to obtain exact formulas for the coefficients of the mock
theta function f(q) which we denote by α(n) [11]. Recall that

f(q) = R(−1; q) = 1 +
∞∑
n=1

(Ne(n)−No(n)) qn = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,
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where Ne(n) (resp. No(n)) denotes the number of partions of n with even (resp. odd) rank. It is a
classical problem to find exact formulas for Ne(n) and No(n). Since by (1.1) we have an exact formula
for the partition function p(n) this is equivalent to the problem of determining exact formulas for
α(n). Ramanujan’s last letter to Hardy includes the claim that

α(n) = (−1)n−1
exp

(
π
√

n
6 −

1
144

)
2
√
n− 1

24

+O

exp
(

1
2π
√

n
6 −

1
144

)
√
n− 1

24

 .(4.1)

Typical of his writings, Ramanujan did not give a proof. Dragonette finally showed (4.1) in her 1951
Ph.D. thesis [22] written under the direction of Rademacher. In his 1964 Ph.D. thesis, also written
under Rademacher, Andrews [2] improved upon Dragonette’s work, and showed that

α(n) = π(24n− 1)−
1
4

[
√
n ]∑

k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1
12k

)
+O(nε).

Moreover they made the

Conjecture. (Andrews-Dragonette)
If n is a positive integer, then

(4.2) α(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1
12k

)
.

The author and Ono [11] used the theory of weak Maass forms to prove this conjecture.

Theorem 4.1. The Andrews-Dragonette Conjecture is true.

Sketch of Proof. From Section 3 we know that D
(

1
2 ; z
)

is a weight 1
2 weak Maass form on Γ0(144)

with Nebentypus character χ12. We will construct a Maass-Poincaré series which we will show equals
D
(

1
2 ; z
)
. The Andrews-Dragonette Conjecture can be concluded by computing the coefficients of the

Poincaré series. For s ∈ C, k ∈ 1
2 + Z, and y ∈ R \ {0}, let

Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|),

Ws(y) := |y|−
1
4W 1

4
sgn(y), s− 1

2
(|y|),

where Mν,µ(z) and Wν,µ(z) are the standard Whittaker function. Furthermore, let

ϕs,k(z) :=Ms

(
−πy

6

)
e
(
− x

24

)
.

It is straightforward to confirm that ϕs,k(z) is an eigenfunction of ∆k. Moreover for matrices
(
a b
c d

)
∈

Γ0(2), with c ≥ 0, let

χ

((
a b
c d

))
:=

{
e
(
− b

24

)
if c = 0,

i−1/2(−1)
1
2

(c+ad+1)e
(
−a+d

24c −
a
4 + 3dc

8

)
· ω−1
−d,c if c > 0.

Define the Poincaré series Pk(s; z) by

(4.3) Pk(s; z) :=
2√
π

∑
M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−kϕs,k(Mz),
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were Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z} . The series P 1

2

(
1− k

2 ; z
)

is absolute convergent for k < 1
2 and anni-

hilated by ∆ k
2
. The function P 1

2

(
3
4 ; z
)

can be analytically continued by its Fourier expansion, which
bases on a modification of an argument of Hooley involving the interplay between solutions of qua-
dratic congruences and the representation of integers by quadratic forms. This calculation is lengthy,
and is carried out in detail in [11]. We compute the Fourier expansion of P 1

2

(
3
4 ; z
)

as

P 1
2

(
3
4

; z
)

=
(

1− π−
1
2 · Γ

(
1
2
,
πy

6

))
· q−

1
24 +

0∑
n=−∞

γy(n)qn−
1
24 +

∞∑
n=1

β(n)qn−
1
24 ,

where for positive integers n we have

β(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1
12k

)
,

and for non-positive integers n we have

γy(n) = π
1
2 |24n− 1|−

1
4 · Γ

(
1
2
,
π|24n− 1| · y

6

)

×
∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· J 1
2

(
π
√
|24n− 1|
12k

)
.

Here the incomplete gamma function Γ(a;x) is defined by

(4.4) Γ(a;x) :=
∫ ∞
x

e−tta−1 dt.

To finish the proof, we have to show that α(n) = β(n). For this we let

P (z) := P 1
2

(
3
4

; 24z
)

= Pnh(z) + Ph(z),

M(z) := D

(
1
2

; z
)

= Mnh(z) +Mh(z)

canonically decomposed into a non-holomorphic and a holomorphic part. In particular

Ph(z) = q−1 +
∞∑
n=1

β(n) q24n−1,

Mh(z) = q−1f(q24) = q−1 +
∞∑
n=1

α(n) q24n−1.

The function P (z) and M(z) are weak Maass forms of weight 1
2 for Γ0(144) with Nebentypus χ12. We

first prove that Pnh(z) = Mnh(z). For this compute that ξ 1
2

(P (z)) and ξ 1
2

(M(z)) are holomorphic

modular forms of weight 3
2 with Nebentypus χ12 with the property that their non-zero Fourier coeffi-

cients are supported on arithmetic progression congruent to 1 (mod 24). Choose a constant c such that
the coefficients up to q24 of ξ 1

2
(P (z)) and cξ 1

2
(M(z)) agree and since dimC

(
M 3

2
(Γ0(144), χ12)

)
= 24,

ξ 1
2

(P (z)) = cξ 1
2
(M(z)), which implies that Pnh(z) = cMnh(z). Thus the function H(z) := P (z) −

cM(z) is a weakly holomorphic modular form. We have to show that c = 1. For this we apply the
inversion z 7→ −1

z . By work of Zwegers [39] this produces a nonholomorphic part unless c = 1. Since
H(z) is weakly holomorphic we conclude that c = 1. To be more precise, the Poincaré series considered



10 KATHRIN BRINGMANN

here is a component of a vector valued weak Maass form whose transformation law is known by work
of Zwegers (see also [26], where such a vector valued Poincaré series is construced). Estimating the
coefficients of P (z) and M(z) against n

3
4

+ε, one obtains that H(z) is a holomorphic modular form
of weight 1

2 on Γ0(144) with Nebentypus χ12. Since this space is trivial we obtain H(z) = 0 which
employs the claim. �

5. Congruences for Dyson’s rank generating functions

In this section we prove an infinite family of congruences for Dyson’s ranks which generalizes par-
titions congruences [12].

Theorem 5.1. Let t be a positive odd integer, and let Q - 6t be prime. If j is a positive integer, then
there are infinitely many non-nested arithmetic progressions An+B such that for every 0 ≤ r < t we
have

N(r, t;An+B) ≡ 0 (mod Qj).

Two remarks.
1) The congruences in Theorem 5.1 may be viewed as a combinatorial decomposition of the partition
function congruence

p(An+B) ≡ 0 (mod Qj).
2) Congruences for t = Qj were shown in [9].

Sketch of proof. First observe that

(5.1)
∞∑
n=0

N(r, t;n)qn =
1
t

∞∑
n=0

p(n)qn +
1
t

t−1∑
j=1

ζ−rjt ·R(ζjt ; q).

Using the results from Section 3 we can conclude that
∞∑
n=0

(
N(r, t;n)− p(n)

t

)
q`tn−

`t
24

is the holomorphic part of a weak Maass form of weight 1
2 on Γ1

(
6f2
t `t
)
.

We wish to apply certain quatratic twists which “kill” the non-holomorphic part of D
(
a
c ; q
)
. For

this we compute on which arithmetic progressions it is supported. This will enable us to use results
on congruences for half integer weight modular forms. We obtain

D
(a
c

; z
)

= q−
`c
24 +

∞∑
n=1

∞∑
m=−∞

N(m,n)ζamc q`cn−
`c
24

−
2 sin

(
πa
c

)
√
π

∑
m (mod fc)

(−1)m sin
(
aπ(6m+ 1)

c

) ∑
n≡6m+1 (mod 6fc)

Γ
(

1
2

;
`cn

2y

6

)
q−

`cn
2

24 .

In particular the non-holomorphic part of D
(
a
c ; z
)

is supported on certain fixed arithmetic progression.
Generalizing the theory of twists of modular forms to twists of weak Maass forms, one can show.

Proposition 5.2. If 0 ≤ r < t are integers, where t is odd, and P - 6t is prime, then∑
n≥1

(24`tn−`t
P )=−(−`tP )

(
N(r, t;n)− p(n)

t

)
q`tn−

`t
24

is a weight 1
2 weakly holomorphic modular form on Γ1

(
6f2
t `tP4

)
.
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To prove Theorem 5.1, we shall employ a recent general result of Treneer [36]. We use the following
fact, which generalized Serre’s results on p-adic modular forms.

Proposition 5.3. Suppose that f1(z), f2(z), . . . , fs(z) are half-integral weight cusp forms where

fi(z) ∈ Sλi+ 1
2
(Γ1(4Ni)) ∩ OK [[q]],

and where OK is the ring of integers of a fixed number field K. If Q is prime and j ≥ 1 is an integer,
then the set of primes L for which

fi(z) | Tλi(L
2) ≡ 0 (mod Qj),

for each 1 ≤ i ≤ s, has positive Frobenius density. Here Tλi(L
2) denotes the usual L2 index Hecke

operator of weight λi + 1
2 .

Now suppose that P - 6tQ is prime. By Proposition 5.2, for every 0 ≤ r < t

(5.2) F (r, t,P; z) =
∞∑
n=1

a(r, t,P;n)qn :=
∑

(24`tn−`t
P )=−(−`tP )

(
N(r, t;n)− p(n)

t

)
q`tn−

`t
24

is a weakly holomorphic modular form of weight 1
2 on Γ1

(
6f2
t `tP4

)
. Furthermore, by the work of

Ahlgren and Ono [1], it is known that

(5.3) P (t,P; z) =
∞∑
n=1

p(t,P;n)qn :=
∑

(24`tn−`t
P )=−(−`tP )

p(n)q`tn−
`t
24

is a weakly holomorphic modular form of weight −1
2 on Γ1

(
24`tP4

)
.

Now since Q - 24f2
t `tP4, a generalization of a result of Treneer (see Theorem 3.1 of [36]), implies

that there is a sufficiently large integer m for which∑
Q-n

a(r, t,P;Qmn)qn,

for all 0 ≤ r < t, and ∑
Q-n

p(t,P;Qmn)qn

are all congruent modulo Qj to forms in the graded ring of half-integral weight cusp forms with
algebraic integer coefficients on Γ1

(
24f2

t `t
)
. Applying Proposition 5.3 to these t+ 1 forms gives that

a positive proportion of primes L have the property that these t + 1 half-integral weight cusp forms
modulo Qj are annihilated by the index L2 half-integral weight Hecke operators. Theorem 5.1 now
follows mutatis mutandis as in the proof of Theorem 1 of [32]. �

6. Asymptotics for Dyson’s rank partition functions

We obtain asymptotic formulas for Dyson’s rank generating functions [8]. As an application, we
solve a conjecture of Andrews and Lewis on inequalities between ranks. We write

R(ζac ; q) =: 1 +
∞∑
n=1

A
(a
c

;n
)
qn.
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Let k and h be coprime integers, h′ defined by hh′ ≡ −1 (mod k) if k is odd and by hh′ ≡ −1
(mod 2k) if k is even, k1 := k

gcd(k,c) , c1 := c
gcd(k,c) , and 0 < l < c1 is defined by the congruence l ≡ ak1

(mod c1). Furthermore we define, for n,m ∈ Z, the following sums of Kloosterman type

Da,c,k(n,m) := (−1)ak+l
∑

h (mod k)∗

ωh,k · e
2πi
k

(nh+mh′),

Ba,c,k(n,m) := (−1)ak+1 sin
(πa
c

) ∑
h (mod k)∗

ωh,k

sin
(
πah′

c

) · e− 3πia2k1h
′

c · e
2πi
k

(nh+mh′),

where for Ba,c,k(n,m) we require that c|k. Moreover, for c - k, let

δc,k,r :=


−
(

1
2 + r

)
l
c1

+ 3
2

(
l
c1

)2
+ 1

24 if 0 < l
c1
< 1

6 ,

− 5l
2c1

+ 3
2

(
l
c1

)2
+ 25

24 − r
(

1− l
c1

)
if 5

6 <
l
c1
< 1,

0 otherwise,

(6.1)

and for 0 < l
c1
< 1

6 or 5
6 <

l
c1
< 1

ma,c,k,r :=


1

2c21

(
−3a2k2

1 + 6lak1 − ak1c1 − 3l2 + lc1 − 2ark1c1 + 2lc1r
)

if 0 < l
c1
< 1

6 ,
1

2c21

(
−6ak1c1 − 3a2k2

1 + 6lak1 + ak1c1 + 6lc1 if 5
6 <

l
c1
< 1.

−3l2 − 2c2
1 − lc1 + 2ark1c1 + 2c1(c1 − l)r

)
Using the Circle Method, we obtain [8] the following asymptotic formulas for the coefficients A

(
a
c ;n
)
.

Theorem 6.1. If 0 < a < c are coprime integers and c is odd, then for positive integers n we have
that

A
(a
c

;n
)

=
4
√

3i√
24n− 1

∑
1≤k≤

√
n

c|k

Ba,c,k(−n, 0)√
k

· sinh
(
π
√

24n− 1
6k

)

+
8
√

3 · sin
(
πa
c

)
√

24n− 1

∑
1≤k≤

√
n

c-k
r≥0

δc,k,r>0

Da,c,k(−n,ma,c,k,r)√
k

· sinh

(
π
√

2δc,k,r(24n− 1)
√

3k

)
+Oc (nε) .

Using (5.1), one can conclude asymptotics for N(a, c;n) from Theorem 6.1.

Corollary 6.2. For integers 0 ≤ a < c, where c is an odd integer, we have

N(a, c;n) =
2π

c ·
√

24n− 1

∞∑
k=1

Ak(n)
k
· I 3

2

(
π
√

24n− 1
6k

)

+
1
c

c−1∑
j=1

ζ−ajc

 4
√

3i√
24n− 1

∑
c|k

Bj,c,k(−n, 0)√
k

sinh
( π

6k
√

24n− 1
)

+
8
√

3 sin
(
πj
c

)
√

24n− 1

∑
k,r
c-k

δc,k,r>0

Dj,c,k(−n,mj,c,k,r)√
k

sinh

(√
2δc,k,r(24n− 1)

3
π

k

))
+Oc (nε) .
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This corollary implies a conjecture of Andrews and Lewis. In [6, 31] they showed

N(0, 2; 2n) < N(1, 2; 2n) if n ≥ 1,
N(0, 4;n) > N(2, 4;n) if 26 < n ≡ 0, 1 (mod 4),
N(0, 4;n) < N(2, 4;n) if 26 < n ≡ 2, 3 (mod 4).

Moreover, they conjectured (see Conjecture 1 of [6]).

Conjecture. (Andrews and Lewis)
For all n > 0, we have

N(0, 3;n) < N(1, 3;n) if n ≡ 0 or 2 (mod 3),
N(0, 3;n) > N(1, 3;n) if n ≡ 1 (mod 3),(6.2)

A careful analysis of the asymptotics in Corollary 6.2 gives the following theorem.

Theorem 6.3. The Andrews-Lewis Conjecture is true for all n 6∈ {3, 9, 21} in which case we have
equality in (6.2).

Sketch of proof of Theorem 6.1. We use the Hardy Littlewood method. By Cauchy’s Theorem we have
for n > 0

A
(a
c

;n
)

=
1

2πi

∫
C

N
(
a
c ; q
)

qn+1
dq,

where C is an arbitrary path inside the unit circle surrounding 0 counterclockwise. Now let

ϑ′h,k :=
1

k(k1 + k)
, ϑ′′h,k :=

1
k(k2 + k)

,

where h1
k1
< h

k <
h2
k2

are adjacent Farey fractions in the Farey sequence of order N :=
⌊
n1/2

⌋
. We make

the substitution q = e−
2π
n

+2πit (0 ≤ t ≤ 1) and then decompose the path of integration into paths
along the Farey arcs −ϑ′h,k ≤ Φ ≤ ϑ′′h,k, where Φ = t − h

k and 0 ≤ h ≤ k ≤ N with (h, k) = 1. One
obtains

A
(a
c

;n
)

=
∑
h,k

e−
2πihn
k

∫ ϑ′′h,k

−ϑ′h,k
N
(a
c

; e
2πi
k

(h+iz)
)
· e

2πnz
k dΦ,

where z = k
n − kΦi. One can conclude from the transformation law of N

(
a
c ; q
)

(in a modified version
of Lemma 3.2) that

A
(a
c

;n
)

=
∑

1

+
∑

2

+
∑

3

,
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where∑
1

:= i sin
(πa
c

)∑
h,k
c|k

ωh,k
(−1)ak+1

sin
(
πah′

c

) · e− 3πia2k1h
′

c
− 2πihn

k

∫ ϑ
′′
h,k

−ϑ′h,k
z−

1
2 · e

2πz
k (n− 1

24)+ π
12kz N

(
ah′

c
; q1

)
dΦ,

∑
2

:= −4i sin
(πa
c

)∑
h,k
c-k

ωh,k (−1)ak+l e
− 2πih′sa

c
− 3πih′a2k1

cc1
+ 6πih′la

cc1
− 2πihn

k

∫ ϑ
′′
h,k

−ϑ′h,k
z−

1
2 · e

2πz
k (n− 1

24)+ π
12kz · q

sl
c1
− 3l2

2c21
1 ·N

(
ah′,

lc

c1
, c; q1

)
dΦ,

∑
3

:= 2 sin2
(πa
c

)∑
h,k

ωh,k
k
· e−

2πihn
k

∑
ν (mod k)

(−1)ν e−
3πih′ν2

k
+πih′ν

k

∫ ϑ
′′
h,k

−ϑ′h,k
e

2πz
k (n− 1

24) · z
1
2 · Ia,c,k,ν(z)dΦ.

Here q1 := e
2πi
k (h′+ i

τ ) and

Ia,c,k,ν(z) :=
∫

R
e−

3πzx2

k ·Ha,c

(
πiν

k
− πi

6k
− πzx

k

)
dx

with

Ha,c(x) :=
cosh(x)

sinh
(
x+ πia

c

)
· sinh

(
x− πia

c

) .
Two important steps are the estimation of Ia,c,k,ν(z) and certain Kloosterman sums.

Lemma 6.4. We have

z
1
2 · Ia,c,k,ν(z)� k · n

1
4 · ga,c,k,ν ,

where ga,c,k,ν :=
(
min

(
6kc

{
ν
k −

1
6k + a

c

}
, 6kc

{
ν
k −

1
6k −

a
c

}))−1, with {x} := x− bxc for x ∈ R.

Lemma 6.5. For n,m ∈ Z, 0 ≤ σ1 < σ2 ≤ k, D ∈ Z with (D, k) = 1, we have∑
h (mod k)∗
σ1≤Dh′≤σ2

ωh,k · e
2πi
k

(hn+h′m) � gcd(24n+ 1, k)
1
2 · k

1
2

+ε.

If c|k, then we have

(−1)ak+1 sin
(πa
c

) ∑
h (mod k)∗
σ1≤Dh′≤σ2

ωh,k

sin
(
πah′

c

) · e− 3πia2k1h
′

c · e
2πi
k

(hn+h′m) � gcd(24n + 1, k)
1
2 · k

1
2

+ε.

To estimate
∑

1, we write

N

(
ah′

c
; q1

)
=: 1 +

∑
r∈N

a(r) · e
2πimrh

′
k · e−

2πr
kz ,

where mr is a sequence in Z and the coefficients a(r) are independent of a, c, k, and h. We treat the
constant term and the term coming from from r ≥ 1 seperately since they contribute to the main term
and to the error term, respectively. We denote the associated sums by S1 and S2, respectively and first
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estimate S2. Throughout we need the easily verified fact that Re(z) = k
n , Re

(
1
z

)
> k

2 , |z|−
1
2 ≤ n

1
2 ·k−

1
2 ,

and ϑ′h,k + ϑ
′′
h,k ≤

2
k(N+1) . Decompose∫ ϑ

′′
h,k

−ϑ′h,k
=
∫ 1

k(N+k)

− 1
k(N+k)

+
∫ − 1

k(N+k)

− 1
k(k1+k)

+
∫ 1

k(k2+k)

1
k(N+k)

(6.3)

and denote the associated sums by S21, S22, and S23, respectively. Furthermore in S22 (and similarly
S23) we write ∫ − 1

k(N+k)

− 1
k(k+k1)

=
N+k−1∑
l=k1+k

∫ − 1
k(l+1)

− 1
kl

.

We have that

k1 ≡ −h′ (mod k), k2 ≡ h′ (mod k),
N − k < k1 ≤ N, N − k < k2 ≤ N.

Using Lemma 6.5, we can show that
∑

1 equals

i sin
(πa
c

)∑
h,k
c|k

ωh,k ·
(−1)ak+1

sin
(
πah′

c

) · e− 3πia2k1h
′

c
− 2πihn

k

∫ ϑ
′′
h,k

−ϑ′h,k
z−

1
2 · e

2πz
k (n− 1

24)+ π
12kz dΦ +O (nε) .

In a similar (but more complicated) manner we prove that
∑

2 equals

2 sin
(πa
c

) ∑
k,r
c-k

δc,k,r>0

(−1)ak+l
∑
h

ωh,ke
2πi
k

(−nh+ma,c,k,rh
′)

∫ ϑ
′′
h,k

−ϑ′h,k
z−

1
2 e

2πz
k (n− 1

24)+ 2π
kz
δc,k,rdΦ +O (nε) .

Using Lemma 6.4 we estimate
∑

3 in a similar way. In
∑

1 and
∑

2 we next write∫ ϑ
′′
h,k

−ϑ′h,k
=
∫ 1

kN

− 1
kN

−
∫ − 1

k(k+k1)

− 1
kN

−
∫ 1

kN

1
k(k+k2)

and denote the associated sums by S11, S12, and S13, respectively. The sums S12 and S13 contribute
to the error terms which can be bounded as before. To finish the proof, we have to estimate integrals
of the shape

Ik,r :=
∫ 1

kN

− 1
kN

z−
1
2 · e

2π
k (z(n− 1

24)+ r
z )dΦ.

One can show that

Ik,r =
1
ki

∫
Γ
z−

1
2 · e

2π
k (z(n− 1

24)+ r
z ) dz +O

(
n−

3
4

)
,

where Γ denotes the circle through k
n ±

i
N and tangent to the imaginary axis at 0. Making the

substitution t = 2πr
kz and using the Hankel formula, we obtain

Ik,r =
4
√

3√
k (24n− 1)

sinh

(√
2r(24n− 1)

3
π

k

)
+O

(
n−

3
4

)
from which we can easily conclude the theorem. �
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7. Correspondences for weight 3
2 weak Maass forms

In [13] we classify those weak Maass forms whose holomorphic part arise from basic hypergeometric
series, and we obtain a one-to-one correspondence

{Θ(χ; z)} ←→ {Mχ(z)}

between holomorphic weight 1
2 theta functions Θ(χ; z) and certain weight 3

2 weak Maass forms Mχ(z).
To state our result, define the basic hypergeometric-type series

F (α, β, γ, δ, ε, ζ) :=
∞∑
n=0

(α; ζ)nδn
2
εn

(β; ζ)n(γ; ζ)n

and by differentiation of a special case of the Rogers and Fine identity [25]

FRF (α, β) :=
α

2
· ∂
∂α

(
1

1 + α
F (α,−αβ, 0, 1, α, β)

)
=
∞∑
n=1

(−1)nnα2nβn
2
.

Moreover let Θ0(z) :=
∑

n∈Z q
n2

be the classical Jacobi theta function. For a non-trivial even Dirichlet
character χ with conductor b define

Θ(χ; z) :=
∑
n∈Z

χ(n)qn
2
,

which is a weight 1
2 modular form on Γ0(4b2). Moreover let the non-holomorphic theta integral Nχ(z)

be given by

Nχ(z) := − ib
2

π

∫ i∞

−z

Θ(χ; τ)

(−i(τ + z))
3
2

dτ.

Lastly, define the function Qχ by

(7.1) Qχ(z) :=
4b
√

2
Θ0(b2z)

∑
a (mod b)

χ(a)
∑

j (mod b)

ζjab L
(
q2aζjb , 2b; q

)
,

where

(7.2) L(w, d; q) :=
∑
n∈Z

n
qn

2
wn

1− qdn
=
∑
k≥0

(
FRF

(
w

1
2 q

kd
2 ,−q

)
+ FRF

(
w−

1
2 q

(k+1)d
2 ,−q

))
.

In [13], we show:

Theorem 7.1. If χ is a non-trivial even Dirichlet character with conductor b, then

Mχ(z) := Qχ(z)−Nχ(z)

is a weight 3
2 weak Maass form on Γ0(4b2) with Nebentypus χ.

Corollary 7.2. We have that

y3/2 · ∂∂z̄Mχ(z) = − ib2

2
√

2π
·Θ(χ; z).

Since the Serre-Stark Basis Theorem asserts that the spaces of holomorphic weight 1
2 modular forms

have explicit bases of theta functions, Corollary 7.2 gives a bijection between weight 3
2 weak Maass

forms and weight 1
2 modular forms.
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Sketch of proof of Theorem 7.1. We only give a sketch of proof here; details can be found in [13]. For
0 < a < b, we let

ψa,b(z) := 2
∑
m≥1

∑
−bm≤d<0

d≡±a (mod b)

(d+ bm) e2πi(b2m2−d2)z.

Note for fixed b, the functions ψa,b are determined by representatives a ∈ Z/bZ. These q-series will be
associated to the period integral

N (a, b; z) := − ib
2

π

∫ i∞

−z

Θa,b(τ)

(−i(z + τ))
3
2

dτ,

where
Θa,b(z) :=

∑
n∈Z

n≡a (mod b)

e2πin2z.

More precisely, we define the functions M(a, b; z) by

M(a, b; z) := 2
3
2 b2

ψa,b(z)
Θ0(b2z)

−N (a, b; z).

We first show the following theorem.

Theorem 7.3. If 0 < a < b are coprime positive integers, where b ≥ 4 is even, then M(a, b; z) is a
weight 3

2 weak Maass form on Γ(4b2).

In order to prove Theorem 7.3, we define functions that are “dual” to ψa,b under the involution
z 7→ −1

z :

φa,b(z) := 2
∞∑
n=1

n · eπin2z

(
1− e4πinz

)(
1− 2 cos

(
2πa
b

)
e2πinz + e4πinz

) .
As with ψa,b, the function φa,b depends only on the residue class of a(mod b). We show.

Lemma 7.4. Assuming the hypotheses above, we have

φa,b (z)
Θ0

(
z
2

) = −1
b
· (−iz)−3/2 ·

ψa,b
(
− 1

2b2z

)
Θ0

(
− 1

2z

) + 2
√
−iz

∫
R

u eπiu
2z

1− ζac eπiu
2z
du.

Next define the Mordell-type integral

Ia,b(z) := 2
√
−iz

∫
R

u eπiu
2z

1− ζac eπiu
2z
du.

This integral can be rewritten as a theta integral.

Lemma 7.5. We have

Ia,b(z) =
1

2π

∫ ∞
0

Θa,b

(
− 1

2iub2

)
· u−

1
2

(−i(iu+ z))
3
2

du.

To prove Theorem 7.3, we first show thatM(a, b; z) is annihilated by the weight 3
2 Laplace operator.

Now we show that M(a, b; z) obeys the weight 3
2 transformation laws with respect to Γ(4b2). To see

this, we use the fact that by work of Shimura Θa,b(τ) is a weight 1
2 modular form on Γ(4b2). By
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definition, the period integral N (a, b; z) inherits the transformation properties of Θa,b(τ) with a shift
in weight. To finish the proof of Theorem 7.1, observe that

ψa,b(z)=
2
b

∑
j (mod b)

ζjab L
(
ζjb q

2a, 2b; q
)

=
2
b

∑
j (mod b)

ζjab

∑
k≥0

(
FRF

(
ζ
j
2
b q

kb+a,−q
)

+FRF

(
ζ
− j

2
b qb−a+kb,−q

))
.

This yields

Qχ(z) =
2

3
2 b2

Θ0(b2z)

∑
a (mod b)

χ(a)ψa,b(z).

Now the claim follows using that

Nχ(z) =
b−1∑
a=1

χ(a)N (a, b; z).

�

8. Identities for rank differences

There are a lot of identities that relate modular forms and Eulerian series, e.g. the Roger Ramanujan
identities (1.6). Let f0(q), f1(q),Φ(q), and Ψ(q) denote the mock theta functions

f0(q) :=
∞∑
n=0

qn
2

(−q)n
, Φ(q) := −1 +

∞∑
n=0

q5n2

(q; q5)n+1(q4; q5)n
,

f1(q) :=
∞∑
n=0

qn
2+n

(−q)n
, Ψ(q) := −1 +

∞∑
n=0

q5n2

(q2; q5)n+1(q3; q5)n
.

The mock theta conjectures of Ramanujan are a list of ten identities involving these functions. Andrews
and Garvan [5] proved that these conjectures are equivalent to the following pair of identities that
essentially express two weight 1

2 modular forms as linear combinations of Eulerian series:

(8.1)
(q5; q5)∞(q5; q10)∞
(q; q5)∞(q4; q5)∞

= f0(q) + 2Φ(q2),

(8.2)
(q5; q5)∞(q5; q10)∞
(q2; q5)∞(q3; q5)∞

= f1(q) + 2q−1Ψ(q2).

These were shown by Hickerson in 1988 [28]. He proved later on several more identities of this type
[29], and, more recently, Choi and Yesilyurt have obtained even further such identities (for example,
see [18, 19, 37]) using methods similar to those of Hickerson. The difficulty in proving the mock theta
identities lies in the fact that mock theta functions are not modular forms. Moreover identities for
ranks are known, e.g.

N(r, t;n) = N(r − t, t;n)

or more complicated identities [7]

N(1, 7; 7n+ 1) = N(2, 7; 7n+ 1) = N(3, 7; 7n+ 1).
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Furthermore Atkin and Swinnerton-Dyer [7] proved some very surprising identities such as

−(q; q7)2
∞(q6; q7)2

∞(q7; q7)2
∞

(q; q)∞
=
∞∑
n=0

(N(0, 7; 7n+ 6)−N(1, 7; 7n+ 6)) qn.

This identity expresses a weight 1
2 modular form as a linear combination of Eulerian series. From the

new perspective described in Section 3 that the rank generating functions are the holomorphic parts
of weak Maass forms, the mock theta conjectures arise naturally in the theory of Maass forms and
arise from linear relations between the non-holomorphic parts of independent Maass forms [16].

Theorem 8.1. Suppose that t ≥ 5 is prime, 0 ≤ r1, r2 < t and 0 ≤ d < t. Then the following are
true:

(1) If
(

1−24d
t

)
= −1, then

∞∑
n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is a weight 1
2 weakly holomorphic modular form on Γ1(576t10).

(2) Suppose that
(

1−24d
t

)
= 1. If r1, r2 6≡ ±1

2(1 + α) (mod t), for any 0 ≤ α < 2t satisfying
1− 24d ≡ α2 (mod 2t), then

∞∑
n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is a weight 1
2 weakly holomorphic modular form on Γ1

(
576t6

)
.

Theorem 8.1 is optimal in a way that for all other pairs r1 and r2 (apart from trivial cases) that

∞∑
n=0

(N(r1, t; tn+ d)−N(r2, t, tn+ d)) q24(tn+d)−1

is the holomorphic part of a weak Maass form which has a non-vanishing non-holomorphic part.

Theorem 8.2. Suppose that t > 1 is an odd integer. If 0 ≤ r1, r2 < t are integers, and P - 6t is
prime, then ∑

n≥1

(24ltn−lt
P )=−(−ltP )

(N(r1, t;n)−N(r2, t;n)) qltn−
lt
24

is a weight 1
2 weakly holomorphic modular form on Γ1(6f2

t ltP4).

Since Theorem 8.2 follows easily from Section 3, we only consider Theorem 8.1

Proof of Theorem 8.1. Using the results from Sections 3 and 5, one can reduce the claim to the identity

t−1∑
j=1

(
ζ−r1jt − ζ−r2jt

)
sin
(
πj

t

)
sin
(
πjα

t

)
= 0

which can be easily verified using that sin(x) = 1
2i

(
eix − e−ix

)
. �
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