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Abstract. We determine asymptotic formulas for the coefficients of a natural class
of negative index and negative weight Jacobi forms. These coefficients can be viewed
as a refinement of the numbers pk(n) of partitions of n into k colors. Part of the
motivation for this work is that they are equal to the Betti numbers of the Hilbert
scheme of points on an algebraic surface S and appear also as counts of Bogomolny-
Prasad-Sommerfield (BPS) states in physics.

1. Introduction and Statement of Results

Jacobi forms were first systematically studied by Eichler and Zagier [14] and enjoy
a wide variety of applications in the theory of modular forms, combinatorics [37, 38],
conformal field theory [12, 24], black hole physics [10, 13], Hilbert schemes of points
[18], Donaldson invariants [19], and many other topics. This paper focuses on a
class of negative index Jacobi forms with a single order pole in the elliptic variable
w. The analysis of the coefficients of such functions is more complicated then the
well-understood class of Jacobi forms which depend holomorphically on w. It turns
out that these Fourier coefficients (in w) are not modular but related to quantum
modular forms [15, 40]. The appearance of these functions in the above mentioned
topics calls for an explicit knowledge of their coefficients and in particular of their
asymptotic growth. In this paper we provide such asymptotic formulas. One of the
immediate motivations is the counting of BPS states in physics and in particular those
with vanishing angular momentum. This motivation is explained in more detail after
stating the results.

1.1. Statement of results. We consider the following class of negative weight 1−k/2
(k ∈ N) and index −1/2 Jacobi forms

hk (w; τ) :=
i

θ1(w; τ)η(τ)k−3
,
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with (q := exp(2πiτ), ζ := exp(2πiw))

θ1(w; τ) := iζ
1
2 q

1
8

∏
n≥1

(1− qn)(1− ζqn)
(
1− ζ−1qn−1

)
,

η(τ) := q
1
24

∏
n≥1

(1− qn).

We are interested in two expansions of hk(w; τ). The first expansion is in terms of the
coefficients am,k(n), defined by:

q
k
24

(
ζ

1
2 − ζ−

1
2

)
hk(w; τ) =:

∑
n≥0
m∈Z

am,k(n)ζmqn, |ζq|, |ζ−1q| < 1.(1.1)

Note that
∑

m∈Z am,k(n) = pk(n), where pk(n) denotes the number of partitions of n
into k colors. These are enumerated by η(τ)−k:∑

n≥0

pk(n) qn−
k
24 =

1

η(τ)k
.

For k = 1, equation (1.1) corresponds to the generating function of the crank of
partition [17], and for k = 2 to the birank [20].

The second expansion is motivated from physics, and is based on the fact that the
coefficients of q are Laurent polynomials, symmetric under ζ → ζ−1 and with maximal
degree n. Therefore, we can express hk(w; τ) as:

(1.2) q
k
24

(
ζ

1
2 − ζ−

1
2

)
hk(w; τ) =

∑
m,n≥0

bm,k(n)χ2m+1

(
ζ

1
2

)
qn,

with

χm(ζ) :=
ζm − ζ−m

ζ − ζ−1
, bm,k(n) := am,k(n)− am+1,k(n).

Following the approach of Wright [38], we determine all polynomial corrections to
the leading exponential of the coefficients am,k(n) in the large n limit.

Theorem 1.1. We have for N ≥ 1:

am,k(n) = (2π)−
k
2

N∑
`=1

dm,k(`)n
− 2+2`+k

4

(
π

√
k

6

)1+`+ k
2

× I−1−`− k
2

(
π

√
2kn

3

)
+O

(
n−1−

N
2
− k

4 eπ
√

2kn
3

)
,



3

where dm,k(`) are defined by equation (2.2) and I`(x) is the usual I-Bessel function.
Here the error term depends on k and m.

Theorem 1.1 allows us to compare the asymptotic growths of am,k(n) for different
values of m. The asymptotic behavior of the Bessel function :

I`(x) =
ex√
2πx

(
1 +O

(
x−1
))
,

directly yields:

Corollary 1.2. We have

am,k(n)− ar,k(n) = π3
(
r2 −m2

)
(8n)−

9+k
4

(
k

3

) k+7
4

eπ
√

2kn
3 +O

(
n−3−

k
4 eπ
√

2kn
3

)
,

where the error term depends on m, k, and r.

From Theorem 1.1 the asymptotics of bm,k(n) for large n immediately follow:

Corollary 1.3. We have

(1.3) bm,k(n) = (2m+ 1) π3 (8n)−
9+k
4

(
k

3

) k+7
4

eπ
√

2kn
3 +O

(
n−3−

k
4 eπ
√

2kn
3

)
,

where the error term depends on m and k.

Note that this corollary shows that bm,k(n) increases with m in the limit of large n.
Beyond the validity of equation (1.3), bm,k(n) eventually decreases with increasing m
for fixed n, and in particular bm,k(n) = 0 for m > n.

We next compare the asymptotic behavior of the coefficients b0,k(n) with those of
pk(n). It is well-known that the asymptotic growth of the latter is given by [21, 30]:

pk(n) = 2

(
k

3

) 1+k
4

(8n)−
3+k
4 eπ
√

2kn
3 +O

(
n−

5+k
4 eπ
√

2kn
3

)
.

Thus we find for the ratio b0,k(n)/pk(n):

b0,k(n)

pk(n)
=
π3

16

(
k

3n

) 3
2

+O
(
n−2
)
.
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1.2. Motivation: Moduli spaces and BPS states. BPS states of both gauge
theory and gravity have been extensively studied in the past for a variety of reasons.
These states are representations of the SU(2)spin massive little group in four dimensions
labeled by their angular momentum or highest weight J . The subset of BPS states
with vanishing angular momentum (J = 0), also known as “pure Higgs states” [4],
have recently attracted much interest [4, 25, 28, 34]. The states with J = 0 are in
some sense more fundamental. In particular in gravity, these states are candidates for
microstates of single center black holes, and as such are the states relevant for studies
of the Bekenstein-Hawking area law of black hole entropy.

Within string theory it is possible to obtain exact generating functions of the de-
generacies of classes of BPS states. The asymptotic growth as function of the angular
momentum is for example previously studied in [7, 33, 9]. String theory relates BPS
states to the cohomology of moduli spaces of sheaves supported on a Calabi-Yau mani-
fold. From this perspective the SU(2)spin representations correspond to representations
of the Lefshetz SL(2) action on the cohomology of the moduli spaceM [36]. The states
with J = 0 correspond to the part of the middle cohomology which is invariant under
the Lefshetz action.

In the present work, we consider moduli spaces of semi-stable sheaves supported on
a complex algebraic surface S, which can be thought of as being embedded inside a
Calabi-Yau manifold. If S is one of the rational surfaces, the sheaves can be related
to monopole or monopole strings in respectively four and five dimensional supersym-
metric gauge theory through geometric engineering [23, 29]. If S is a K3 surface,
the sheaves correspond to (small) black holes in N = 4 supergravity also known as
Dabholkar-Harvey states [8, 9]. We specialize to the moduli space of sheaves with
rank r = 1 and 1st and 2nd Chern classes c1 ∈ H2(S,Z) and c2 ∈ H4(S,Z). These
moduli spaces are isomorphic to the Hilbert scheme of c2 points on S (viewing c2 as
a number). Göttsche has determined the generating function of the Betti numbers of
the Hilbert schemes [18]. We need to introduce some notation to explain his result.

Let M(n) be the Hilbert scheme of n points. Let furthermore

P (X, ζ) :=

2 dimC(X)∑
i=0

βi(X) ζ i

be the Poincaré polynomial of X with βi(X) the ith Betti number of X. We choose
the surface S such that β1(S) = β3(S) = 0. Then, we have [18]:∑

n≥0

ζ−
1
2
dimCM(n) P (M(n), ζ

1
2 ) qn = q

β2(S)+2
24

(
ζ

1
2 − ζ−

1
2

) i

θ1(w; τ) η(τ)β2(S)−1
,
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which precisely equals the function in (1.1) with k = β2(S)+2. The coefficients am,k(n)
are in this context the Betti numbers of the moduli spaces. The expansion (1.2) in
terms of bJ,k(n) decomposes the cohomology in terms of (2J + 1)-dimensional SL(2)
or SU(2)spin representations. For J = 0 and k = 24, our formula (1.3) confirms nicely
the numerical estimates for b0,24(n) in [9, Appendix C]. Note that since this analysis
is carried out in the so-called weak coupling or D-brane regime, and the coefficients
bJ,k(n) are not BPS indices, these coefficients can not be claimed to count black holes
with fixed angular momentum.

Equation (1.3) shows that in the context of this paper, the number of pure Higgs
states has the same exponential growth as the total number of states, but that the
number of pure Higgs states is smaller by a factor n−

3
2 . Moreover, the number of

SU(2)spin multiplets increases with J for small J . It is interesting to compare this with
other known asymptotics of pure Higgs states. In particular, Ref. [4, 11] considered
this question for quiver moduli spaces in the limit of a large number of arrows between
the nodes of a quiver with a potential. Ref. [4] demonstrated that the number of pure
Higgs states for these quivers, βdimC(M)(M)− βdimC(M)+1(M), is exponentially larger
than the number of remaining SL(2) multiplets given by βdimC(M)+1(M). We note
that sheaves on toric surfaces relevant for this article also allow a description in terms
of quivers [6, 32]. The Hilbert scheme of n � 1 points corresponds to increasing
dimensions of the spaces associated the nodes, with the number of arrows kept fixed.
Thus we observe that the asymptotic behavior of the number of pure Higgs states in
the two limits, large number of arrows or large dimensions, is rather different.

It will be interesting to understand better the significance of these different asymp-
totic behaviors. Moreover we belief that application of the techniques in the present
paper to partition functions for higher rank sheaves on surfaces [26, 27, 35], and parti-
tion functions of black holes and quantum geometry [5, 16, 22] will lead to to important
novel insights.

The paper is organized as follows: In Section 2 we rewrite the functions of interest
in terms of false theta functions and determine their Taylor expansion. Section 3 uses
the Circle Method to prove our main theorem.
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2. Relation to false theta functions

We start by writing the generating function of am,k(n) for fixed m and k in terms
of the functions ϑm(q) defined by:

ϑm (q) :=
(
1 + q|m|

)∑
n≥0

(−1)nq
n(n+1)

2
+n|m| − 1.

Remark. We note that the property ϑm (q) = ϑ−m (q) of ϑm (q), continues to hold
when ϑm (q) is defined with |m| replaced by m.

The functions ϑm (q) are examples of false theta functions, which were first intro-
duced by Rogers [31] and have attracted a lot of interest recently. Using the Rogers
and Fine identity one can relate ϑm to so-called quantum modular forms which are
functions mimicking modular behavior on (subsets of) Q [15].

It is well-known that the inverse theta function θ1(w; τ)−1 can be written as a sum
over its poles. See for more details for example [2, 17].

Proposition 2.1. We have for |ζq|, |ζ−1q| < 1:

q
k
24

(
ζ

1
2 − ζ−

1
2

)
hk(w; τ) =

1

(q)k∞

∑
m∈Z

ϑm(q)ζm

with (q)∞ :=
∏∞

n=1(1− qn).

Proof: The inverse theta function θ1(w; τ)−1 is expressed as a sum over its poles by:

(2.1)
iq

1
8

(
ζ

1
2 − ζ− 1

2

)
θ1 (w; τ)

=
1

(q)3∞
(1− ζ)

∑
n∈Z

(−1)nq
n(n+1)

2

1− ζqn
.

Using geometric series expansion, we may rewrite (2.1) as

1

(q)3∞
+

1

(q)3∞
(1− ζ)

∑
n>0
m≥0

(−1)nq
n(n+1)

2
+nmζm +

1

(q)3∞

(
1− ζ−1

)∑
n>0
m≥0

(−1)nq
n(n+1)

2
+nmζ−m.

From this the statement of the proposition easily follows. �

The function ϑm is not modular but may be nicely approximated by its Taylor ex-
pansion. For this we use the following general lemma (see [39] for the case of real
functions).

Lemma 2.2. Let f : C→ C be a C∞ function. Furthermore, we require that f(x) and
all its derivatives are of rapid decay for Re(x) → ∞. Then for t → 0 with Re(t) > 0
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and a > 0, we have for any N ∈ N0:

∞∑
m=0

f ((m+ a)t) =
1

t

∫ ∞
0

f(x)dx−
N∑
n=0

f (n)(0)

n!

Bn+1(a)

n+ 1
tn +O

(
tN+1

)
.

Here Bn(x) denotes the nth Bernoulli polynomial.

To use Lemma 2.2 we write for fixed N ≥ 1 and q = e−z

(2.2) q
k
24ϑm(q) =:

N∑
`=1

dm,k(`)z
` +O

(
zN+1

)
.

Lemma 2.2 then gives

Lemma 2.3. We have for N ≥ 1

ϑm (q) = (1 + qm) q−
1
2(m+ 1

2)
2

N∑
`=0

cm(`)z` − 1 +O
(
zN+1

)
with

cm(`) :=
(−1)`−12`

`!(2`+ 1)

(
B2`+1

(
m

2
+

1

4

)
−B2`+1

(
m

2
+

3

4

))
.

In particular the first values for dm,k(`) are:

dm,k(1) =
1

4
, dm,k(2) = − k

96
+

1

16
, dm,k(3) = −m

2

16
− k

384
+

k2

4608
+

5

192
.

Proof: We may write ϑm(q) as:

ϑm(q) = (1 + qm) q−
1
2(m+ 1

2)
2

×
∑
n≥0

(
f

((
n+

m

2
+

1

4

)√
z

)
− f

((
n+

m

2
+

3

4

)√
z

))
− 1

with f(x) := e−2x
2
. Substitution of Lemma 2.2 gives the desired result. �

Remark. We note that the case m = 0 can be easily concluded from [38], where the
asymptotics of the coefficients of 1/2(1− ϑ0(q))/(q)

k
∞ for k = 1, 2 are determined.

3. Use of the Circle Method

In this section, we prove Theorem 1.1 following an approach by Wright [38]. To
prove the theorem, we assume via symmetry that m ≥ 0 and set

Fm,k(q) :=
∑
n≥0

am,k(n)qn.
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By Proposition 2.1, we obtain that

Fm,k(q) =
1

(q)k∞
ϑm(q).

By Cauchy’s Theorem, we have for n ≥ 1

am,k(n) =
1

2πi

∫
C

Fm,k(q)

qn+1
dq,

where C is a circle surrounding 0 counterclockwise. We choose e−η for the radius of

C with η = π
√

k
6n

and split C into two arcs C = C1 + C2, where C1 is the arc going

counterclockwise from phase −2η to 2η and C2 is its complement in C. Consequently,
we have

am,k(n) = M + E

with

M :=
1

2πi

∫
C1

Fm,k(q)

qn+1
dq,

E :=
1

2πi

∫
C2

Fm,k(q)

qn+1
dq.

We will show that the main asymptotic contribution comes from M . Moreover we
parametrize q = e−z with Re(z) = η.

3.1. The integral along C1. In the integral along C1, we approximate Fm,k by sim-
pler functions. Firstly, recall that from the transformation law of the η-function [3,
Theorem 3.1] we obtain:

(3.1)
1

(e−z; e−z)∞
=

√
z

2π
e−

z
24

+π2

6z
1(

e−
4π2

z ; e−
4π2

z

)
∞

.

Thus we want to approximate 1
(q)k∞

by

z
k
2 (2π)−

k
2 e−

kz
24Pk

(
e−

4π2

z

)
,

where

Pk(q) :=

1 +
∑

24`−k<0
`>0

pk(`)q
`

 q−
k
24 .

To be more precise, we split
M = M1 + E1
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with

M1 :=
1

2πi

∫
C1

1

qn+1

( z
2π

) k
2
e−

kz
24Pk

(
e−

4π2

z

)
ϑm(q)dq,

E1 :=
1

2πi

∫
C1

1

qn+1
ϑm(q)

(
1

(e−z; e−z)k∞
−
( z

2π

) k
2
e−

kz
24Pk

(
e−

4π2

z

))
dq.

We first bound E1 which turns into the error term. Firstly we obtain from (3.1)

1

(e−z; e−z)k∞
−
( z

2π

) k
2
e−

kz
24Pk

(
e−

4π2

z

)
= O(1).

To bound ϑm, we use that on C1
|z|2 = η2 + Im(z)2 ≤ η2 + 4η2.

Thus, by Lemma 2.3,
|ϑm (q)| � |z| � η,

where throughout g(x)� f(x) has the same meaning as g(x) = O(f(x)). Using that
the length of C1 is O(η), we may thus bound

E1 � n−1e
π
√
kn√
6 .

We next investigate M1. We aim to approximate ϑm by its Taylor expansion given
in Lemma 2.3 and thus we split

M1 = M2 + E2

with

M2 :=
1

2πi

N∑
`=1

dm,k(`)

∫
C1

1

qn+1

( z
2π

) k
2
Pk

(
e−

4π2

z

)
z`dq,

E2 :=
1

2πi

∫
C1

1

qn+1

( z
2π

) k
2
Pk

(
e−

4π2

z

)(
e−

kz
24ϑm(q)−

N∑
`=1

dm,k(`)z
`

)
dq.

We first estimate E2 and show that it contributes to the error term. By Lemma 2.3

E2 �
∫
C1
enη |z|

k
2
+N+1 e

π2k
6

Re( 1
z )dz.

Since
Re(z)

|z|2
≤ 1

Re(z)
=

1

η
we may bound

nη +
π2k

6
Re

(
1

z

)
≤ π

√
2kn

3
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Moreover on C1
|z|2 = x2 + y2 ≤ η2 + 4η2 � η2.

As before, the path of integration may be estimated against η. Thus

|E2| � ηN+ k
2
+2eπ
√

2kn
3 � n−

N
2
− k

4
−1eπ
√

2kn
3 .

We next decompose

(3.2) M2 = (2π)−
k
2

N∑
`=1

dm,k(`)
∑

24j−k≤0

pk(j)I(k)`+ k
2
,j
,

where for s > 0

I(k)s,j :=
1

2πi

∫
C1
zse

π2k
6z
− 4π2j

z
+(n+1)zdq.

These integrals may now be written in terms of the classical I-Bessel functions.

Lemma 3.1. We have

I(k)s,j = n
−s−1

2

(
π
√
k − 24j√

6

)s+1

I−s−1

(
π

√
2

3
(k − 24j)n

)
+O

(
n−1−

s
2 e

π
√
3kn

2
√
2

)
.

Proof: Let D be the rectangular counterclockwise path from −∞− 2iη to −∞+ 2iη
with endpoints η − 2iη and η + 2iη. Denote by Di, i = 1, 2, 3, the paths 1) from
−∞− 2iη to η − 2iη, 2) from η − 2iη to η + 2iη, and 3) from η + 2iη to −∞ + 2iη.
Making the change of variables q = e−z gives that

I(k)s,j =
1

2πi

∫
D2

zse
π2k
6z
− 4π2j

z
+nzdz.

We next use the Residue Theorem to turn this integral into an integral over D. For
this we bound the integrals along D1 and D3. We only give the details for D3. On
this path we may bound ∣∣∣∣Re

(
1

z

)∣∣∣∣ ≤ 1

|z|
≤ 1

2η
.

Writing z = η(1 + 2i)− u, 0 ≤ u <∞ gives

|z| =
√

(η − u)2 + 4η2 � η + u.

Thus the integral along D3 may be bounded by
(3.3)

� e
2π2

η ( k
24
−j)
∫ ∞
0

(η + u)s en(η−u)du� e
π2k
12η

+nη

(
ηs
∫ η

0

e−nudu+

∫ ∞
η

use−nudu

)
.
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The second term is an incomplete Gamma function and thus exponentially small.
Thus (3.3) may up to an exponentially small error be bounded by

ηse
π2k
12η

+nη 1

n

(
1− e−nη

)
� n−1−

s
2 e

π
√
3kn

2
√
2 .

In the remaining integral we make the change of variables z = t
n

to get

(3.4) I(k)s,j = n−s−1
1

2πi

∫
D
tset+

π2kn
6t
− 4π2jn

t dt+O

(
n−1−

s
2 e

π
√
3kn

2
√
2

)
.

We now use the following representation of the I-Bessel function [1]

I`(2
√
z) = z

`
2

1

2πi

∫ (0+)

−∞
t−`−1exp

(
t+

z

t

)
dt,

where the integral is along any path looping from −∞ around 0 back to −∞ counter-
clockwise. Substitution into (3.4) gives the claim. �

Substitution of Lemma 3.1 in equation (3.2) yields

M2 = (2π)−
k
2

∑
1≤`≤N
24j−k≤0

dm,k(`) pk(j)n
− 2+2`+k

4

(
π
√
k − 24j√

6

)1+`+ k
2

× I−1−`− k
2

(
π

√
2

3
(k − 24j)n

)
+O

(
n−

3
2
− k

4 e
π
√
3kn

2
√
2

)
.

3.2. The integral along C2. On C2, Im(z) varies from −2η to −2π + 2η. Using a
rough bound for the theta function, we find

|ϑm(q)| � 2
∑
n≥1

e−
n
2
(n+1+2m)Re(z) + 1� 2

∑
n≥0

e−nRe(z) =
2

1− e−η
� 1

η
.

Using (3.1) we obtain the bound

(3.5)
1

(e−z; e−z)∞
� e

π2

6
Re( 1

z ).

Now

Re

(
1

z

)
=

η

η2 + Im(z)2
≤ 1

5η
.

Thus (3.5) may be estimated against exp( π
2

30η
). This gives that:

E � e
π2k
30η

+nη � e
π
5

√
6nk.
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This is exponentially smaller than the other errors. Combining this with the results
of Subsection 3.1 therefore gives Theorem 1.1.
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