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Abstract. We generalize and improve results of Andrews, Gravner, Holroyd, Liggett, and Romik
on metastability thresholds for generalized two-dimensional bootstrap percolation models, and an-
swer several of their open problems and conjectures. Specifically, we prove slow convergence and
localization bounds for Holroyd, Liggett, and Romik’s k-percolation models, and in the process
provide a unified and improved treatment of existing results for bootstrap, modified bootstrap, and
Froböse percolation. Furthermore, we prove improved asymptotic bounds for the generating func-
tions of partitions without k-gaps, which are also related to certain infinite probability processes
relevant to these percolation models.

One of our key technical probability results is also of independent interest. We prove new upper
and lower bounds for the probability that a sequence of independent events with monotonically
increasing probabilities contains no “k-gap” patterns, which interpolates the general Markov chain
solution that arises in the case that all of the probabilities are equal.

1. Introduction and statement of results

In [16], Holroyd, Liggett, and Romik considered two-dimensional k-percolation models for k ≥ 2.
In this cellular automaton model, an initial configuration on Z2 is randomly determined by inde-
pendently setting each site to be active with probability 1− q, or empty (inactive) with probability
q. Throughout we will write q := e−s. Active sites always remain active, and the system evolves by
following a threshold growth rule: if Nk(x) contains at least k active sites, then x becomes active,
where the neighborhood is the (k − 1)-cross given by

(1.1) N(x) = Nk(x) := {x + w : w = (v, 0) or (0, v),−(k − 1) ≤ v ≤ (k − 1), v 6= 0} .

The case k = 2 is the widely studied bootstrap percolation model [2, 14]. Other commonly studied
models include modified bootstrap percolation, as well as the Froböse model [1, 2, 14], which are
frequently treated in conjunction with bootstrap percolation. Indeed, we will see throughout this
paper that these latter two models can be fundamentally thought of as being associated with the
“degenerate” k = 1 case.

One of the important questions in the study of such models is whether a given initial configuration
will eventually fill the entire plane with active sites (if not, then there exist sites that will never
become active). In fact, in light of Schonmann and van Enter’s proofs that the critical probability for
percolation on the plane is zero [17,18], this question is more properly asked on finite square regions
instead. A seminal paper by Holroyd [14] showed that there is a precise metastability threshold for
bootstrap percolation, which means that the most interesting (critical) behavior occurs when the
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probability q and the side-length L satisfy an exponential relationship. The limiting threshold
comes into play as s → 0, q → 1, and, simultaneously, L → ∞ (the rate of exponential scaling
is the critical exponent). It should also be noted that Holroyd’s results built upon earlier work
of Aizenman and Lebowitz [2] that proved the existence of (possibly unequal) upper and lower
threshold bounds.

Subsequently, Holroyd, Liggett, and Romik also exactly described the critical exponents for
each of the k-percolation models. These models form an infinite family of two-dimensional models
that vary in the neighborhood aspect, but one can also consider percolation models with similar
neighborhoods that vary in dimension. This is the subject of recent and ongoing work of Holroyd
[15], and also Balogh, Bollóbas, and Morris [6, 7], who have found precise critical exponents for
nearest neighbor bootstrap percolation models in all dimensions.

Such metastability thresholds can be further understood through the study of “localized” models,
where all active sites must emanate from a fixed initial location (typically the origin). In particular,
once the global critical exponent is known, a better understanding of localized growth can lead to
refined estimates for the rate of convergence in the limit. Gravner and Holroyd used this approach
to prove slow convergence estimates for bootstrap percolation in [10], and our results similarly
apply to all k-percolation models (cf. Corollary 1.2).

In this paper we generalize Gravner and Holroyd’s work to all k-percolation models. We define a
local version of k-percolation that has three possible states for each cell: active, occupied, or empty.
An initial configuration C is generated by letting the origin be active with probability 1 − q and
empty with probability q; all other sites are either occupied with probability 1− q or empty with
probability q. Throughout we denote the corresponding probability measure by P.

If k > 1, then the growth rules are the following:

• An occupied site becomes active if there is at least one active site within `1-distance k.
• An empty site x becomes active if there are at least k active sites in Nk(x).

For k = 1, there are two different models. For the modified local model we have the following rules:

• Each occupied site becomes active if there is at least one active site within `∞-distance 1.
• An empty site x becomes active if there is at least one active site in each of {x ± (0, 1)}

and {x± (1, 0)}.
For the Froböse local model we have the rules:

• Each occupied site becomes active if there is at least one active site within `1-distance 1.
• An empty site x becomes active if there are two active sites as described in the second rule

of the modified case, and if the cell in the “corner” between the two sites is also active.

The results on metastability thresholds are closely related to the concept of indefinite growth in
localized percolation models, which means that every site in Z2 eventually becomes active. For the
remainder of this paper we focus only on this perspective. Along these lines, Gravner and Holroyd
proved the following bounds for local bootstrap percolation, modified bootstrap percolation, and
Froböse percolation.

Theorem (Theorem 1 in [10]). If k = 1 (modified model) or 2, then there exist positive constants
c1, c2, s0 such that for s < s0, we have

exp
(
−2λks

−1 + c1s
− 1

2

)
≤ P(indefinite growth) ≤ exp

(
−2λks

−1 + c2s
− 1

2
(
log s−1

)3
)

.
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If k = 1 (Froböse model), then the upper bound has the power
(
log s−1

)2 instead. Here the threshold
constants are given as

λk :=
π2

3k(k + 1)
.

Remark. Our notation loosely follows that of [3], and many of the results in the prior literature are
stated in terms of the probability parameter q rather than the exponential parameter s. However,
all such statements are equivalent, since q = s + O(s2) as s → 0.

Gravner and Holroyd conclude their papers on local percolation by posing several questions,
which include the following problems:

• Extend the results to other bootstrap percolation models for which sharp thresholds are
known to exist, including bootstrap k-percolation (question (iii) of [10]).

• Is a power of log s−1 in the upper bound really necessary (question (i) of [11])?
We solve the first of these problems by proving a new, unified result for all k ≥ 1, which includes

both the modified and Froböse models in the k = 1 case. We also make progress on the second
question by showing that the power of the logarithm in the upper bound is at most 5/2, which
improves the power of 3 found in Gravner and Holroyd’s results for k = 1 and 2 (we reduce the
power from 2 to 1 in the Froböse model).

Theorem 1.1. For each k ≥ 1, there exists a sufficiently small n0, and constants c1, c2 such that
for s > n0 we have

exp
(
−2λks

−1 + c1s
− 1

2

)
≤ P(indefinite growth) ≤ exp

(
−2λks

−1 + c2s
− 1

2
(
log s−1

) 5
2

)
.

For the k = 1 Froböse model, the upper bound has the power log s−1 instead.

Remark. Throughout the later sections of this paper we use lower-case c’s to represent various
(effective) constants without distinguishing them by different indices. Although this is a slight
abuse of notation, there are a finite number of such constants in use, and one can simply adopt the
supremum/infimum of the collections as necessary.

While a preliminary version of this article was under review, Gravner, Holroyd, and Morris
subsequently released a manuscript that further explained the usefulness of such local bounds in
the study of metastability thresholds for bootstrap percolation models. Let pc (L, k) denote the
critical probability of the k-percolation model on a square lattice of side-length L (see [12] for a
precise definition). Following the arguments in [11], it is straightforward to show that the lower
bound of Theorem 1.1 implies the following upper bounds; the basic idea is to show that the bound
for the local bootstrap percolation model provides a “seed” that is sufficient to populate the entire
square (the cases k = 1and2 of the following result were shown by Gravner and Holroyd).

Corollary 1.2. For each k ≥ 1, there exists c > 0 such that as L →∞,

pc (L, k) ≤ λk

log L
− c

(log L)3/2
.

Remark. The new ideas in [12] also provide a companion upper bound for the critical probability.
Taken together, these two bounds (nearly) specify the lower-order asymptotic behavior of the
critical probabilities; in particular, as L →∞ we have

pc (L, k) =
λk

log L
− 1

(log L)3/2+o(1)
.
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There are two main components underlying our improvements. First, the combinatorial argu-
ments used in Gravner and Holroyd’s upper bound results for k = 1 and 2 do not immediately
generalize to higher k, and we adopt a significantly different conceptual approach in order to unify
all cases. Much of the literature in this subject, including [2, 10, 11, 14, 16], uses the concept of
internally spanned rectangles when studying upper bounds; the general idea being that if a large
rectangle eventually becomes active, then there must be a nested subsequence of smaller rectangles
that each became active during the overall growth process.

Our new approach comes from the observation that in their final form, these previous arguments
replace internally spanned rectangles by rectangles that satisfy certain row and column conditions.
In other words, the combinatorial approach is unnecessarily “tighter” than the bounds that are
actually proven, and the arguments are therefore more restrictive (and thus more complicated)
than is necessary. We introduce a new combinatorial construction that is more precisely tailored to
reflect the row and column conditions that are actually used in approximations. The combinatorial
approach used in the proof of the k = 1 and k = 2 cases of the lower bound of Theorem 1.1 then
generalize in a more straightforward manner.

The second new component of our arguments is a two-sided bound for the probabilities of certain
pattern-avoiding sequences that naturally underlie the preceding applications to bootstrap perco-
lation models (a very rough approximation of these bounds was proven and used in [16]). For
s ∈ (0, 1), let C1, . . . , Cn, . . . be independent events with probabilities

P(Cn) = 1− e−ns.

Let Ak be the event that there are no k-gaps among the occurrences of the events Ci, which means
that there are no consecutive Ci’s that do not occur. Symbolically, this can be written as

(1.2) Ak :=
∞⋂

i=1

(Ci ∪ Ci+1 ∪ . . . ∪ Ci+k−1) .

Holroyd, Liggett, and Romik described the logarithmic limiting behavior of these probabilities.

Theorem (Theorem 2 in [16]). For every k ≥ 1,

− log P(Ak) ∼ λks
−1 as s → 0.

Remark. Although this is not stated in the paper, equation (14) from Section 3 of [16] immediately
implies that if s is sufficiently small, then there exists a positive constant c2 such that

(1.3) − log P(Ak) ≤ λks
−1 + c2s

− 1
2 log s−1.

Equation (14) in [16] also leads to a corresponding implicit lower bound, although an additional
technical result is needed. Using Lemma 3.1 part (ii) from later in the present paper, the resulting
bound would state that there is a positive constant c1 such that

(1.4) λks
−1 − c1s

− 1
2 log s−1 ≤ − log P(Ak).

The probability events Ak are also of interest in combinatorial number theory and the theory
of partitions, and Holroyd, Ligget, and Romik thoroughly explained the connections in [16]. They
showed that

(1.5) Gk(q) =
∑

n≥0

pk(n)qn =
P(Ak)
(q; q)∞

= P(Ak) ·
∑

n≥1

p(n)qn,

where p(n) denotes the number of integer partitions of n, and pk(n) denotes the number of partitions
of n without k-sequences, i.e., those partitions that do not contain any k consecutive integers as
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parts. We have also used the standard notation (a; q)n = (a)n :=
∏n−1

j=1

(
1− aqj

)
for the rising

q-factorial.
These partitions were further studied by Andrews in [3], who found the explicit (double hyper-

geometric) q-series expansion

(1.6) Gk(q) =
1

(q; q)∞

∑

r,s≥0

(−1)sq(
k+1
2 )(s+r)2+(k+1)(r+1

2 )

(qk; qk)s (qk+1; qk+1)r

.

In the case k = 2, he also found the alternative expression

(1.7) G2(q) =

(−q3; q3
)
∞

(q2; q2)∞
· χ(q),

where

χ(q) := 1 +
∑

n≥1

qn2

n∏
j=1

(1− qj + q2j)

is one of Ramanujan’s third-order mock theta functions [19]. He then used the cuspidal expansions
of mock theta functions and modular forms to prove the exact (non-logarithmic) asymptotic formula
in the case k = 2:

P(A2) ∼
√

π

2
s−

1
2 exp

(−λ2s
−1

)
as s → 0.

Remark. The present authors showed in [8] that although this series asymptotic corresponds to
the “dominant cusp” for G2(q), it does not provide sufficient information to determine the full
asymptotic expansion of the q-series coefficients p2(n), or even the entire leading exponential term.
The authors developed and used an amplified version of the Hardy-Ramanujan circle method in
order to find formulas for the coefficients of such functions (general products of mock theta functions
and modular forms), with error at most O(log n).

Although the functions Gk(q) do not seem to be automorphic forms for k ≥ 3, Andrews also found
numerical evidence for the asymptotic in the general case and identified theta function components
that make asymptotically “large” contributions. This led him to a conjectural formula for the
general asymptotic.

Conjecture (Andrews [3]). For each k ≥ 2, there is a positive constant ck such that

P(Ak) ∼ cks
− 1

2 exp
(−λks

−1
)

as s → 0.

We greatly refine Holroyd, Liggett, and Romik’s theorem for the logarithmic asymptotic of P(Ak)
(as well as the implicit bounds (1.3) and (1.4)), and also make significant progress toward Andrews’
conjecture by proving (non-logarithmic) lower and upper bounds that asymptotically differ by less
than a multiplicative factor of s.

Theorem 1.3. For every positive integer k, we have the following asymptotic as s → 0:

exp
(−λks

−1
) ≤ P(Ak) ≤ s−

(2k−1)
2k

(1+o(1)) exp
(−λks

−1
)
.

Remark. In fact, our proof shows that P(Ak) lies between lower and upper bounds that differ by
a multiplicative factor of at most s−(k−1)/k; however, in order to write both bounds in a clean
manner, we have expanded the range to s−(2k−1)/2k in the theorem statement.
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One very interesting feature of this result is that we have used arguments from combinatorics
and probability in order to conclude better asymptotic bounds for the coefficients of a q-series.
In the subject of combinatorial q-series, such implications more frequently proceed in the opposite
direction. For example, Andrews’ work on the k = 2 case used analytic and automorphic properties
of modular forms and mock theta functions in order to conclude more precise combinatorial and
probabilistic statements [3, 8].

The remainder of the paper is organized as follows. In Section 2 we define a class of certain
pattern-avoiding probability sequences and prove an important new general bound for the proba-
bility of sequences without k-gaps. In Section 3 we turn to a logarithmic version of the function
from Section 2 and prove several useful estimates that are used in bounds throughout the rest of
the paper. The proof of Theorem 1.1 is found in the next two sections, and is split into the lower
and upper bounds. Section 4 contains the proof of the lower bound in Theorem 1.1, which combines
generalized versions of the combinatorial ideas from [11] with the estimates from Section 3. The
upper bound then follows in Section 5; in order to adapt Gravner and Holroyd’s arguments in [10]
to the case of general k, we introduce a conceptually different combinatorial model for tracking
the possible ways a configuration can grow. We also make slight (and optimal) modifications to
some of the parameters used in Gravner and Holroyd’s arguments in order to achieve an improved
log s−1-power. Finally, Theorem 1.3 is proved in Section 6 by adapting the general probability
results of Section 2 to the specific cases described in the theorem statement.

Acknowledgments

The authors thank Michael Aizenman, Aernout van Enter, Alexander Holroyd, Rob Morris, and
Dan Romik for helpful discussions regarding the history of bootstrap percolation, as well as for
informing us of other recent developments in the subject.

2. Probability results

2.1. Definitions and notation. In [16], Holroyd, Liggett, and Romik introduced and studied
an interesting family of functions. For each positive integer k, fk(x) is defined to be the unique,
decreasing function on [0, 1] that satisfies the functional equation

(2.1) fk(x)− fk+1(x) = xk − xk+1.

Remark. Note that fk(0) = 1 and fk(1) = 0 for all k, and also that the first two cases have simple

explicit equations; namely, f1(x) = 1 − x and f2(x) = 1−x+
√

(1−x)(1+3x)

2 (this case was studied
extensively by Holroyd in [14]).

As was pointed out in [16], the existence and (Lipschitz) continuity of fk follows immediately
from the fact that hk(x) := xk−xk+1 is strictly increasing for 0 ≤ x < k

k+1 and is strictly decreasing
for k

k+1 < x ≤ 1. We will also require the following equivalent “long” form of (2.1):

(2.2) fk = (1− x)
(
fk−1 + xfk−2 + · · ·+ xk−1

)
.

The main result in this section is a nearly tight probability bound that is used in many places
throughout the paper. A sequence of probabilistic events is said to have a k-gap if there are k
consecutive events that do not occur.

Theorem 2.1. Suppose that A1, . . . , An are independent events that each occur with probability
P(Ai) = ui, where u1, . . . , un form a monotonically increasing sequence. Then this sequence of
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events satisfies
n∏

i=1

fk(1− ui) ≤ P
(
{Ai}n

i=1 has no k-gaps
)
≤

n∏

i=k

fk(1− ui).

Remark. If n < k, then the empty product on the right-hand side should be interpreted as having
the value 1.

Remark. If we take the limit n →∞, then the case of monotonically increasing probabilities ui is
essentially the only interesting possibility; if the probabilities oscillate indefinitely, then all of the
terms in Theorem 2.1 approach zero rapidly.

The proof of both bounds will use inductive arguments. Define the shorthand notation

ρn := P
(
{Ai}n

i=1 has no k-gaps
)
,

and observe that the initial k values are clearly ρ0 = . . . = ρk−1 = 1, all of which satisfy the theorem
bounds.

The inductive argument for all other cases follows from a simple combinatorial recurrence. Ob-
serve that if the event ρn+k occurs (where n ≥ 0), then at least one of An+1, . . . , An+k must occur.
Separating into distinct cases based on the final such An+i leads to the following recurrence:

(2.3) ρn+k = ρn+k−1un+k + ρn+k−2un+k−1(1− un+k) + · · ·+ ρnun+1(1− un+2) . . . (1− un+k).

The first term corresponds to the case where An+k occurs, the second term the case where An+k−1

occurs and An+k does not, and so on until the final term, which represents the case where only
An+1 occurs.

Remark. If k = 1, Theorem 2.1 is actually an equality (which is seen to be trivially true upon
recalling that f1(x) = 1−x). Gravner and Holroyd proved the lower bound for the case k = 2 in [11]
by using the explicit formula for f2(x). Furthermore, Holroyd, Liggett, and Romik [16] also proved
the theorem for general k in the very special case that all ui are equal; their argument essentially
treats (2.3) as a linear recurrence and shows that fk gives the largest eigenvalue. Alternatively, this
is equivalent to calculating the limiting entropy of the corresponding Markov process as n increases.

2.2. Lower bound for probabilistic k-gaps. We prove a result that is more general than the
lower bound in Theorem 2.1, as it also allows for decreasing probabilities.

Proposition 2.2. Suppose that A1, . . . , An are independent events whose corresponding probabili-
ties u1, . . . , un are either increasing or decreasing. Then this sequence of events satisfies

P
(
{Ai}n

i=1 has no k-gaps
)
≥

n∏

i=1

fk(1− ui).

This proposition will follow from an inductive argument that relies on an auxiliary function that
is essentially an approximation of (2.3). For k ≥ 1, let

Hk(y1, . . . , yk) := (1− yk)fk(y1) · · · fk(yk−1) + (1− yk−1)ykfk(y1) · · · fk(yk−2)

+ · · ·+ (1− yi)yi+1 · · · ykfk(y1) · · · f(yi−1) + · · ·+ (1− y1)y2 · · · yk − fk(y1) · · · fk(yk).

Note that Hk(y, . . . , y) = 0 by (2.2). The most important property of this function is found in the
following proposition.

Proposition 2.3. For increasing arguments 0 ≤ y1 ≤ . . . ≤ yk ≤ 1, the function Hk(y1, . . . , yk) is
nonnegative.
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We further postpone the proof of Proposition 2.3 until after we have proven several necessary
intermediate results.

Lemma 2.4. Consider the domain 0 ≤ y ≤ 1.

(i) The function
y

fk(y)
is increasing.

(ii) We have
f ′k(y)
fk(y)

≥ − 1
1− y

.

Proof: (i) This holds because the functions y and 1
fk(y) are both increasing and non-negative.

(ii) Differentiating (2.2), we find that

f ′k
(
kfk−1

k − (1− y)(k − 1)fk−2
k − . . .− (1− y)yk−2

)

= −fk−1
k + (1− 2y)fk−2

k + . . . +
(
(k − 1)yk−2 − kyk−1

)

(2.2)⇐⇒ f ′k
fk

(
(1− y)fk−1

k + 2(1− y)yfk−2
k + . . . + (k − 1)(1− y)yk−2fk + k(1− y)yk−1

)

= −fk−1
k + (1− 2y)fk−2

k + . . . +
(
(k − 1)yk−2 − kyk−1

)

⇐⇒ f ′k
fk

= − 1
1− y

+
fk−2

k + 2yfk−3
k + . . . + (k − 1)yk−2

(1− y)
(
fk−1

k + 2yfk−2
k + . . . + kyk−1

) .

(2.4)

This easily gives the claim. ¤
Next, for 1 ≤ j ≤ k define

(2.5) Tk,j(y) = Tj :=
(1− y)yj−1

f j
k(y)

.

This family of functions interpolates between T1 and Tk, whose opposing behaviors are described
in the next result.

Lemma 2.5. The following hold for every k ≥ 1.
(i) The function T1 is decreasing.

(ii) The function Tk is increasing.

Proof: (i) We differentiate (2.5) to get

T ′1 =
1
fk

(
−1 + (1− y)

(−f ′k
fk

))
,

and use Lemma 2.4 (ii) to conclude that this is non-positive.
(ii) We have

T ′k =
(k − 1)yk−2 − kyk−1

fk
k

− kf ′k(y
k−1 − yk)
fk+1

k

.

Thus T ′k ≥ 0 is equivalent to

(2.6) −kf ′k(y − y2)
fk

≥ −(k − 1) + ky ⇐⇒ −f ′k
fk

≥ ky − (k − 1)
ky(1− y)

.
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Inserting (2.4) implies that (2.6) is again equivalent to

1
1− y

− fk−2
k + 2yfk−3

k + . . . + (k − 1)yk−2

(1− y)
(
fk−1

k + 2yfk−2
k + . . . + kyk−1

) ≥ ky − (k − 1)
ky(1− y)

,

which further simplifies to

(k − 1)fk−1
k + 2(k − 1)yfk−2

k + . . . + (k − 1)kyk−1 ≥ kyfk−2
k + 2ky2fk−3

k + . . . + k(k − 1)yk−1.

Comparing like powers of fk directly shows that this last inequality is satisfied for k ≥ 2
(Observe that for k = 1 the Lemma’s claim is trivial).

¤

Remark. Interestingly, it can also be shown that for any 2 ≤ j ≤ k − 1, Tj is increasing on some
interval [0, σj ], and is then decreasing on [σj , 1]. We do not devote any space to proving this, as it
is not needed in the sequel.

We next define the accumulation functions for 1 ≤ j ≤ k as

(2.7) Dk,j(y) = Dj(y) := T1(y) + . . . + Tj(y).

Note that by (2.2) we have the identity Dk(y) = 1. Although the individual components Tj have
varying behavior, their sums are much more uniform.

Lemma 2.6. The functions Dj are decreasing for all 1 ≤ j ≤ k.

Proof: We proceed inductively and note that Dk = 1 is decreasing. Now suppose that Dj is
decreasing. Then

D′
j−1 = T ′1 + . . . + T ′j−1.

If T ′i (y) ≤ 0 for all 1 ≤ i ≤ j − 1 and all y ∈ [0, 1], then Dj−1 is clearly decreasing. Otherwise, if
there is some y and some 1 ≤ i ≤ j − 1 such that T ′i (y) > 0, then we also have that

T ′j(y) > 0,

since Tj = Ti

(
y
fk

)j−i
, and both factors are non-negative and increasing at y. Then

D′
j−1(y) = D′

j(y)− T ′j(y) ≤ D′
j(y) ≤ 0

by the induction hypothesis. ¤
Proof of Proposition 2.3: We factor out the product of all of the fk(yi) from the definition of
Hk and write

Hk(y1, . . . , yk) = fk(y1) . . . fk(yk)

(
1− yk

fk(yk)
+

(1− yk−1)yk

fk(yk−1)fk(yk)
+ . . .(2.8)

+
(1− yi)yi+1 . . . yk

fk(yi)fk(yi+1) . . . fk(yk)
+ . . . +

(1− y1)y2 . . . yk

fk(y1) . . . fk(yk)
− 1

)
.

Consider the second-to-last term, which can be written as
y2 . . . yk

fk(y2) . . . fk(yk)
·D1(y1).
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Lemma 2.6 states that D1(y1) ≥ D1(y2), so we can replace y1 by y2 without increasing (2.8). After
this substitution, there are now two terms that contain y2, and the combination of them can be
written as

y3 . . . yk

fk(y3) . . . fk(yk)
·D2(y2).

Again we can use Lemma 2.6 and replace y2 by y3 without increasing the result. Continuing in this
way, we successively increase the indices of all of the yi’s until (2.8) becomes

Hk(y1, . . . , yk) ≥ fk(y1) · · · fk(yk) (Dk(yk)− 1) = 0.

¤
Proof of Proposition 2.2: As mentioned earlier, we use an inductive argument based on (2.3).
Without loss of generality, assume that the ui are decreasing (if they are increasing, simply reverse
the order) and recall that the proposition holds for the initial cases.

The inductive hypothesis implies that every term on the right-hand side of (2.3) has a lower
bound in terms of the fk, which gives

ρn+k ≥
n∏

i=1

fk(1− ui)
(
un+kfk(1− un+1) . . . fk(1− un+k−1)

+ un+k−1(1− un+k)fk(1− un+1) . . . fk(1− un+k−2) + . . . + un+1(1− un+2) . . . (1− un+k)
)

=
n∏

i=1

fk(1− ui)
(
Hk(yn+1, . . . , yn+k) + fk(1− un+1) . . . fk(1− un+k)

)
,

where yi := 1− ui, so the yi are increasing. Then by Proposition 2.3 we have the required bound

ρn+k ≥
n+k∏

i=1

fk(1− ui).

¤
Remark. Numerical evidence (and the naive heuristic of grouping together the events with larger
probabilities) suggests that Proposition 2.2 may also hold for arbitrary probabilities ui, and that
the cases where the ui are monotonically decreasing or increasing (or more generally, unimodular)
give the tightest bounds.

2.3. Upper bound for k-gaps. We also prove the upper bound of Theorem 2.1 as a separate
statement for easier reference.

Proposition 2.7. Let A1, . . . , An be independent events with probabilities 1 ≥ u1 ≥ u2 ≥ . . . ≥
un ≥ 0. Then

P
({Ai}n

i=1 has no k-gaps
) ≤

n−k+1∏

i=1

fk(1− ui).

As before, we will use an auxiliary function, although in order to prove an upper bound, the
function needs to have bounds that are opposite from those proven for Hk. Let

H̃k(y1, y2, . . . , y2k−1) := (1− y2k−1)fk(y1) . . . fk(yk−1) + (1− y2k−2)y2k−1fk(y1) . . . fk(yk−2) + . . .

(2.9)

+ (1− yk+i)yk+i+1 · · · y2k−1fk(y1) . . . fk(yi) + . . . + (1− yk)yk+1 . . . y2k−1

− fk(y1) . . . fk(yk),
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and note that this function has “decoupled” the variables that appear in polynomial terms from
those that appear as the arguments of fk. In particular, H̃k is a linear function in each of
yk+1, . . . , y2k−1.

Proposition 2.8. For 0 ≤ y1 ≤ . . . ≤ y2k−1 ≤ 1, we have that H̃k(y1, . . . , y2k−1) ≤ 0.

Proof: As in the proof of Proposition 2.2, we will eventually change all of the yi’s to yk by using
properties of the functions Dj(y), but this time we will also need to study the partial derivatives
of the linear terms of H̃k in order to do so.

For the first step, consider the coefficient of yk+1 in (2.9), which is

(2.10) −yk+2 . . . y2k−1fk(y1) + (1− yk)yk+2 . . . y2k−1 = yk+2 . . . y2k−1fk(y1)
(
−1 +

1− yk

fk(y1)

)
.

Since fk is decreasing, replacing y1 by yk inside the parentheses gives the following upper bound
for (2.10):

(2.11) yk+2 . . . y2k−1fk(y1)
(− 1 + D1(yk)

) ≤ 0,

where the inequality follows from the fact that D1 ≤ D2 ≤ · · · ≤ Dk = 1. This means that

∂

∂yk+1
H̃k ≤ 0,

and thus changing yk+1 into yk in (2.9) increases the total expression.
Continuing inductively, assume that we have already shown that changing yk+j 7→ yk for 1 ≤

j ≤ i− 1 gives an upper bound for (2.9). The next case is then the coefficient of yk+i, which is

yk+i+1 . . . y2k−1

(− fk(y1) . . . fk(yi) + (1− yk)fk(y1) . . . fk(yi−1) + . . . + (1− yk)yi−1
k

)

= yk+i+1 . . . y2k−1fk(y1) . . . fk(yi)

(
−1 +

1− yk

fk(yi)
+

(1− yk)yk

fk(yi−1)fk(yi)
+ . . . +

(1− yk)yi−1
k

fk(y1) . . . fk(yi)

)

≤ yk+i+1 . . . y2k−1fk(y1) . . . fk(yi)
(
− 1 + Di(yk)

)
≤ 0,

where we used the fact that fk is decreasing in order to shift all denominator arguments to yk.
Thus the partial derivative with respect to yk+i is also non-positive, so the substitution yk+i 7→ yk

gives an upper bound. Finally, once all yk+i for 1 ≤ i ≤ k − 1 have been set to yk, we reach the
desired conclusion, as

H̃(y1, . . . , yk, yk, . . . , yk) ≤ fk(y1) . . . fk(yk)

(
1− yk

fk(yk)
+

(1− yk)yk

fk(yk−1)fk(yk)
+ · · ·+ (1− yk)yk−1

k

fk(y1) · · · fk(yk)
− 1

)

≤ fk(y1) . . . fk(yk)
(
Dk(yk)− 1

)
= 0.

¤
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Proof of Proposition 2.7: As before, we use an inductive argument that relies on the recurrence
(2.3). By the inductive hypothesis we obtain

ρn+k ≤
n−k+1∏

i=1

fk(1− ui)
(
un+kfk(1− un−k+2) · · · fk(1− un)

+ un+k−1(1− un+k)fk(1− un−k+2) · · · fk(1− un−1) + . . . + un+1(1− un+2) · · · (1− un+k)
)

=
n−k+1∏

i=1

fk(1− ui)
(
H̃k(yn−k+2, . . . , yn+k) + fk(1− un−k+2) · · · fk(1− un+1)

)
≤

n+1∏

i=1

fk(1− ui),

where the conclusion is due to Proposition 2.8. ¤

Corollary 2.9. Assume that A1, . . . , An are independent events with probabilities 0 ≤ u1 ≤ u2 ≤
. . . ≤ un ≤ 1. Then

P
({Ai}n

i=1 has no k-gaps
) ≤

n∏

i=k

fk(1− ui).

Proof: This follows directly from Proposition 2.7 since the probabilities un, un−1, . . . , u1 are
decreasing. This gives

P
(
{Ai}n

i=1 has no k-gaps
)

= P
(
{An−i+1}n

i=1 has no k-gaps
)

≤
n−k+1∏

i=1

fk

(
1− un−i+1

)
=

n∏

i=k

fk(1− ui).

¤
Proof of Theorem 2.1: The theorem statement combines Proposition 2.2 and Corollary 2.9. ¤

3. Logarithmic probability estimates

In this section we largely adopt Holroyd, Liggett, and Romik’s notation from [16] and define

gk(z) := − log fk(e−z),

which will allow us to translate products of fk (as seen in the probability estimates from Section 2)
into (exponent) sums involving gk. We catalog a number of useful properties of gk that we will need
throughout the rest of the paper; the k = 1 and k = 2 cases of Lemma 3.1 were proven and used
by Gravner and Holroyd in [11,14] with some slight misstatements in parts (iv) and (v)), although
it should be noted that several of their proofs used the explicit formulas for f1 and f2, whereas our
proofs use only the defining properties of fk for any k.

We also introduce notation for asymptotic inequalities that is used in this section and throughout
the remainder of the paper. We write f(z) ¿ g(z) if there exists a constant c > 0 such that
f(z) ≤ cg(z) for sufficiently small z. Furthermore, if the constant c does not depend on certain
local parameters (which will be specified in use), we write f(z) ¿

unif
g(z).

Lemma 3.1. For all k ≥ 1, the following are true.

(i) The function gk is decreasing and convex.
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(ii) The function gk is integrable on R≥0, and satisfies the explicit evaluation
∞∫

0

gk(z)dz = λk.

(iii) As z →∞, gk has the asymptotic behavior

gk(z) ∼ e−kz.

(iv) As z → 0,

gk(z) ∼ 1
k

log z−1.

(v) As z → 0,

g′k(z) ∼ − 1
kz

.

Proof: (i) This follows from Lemma 15 of [16].
(ii) This was proven as Theorem 1 of [16], and a second shorter proof was later given in [5].

(iii) Differentiate the recursion (2.1) to obtain

(3.1)
(
kfk−1

k − (k + 1)fk
k

)
f ′k = kxk−1 − (k + 1)xk.

The boundary value fk(0) = 1 implies that f ′k(0) = 0. Repeatedly differentiating (3.1)
then iteratively shows that

(3.2) f ′′k (0) = . . . = f
(k−1)
k (0) = 0.

Finally, the k-th derivative yields a nonzero term, which is

f
(k)
k (0) = −k!.

Therefore the Taylor expansion of fk around 0 has the form

fk(x) = 1− xk + O
(
xk+1

)
.

This leads to the stated assertion, since

gk(z) = − log fk

(
e−z

) ∼ − log
(
1− e−kz

)
∼ e−kz

as z →∞.
(iv) Taking the logarithm of (2.1) yields

(3.3) k log fk(x) + log(1− fk(x)) = k log x + log(1− x).

Isolating − log fk (e−z) = gk(z), we then apply the limiting value fk(1) = 0 to find that

lim
z→0

gk (e−z)
log (z−1)

= lim
z→0

1
k (log (1− fk (e−z))− k log (e−z)− log (1− e−z))

log (z−1)
= lim

z→0

log (1− e−z)
k log z

=
1
k
.

(v) Equation (3.3) implies that

−kgk(z) + log
(
1− fk

(
e−z

))
= −kz + log

(
1− e−z

)
.

Differentiating this equation gives

(3.4) −kg′k(z) +
e−zf ′k (e−z)
1− fk (e−z)

= −k +
e−z

1− e−z
.
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We next claim that

(3.5) fk(x) ∼ (1− x)
1
k as x → 1.

This is enough to conclude (v). Indeed, by (3.1) we have

f ′k(x) =
kxk−1 − (k + 1)xk

kfk−1
k (x)− (k + 1)fk

k (x)
.

As z → 0 we then apply (3.5) to get

f ′k(e
−z) ¿ 1

fk−1 (e−z)
¿ 1

(1− e−z)
k−1

k

∼ 1

z
k−1

k

.

Therefore in (3.4) we have the asymptotic equality

−kg′k(z) + f ′k
(
e−z

) ∼ −k +
1
z
,

yielding

g′k(z) ∼ − 1
kz

,

We finish the proof by verifying (3.5). Taking the limit as z → 0 in (3.3) and using the
boundary value fk(1) = 0, we find that (again, x = e−z)

k log fk(x) ∼ log(1− x),

which gives (3.3).
¤

4. Lower Bound

In this section we prove the lower bound in Theorem 1.1 for arbitrary k by generalizing the
combinatorial construction used in [11], and then using the new results from Section 3 to help
estimate the corresponding probabilities. The general idea is to consider configurations that are
sufficient for growth and that occur with large enough probability to give the tight lower bound.
It should be noted that this construction also gives lower bounds for the original, non-localized
k-percolation models, as any configuration with localized growth starting from the origin is clearly
also sufficient for unrestricted growth (the same is not true of the upper bound in Section 5, as
localized growth is not a necessary condition for unrestricted growth).

We first set some notation for rectangles in Z2. For a rectangle R = {a, . . . , c} × {b, . . . , d}, we
denote its dimensions by

dim(R) := (c− a + 1, d− b + 1) .

We also let R(a, b) denote a rectangle with dimensions (a, b) whose position may or may not be
specified. Moreover, we visualize the base square at the origin as the lower-left corner of the
northeast quadrant of the lattice Z2.

Following Gravner and Holroyd’s basic argument in [11], we construct classes of configurations
that always lead to indefinite growth. Figure 1 illustrates the two possibilities that we consider
for the growth of a rectangle R(a, a) to one of size R(b, b). The first is “diagonal” growth, where
R(a, a) grows to R(a + 1, a + 1), then to R(a + 2, a + 2), and so on until R(b, b) is active (with
deviations from the diagonal of at most distance k); this sort of growth was shown to give the main
(logarithmic) term of Theorem 1.1 in [14, 16]. The second sort of growth is horizontally “skew”
growth, where growth proceeds first in the horizontal direction only, and then continues in the
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vertical direction only. The inclusion of the second growth event will be enough to increase the
total probability by the claimed factor of exp

(
c1s

−1/2
)
.

a

a

b

b

CbCa+1 . . .

Ra+1

Rb

...

a

a

b

b

CbCa+1 . . .

...

Rb

Ra+k+1

Ra+1

Figure 1. The columns and rows that define the events Dk(a, b) and Jk(a, b), respectively.

Definition 4.1. Consider the “stair-step” columns and rows defined such that for i ≥ k + 1, the
column Ci at a distance i to the right of the origin has height i− k, and the row Ri at height i also
has width i−k. If b > a ≥ k, then the diagonal growth event Dk(a, b) is the event that the columns
{Ca+1, . . . , Cb} and rows {Ra+1, . . . ,Rb} have no k-gaps in the given configuration.

Definition 4.2. Suppose that b− a ≥ k + 2, let Ca+i have height a + i− k for 1 ≤ i ≤ k, and let
all other Ci have height a + 1 (a + k + 1 ≤ i ≤ b). For the rows, let Ra+1 have width a− k + 1, let
Ri have width b− 1 for a + 2 ≤ i ≤ a + k + 1, and let Ri have width b for a + k + 2 ≤ i ≤ b. The
(horizontally) skew event Jk(a, b) is the event that the following occur:

• Ra+1, Ca+1,Rb and Cb are nonempty,
• Ra+2, . . . ,Ra+k+1 are empty,
• the cell (b, a + k + 1) is occupied,
• {Ca+2, . . . , Cb−1} and {Ra+k+2, . . . ,Rb−1} have no k-gaps.

It is clear that both events lead to further growth as stated in the following result.

Proposition 4.3. Suppose that we are given a configuration C, and consider only those rectangles
whose lower-left corner is at 0.

(i) If R(a, a) eventually becomes active and Dk(a, b) occurs, then R(b− s, b− t) also becomes
active for some 0 ≤ s, t ≤ k − 1.

(ii) If R(a− s, a− t) eventually becomes active for some 0 ≤ s, t ≤ k − 1 and Jk(a, b) occurs,
then R(b, b) also becomes active.

Definition 4.4. For k ≤ a1 ≤ b1 ≤ . . . am ≤ bm ≤ L with bi−ai ≥ k +2 for all i, define the growth
event corresponding to these parameters as

Ek(a1, b1, . . . , am, bm) :=Dk(k, a1) ∩
m⋂

i=1

Jk(ai, bi) ∩
m−1⋂

i=1

Dk(bi, ai+1) ∩ Dk(bm, L− 1)

⋂
{(k × k) lower left rectangle and cells (1, L− 1), (L− 1, 1) are occupied} .
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Lemma 4.5. Suppose that {ai, bi} satisfy the conditions in Definition 4.4.
(i) The various events appearing in the definition of single occurrence of Ek(a1, . . . , bm) are

independent.
(ii) If Ek(a1, . . . , bm) occurs, then R(L) is eventually active.

(iii) For different choices of a1, . . . , bm the events Ek(a1, . . . , bm) are disjoint.

Proof: (i) Follows immediately from Definitions 4.1 and 4.2.
(ii) Follows from Proposition 4.3.

(iii) Let Rn,Rn+1, . . . ,Rn+k−1 be the first k-gap among the stair-step rows. Then Rn−1 is
nonempty and begins a Jk event with a1 = n− 1. Furthermore, the event ends with the
first nonempty cell in the (n + k − 1)-th row; the column position of this cell gives the
value of b1. Following this procedure iteratively uniquely determines all ai and bi.

¤
We next bound the probabilities of the events Dk and Jk in terms of the function gk.

Lemma 4.6. The probability of the growth events satisfies the following lower bounds.
(i) If b > a ≥ k, then

P (Dk(a, b)) ≥ exp


−2

b−k∑

i=a−(k−1)

gk(is)


 .

(ii) Let c− < c+ be positive constants, s ∈ (
0, 1

2

)
, and b ≥ a+k+2, with a, b ∈ [

c−s−1, c+s−1
]
.

Then

P (Jk(a, b)) À
unif

s exp


g′k(c−)s(b− a)2 − 2

b−k∑

i=a−(k−1)

gk(is)


 ,

where the asymptotic inequality is uniform over all a, b in the given range.

Proof: (i) This follows directly from Proposition 2.2 and the definitions of Dk(a, b) and gk.
(ii) From the definition of Jk(a, b) and Proposition 2.2 we obtain

P
(Jk(a, b)

) ≥ qk(b−1) (1− q)
(
1− qa−k+1

)2 (
1− qa+1

) (
1− qb

)

× exp
(
− gk((a− k + 2)s)− · · · − gk(as)− (b− a− k − 1) gk ((a + 1)s)

− (b− a− k − 2) gk(bs)
)
,

where the first q-power is for empty rows, the next several factors are for occupied rows and
columns, and the final exponential terms are for the gap conditions among the remaining
rows and columns. In the given ranges of a, b, the powers qa and qb may be treated as
(uniform) asymptotic constants, as can the single terms gk((a − k + i)s) (of which there
are k − 2). Also, 1− q is asymptotically s, so the overall bound becomes

P
(
Jk(a, b)

)
(4.1)

À
unif

s exp
(
− (b− a)

(
gk ((a + 1)s) + gk(bs)

)
+ (k + 1)gk ((a + 1)s) + (k + 2)gk(bs)

)

≥ s exp
(
− (b− a) (gk(as) + gk(bs))

)
.
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The second inequality holds since the function gk is decreasing. It is also true that

exp


−

b−k∑

i=a−(k−1)

gk(is)


 ≤ exp(−(b− a)gk(bs)),

again since gk is decreasing. Using this in (4.1), we have

P
(Jk(a, b)

) À
unif

s exp


−(b− a) (gk(as)− gk(bs))− 2

b−k∑

i=a−(k−1)

gk(is)




≥ s exp


(b− a)g′k(c−)(bs− as)− 2

b−k∑

i=a−(k−1)

gk(is)


 ,

where we have used the convexity of gk for the final approximation.
¤

With the combinatorial preliminaries finished, we now prove the lower bound by selecting a
“window” of size proportional to s−1.

Proof of lower bound in Theorem 1.1: Let m :=
⌊
s−

1
2 M

⌋
, where M < 1 is a positive constant

that will be chosen later, and suppose that we have a sequence of parameters that satisfy

s−1 < a1 ≤ b1 ≤ . . . ≤ am ≤ bm <
⌊
2s−1

⌋
=: L,

with bi − ai ∈
[
k + 2, s−

1
2

]
for all i. Lemma 4.6 shows that there is a constant c > 0 such that

we have the following lower bound for the probability of a growth event (note that the asymptotic
bounds are uniform across all ai, bi):

P
(
Ek(a1, . . . , bm)

)
(4.2)

= P
(Dk(k, a1)

) m∏

i=1

P
(Jk(ai, bi)

) m−1∏

i=1

P
(Dk(bi, ai+1)

)
P

(Dk(bm, L)
)
P

(
k2 + 2 active sites

)

À
unif

sk2+2 exp

(
− 2

L−k∑

i=1

gk(is)

)
smcm exp

(
− cs

m∑

i=1

(bi − ai)2
)

À
unif

smcm exp

(
−2

L−k∑

i=1

gk(is)− (k2 + 2) log s−1

)
,

where for the last estimate we absorbed the last factor into the constant power cm by using the
fact that bi − ai ∈

[
k + 2, s−

1
2

]
. The number of possible sequences {ai, bi} is at least




⌊
s−1 −ms−

1
2

⌋

m




(
s−

1
2 − (k + 2)

)m
À




⌊
s−1(1−M)

⌋

m




(
s−

1
2

)m
(4.3)

À (
s−1(1−M)

)m

(
s−

1
2

m

)m

À s−m

(
1−M

M

)m

,

where the second approximation comes from Stirling’s formula.
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Finally, note that by Lemma 4.5 the event Ek(a1, . . . , bm) only guarantees growth out to R(L,L).
In order to achieve indefinite growth, we add the event Dk(L,∞) as well, which means (in a slight
abuse of notation) that there are no k-gaps in {CL+1, CL+2, . . . } and {RL+1,RL+2, . . . }. This means
that the entire northeast quadrant will become active, and we achieve indefinite growth in the whole
plane by restricting further to the probability 1 condition that there are no empty semi-infinite lines
in Z2 (this same argument was used by Gravner and Holroyd).

Combining (4.2) and (4.3), we obtain the estimate

P(indefinite growth) ≥
∑

sequences {ai,bi}
P

(
Ek(a1, . . . , bm)

) ·P(Dk(L,∞)
)

À s−m

(
1−M

M

)m

smcm exp
(
− 2λks

−1 − (k2 + 2) log s−1
)

À
(

c · 1−M

M

)m

exp
(
− 2λks

−1 − (k2 + 2) log s−1
)
.

Choosing M sufficiently small so that c · 1−M
M > 1, we obtain the lower bound

exp
(
−2λks

−1 + cs−
1
2

)
,

which completes the proof. ¤

5. Local upper bound

We now turn to the upper bound in Theorem 1.1. Part of our proof follows Gravner and Holroyd’s
approach to the cases k = 1 and k = 2, and we improve several of their choices of parameters in
order to achieve a tighter second-order term. We proceed through the technical preliminaries with
unspecified parameters in order to show that our final choices are optimal for this approach. Our
more significant contribution is a new combinatorial characterization of necessary growth conditions
that allows us to adapt Gravner and Holroyd’s scaling arguments to the case of general k.

We introduce “rectangle growth sequences” in order to encode the row and column conditions
that occur in growing configurations. These sequences naturally contain a generalization of Gravner
and Holroyd’s “good sequences” from [11]. Using some intricate combinatorial arguments, the
probability of such a subsequence can be bounded, as can the total possible number of subsequences,
and the combination of these estimates leads to the overall upper bounds.

For k = 1, some of the arguments in Sections 5.1 – 5.3 only apply to the modified model, and
we explain the minor changes that are necessary for the k = 1 Froböse model in Section 5.4.

5.1. Preliminary combinatorial setup. We begin with the unspecified parameters; there are
several important rough asymptotic properties that we will need for these parameters, so we define
and list them now.

Definition 5.1. The parameters A (lower dimension), B (upper dimension), and D (growth ratio)
are assumed to be positive values that satisfy the following limiting relations as s → 0:

Parameter name A B D

Limiting value ∞ ∞ 0

Asymptotics log(As) ∼ log s log
(
A−1B

) ¿ log s−1 BD À 0

Inequalities A < B/2 B ≥ s−1 log s−1 D < 1
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Next, we define the new combinatorial structure that we will use to encode and approximate the
spread of active sites in the k-percolation model.

Definition 5.2. A rectangle growth sequence for an initial configuration C on Z2 is denoted by
S(C), and is defined to be a sequence of rectangles

S(C) :=
{
0 = R′

1 ( · · · ( R′
m ( . . .

}

such that
(i) S(C) is empty if the origin is not active in C, and otherwise R′

1 = {0}.
(ii) Each R′

i has no k-gaps; in other words, there are no k consecutive empty rows or columns
in R′

i.
(iii) R′

i+1 \R′
i is contained in Shell(R′

i), where Shell(R) is defined to be the width 1 boundary
around any rectangle R.

Note that there may be many possible choices for the sequence S(C) depending on C, and further-
more, that the sequence may be either finite or infinite. However, we are primarily interested in
the class of maximal growth sequences in the current study, as we need to encode the fact that
the percolation process proceeds so long as any growth is possible. Here maximality is defined
in terms of the partial ordering of growth sequences given by (rectangle) containment, and it is
straightforward to see that there is a well-defined “join” operation: if R′

1, R
′
2, . . . and S′1, S

′
2, . . .

are both growth sequences, then both are contained in the growth sequence 〈R′
1, S

′
1〉 , 〈R′

2, S
′
2〉 , . . . ,

where for two rectangles R and S, 〈R, S〉 denotes the span of R and S (the smallest rectangle that
contains both R and S).

Definition 5.3. A good configuration is an initial state on Z2 such that any maximal rectangle
growth sequence is infinite.

This concept is useful for proving upper bounds for growth, as the next lemma shows that good
configurations are a characterizing property of indefinite growth.

Lemma 5.4. If C has indefinite growth, then C is a good configuration.

Proof: We argue by contradiction and suppose that C is not a good configuration, and thus has a
finite maximal growth sequence S(C) = {0 = R′

1 ( · · · ( R′
n}. By definition, such a sequence ends

with a rectangle R′
n that is empty in its k−1 outermost rows and columns. Furthermore, Shell(R′

n)
must also also be empty in C. Thus U := R′

n ∪ Shell(R′
n) is empty in its k outermost rows and

columns, so that R′
n−k+1 is the last rectangle in S that has occupied sites on its boundary.

According to the growth rules, there cannot be any active squares outside of S until there is first
an active square somewhere in the k outermost rows and columns of U . However, since these rows
and columns are completely empty, they will remain so even if R′

n−k+1 becomes completely active.
This contradicts the assumption that C has indefinite growth, thus completing the proof. ¤

Because of Lemma 5.4, we can use good configurations as an upper bound for indefinite growth,
and we spend much of the remainder of this section showing that the arguments in [10] can still be
applied to these configurations. We further classify good configurations into two types of behavior
that, much like the events Jk and Dk in Section 4, (roughly) correspond to whether the growth is
“skew” or “diagonal”.

Definition 5.5. A growth sequence escapes if there is an R′
i with dimensions (a′, b′) such that

a′ ∈ [B,B + 1] and b′ ≤ A, or such that a′ ≤ A and b′ ∈ [B, B + 1].

We can now generalize Gravner and Holroyd’s concept of a “good sequence” by considering
appropriate subsequences of a growth sequence.
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Definition 5.6. A good sequence is a sequence of rectangles 0 ∈ R1 ( . . . ( Rn+1 that satisfies
the following conditions on the dimensions dimRi = (ai, bi):

(i) min{a1, b1} ∈ [A,A + 1]
(ii) an + bn ≤ B

(iii) an+1 + bn+1 > B
(iv) For i = 1, . . . , n we have si ≥ aiD or ti ≥ biD, where si := ai+1 − ai and ti := bi+1 − bi

are the successive dimension differences.
(v) For i = 1, . . . , n we have si < aiD + 2 and ti < biD + 2.

For a rectangle R define next the event

G(R) := {R has no k-gaps in columns or rows}.
Furthermore for two rectangles R ⊆ R′, we define the subrectangles S1, . . . , S8 (some of which may
be empty) as in Figure 2.

R

R′

S5

S8

S1

S7 S6

S4

S2 S3

Figure 2. The rectangular regions defined by R and R′

Definition 5.7. Let D(R, R′) denote the event that each of the two rectangles S1 ∪ S8 ∪ S7 and
S3 ∪ S4 ∪ S5 have no k-gaps along the columns, and that each of the two rectangles S1 ∪ S2 ∪ S3

and S7 ∪ S6 ∪ S5 has no k-gaps along the rows.

Remark. One easily sees that D(R,R′) is necessary for the growth to proceed from R to R′.

Lemma 5.8. A good configuration C either has a good sequence R1 ( . . . ( Rn+1 such that G(R1)

and
n⋂

i=1

D(Ri, Ri+1) occur, or S(C) escapes.

Proof: If S(C) does not escape, then R1 ( . . . ( Rn+1 can be taken as a subsequence of S(C) that
is determined solely by the rectangle dimensions. All of the conditions in Definition 5.6 are easily
seen to be satisfied. ¤

5.2. Probability estimates. We now approximate the probability of various events involving good
sequences and follow the technical framework used in [10, 11], again using our new combinatorial
definitions to unify the results for all k. Most of the proofs are straightforward generalizations of
Gravner and Holroyd’s, using our general estimates from Section 3, but we include all technical
steps in order to be precise with certain “k-shifts” that occur.

We begin with a lemma that was proven in [16], which is also the special case where all proba-
bilities are equal in the upper bound of our Proposition 2.7.
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Lemma 5.9. If R = R(a, b) is a rectangle, then

P(R has no k-gaps in its columns or rows) ≤
{

exp
(− (a− (k − 1))gk(bs)

)
if a ≤ b,

exp
(− (b− (k − 1))gk(as)

)
if a ≥ b.

Next we prove k-analogs of several results in [10], beginning with the probability that the growth
sequence S(C) escapes.

Lemma 5.10. If s is sufficiently small, then there exists a constant c > 0 such that

P
(
S(C) escapes

)
≤ exp

(−cB log s−1
)
.

Proof: The number of possible rectangles R such that the growth sequence escapes is at most
4A2(B + 1). For such an R Lemma 5.9 implies that as s → 0,

P (G(R)) ≤ exp
(
− (B − (k − 1))gk(As)

)
≤ exp

(
− c ·Bgk(As)

)

for some constant c; we obtain this uniform bound by using the fact that gk is decreasing (Lemma
3.1 (i)). By the assumptions in Definition 5.1, As → 0 for s → 0, so we may use Lemma 3.1 (iv),
giving that,

P
(
S(C) escapes

)
≤ 4A2(B + 1) exp

(
−Bc

k
log(As)−1

)
≤ exp

(−cB log s−1
)
.

The final bound follows since we can absorb the leading factor into the exponential error term, and
also from the asymptotic

log(As)−1 ∼ log s−1.

¤
Next come several bounds related to good sequences, beginning with a uniform bound for the

initial rectangle R1.

Lemma 5.11. Let R1, . . . , Rn+1 be a good sequence of rectangles and let a0 = b0 = A, s0 = a1−a0,
t0 = b1 − b0. Then we have for some constant c > 0

P (G(R1)) ≤ exp
(
− s0gk(b0s)− t0gk(a0s) + cA−1B

)
.

Proof: We assume without loss of generality that a1 ≥ b1, so b1 ∈ [A,A + 1]. By Lemma 5.9 we
have

P (G(R1)) ≤ exp
(
− (a1 − (k − 1)) gk(b1s)

)
.

Thus, noting that t0 ≤ 1,

P (G(R1))

exp
(
− s0gk(b0s)− t0gk(a0s)

) ≤ exp
(
− (a1 − (k − 1)) gk(b1s) + s0gk(As) + t0gk(As)

)

≤ exp
(
s0 (gk(As)− gk(b1s))− (A− (k − 1))gk(b1s) + gk(As)

)

≤ exp
(
s0 (gk(As)− gk(b1s)) + gk(As)

)
.

(5.1)

Since gk is convex and monotonically decreasing (Lemma 3.1 (i)),

0 ≤ gk(As)− gk(b1s) ¿ −sg′k(As) ¿ A−1,
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where for the last estimate we used Lemma 3.1 (v). Moreover, Lemma 3.1 (iv) gives

gk(As) ¿ 1
k

log s−1.

Thus (5.1) can be estimated against

exp(cs0A
−1 + c log s−1) ≤ exp

(
cBA−1

)
,

where the final inequality follows from our assumption that BA−1 À log s−1. ¤

Lemma 5.12. If R ⊆ R′ are two rectangles with dimensions (a, b) and (a + `, b + m), respectively,
then

P
(
D(R, R′)

) ≤ exp
(
−(m− 2(k − 1)) gk(as)−(`− 2(k − 1)) gk(bs)+`ms exp

(
k (gk(as) + gk(bs))

))
.

Proof: We use the same notation as in Figure 2 and split the event according to the total number
of occupied sites in the corners S1 ∪ S3 ∪ S5 ∪ S7. The probability that exactly j (out of a possible
number of `m) such corner sites are nonempty is

(
`m

j

)
(1− q)jq`m−j .

The presence of these occupied corner sites divides S4 and S8 into column strips C1, . . . , Cα for some
α ≤ j + 2, where the strip Ci has corresponding width ci. Using Lemma 5.9 we obtain a bound for
the event that S4 and S8 have no k-gaps; namely

P (S4 and S8 have no k gaps) ≤ exp
(
− (c1 − (k − 1)) gk(bs)− . . .− (cα − (k − 1)) gk(bs)

)

= exp
(
− (c1 + . . . + cα − α(k − 1)) gk(bs)

)

≤ exp
(
− (`− j − (j + 2)(k − 1)) gk(bs)

)
= exp

(
− (`− kj − 2(k − 1)) gk(bs)

)
.

A similar argument applies to the rows in S2 and S6, and the column and row events are indepen-
dent. Thus

P
(
D(R, R′)

) ≤
`m∑

j=0

(
`m

j

)
(1−q)jq`m−j exp

(
−(`− kj − 2(k − 1)) gk(bs)−(m− kj − 2(k − 1)) gk(as)

)
.

The approximations q ≤ 1 and 1− q ≤ s then imply that

P
(
D(R, R′)

) ≤ exp
(
− (`− 2(k − 1)) gk(bs)− (m− 2(k − 1)) gk(as)

)

×
`m∑

j=0

(
`m

j

)
sj exp

(
kj (gk(bs) + gk(as))

)

= exp
(
− (`− 2(k − 1)) gk(bs)− (m− 2(k − 1)) gk(as)

)(
1 + s exp (k (gk(bs) + gk(as)))

)`m

≤ exp
(
− (`− 2(k − 1)) gk(bs)− (m− 2(k − 1)) gk(as) + s`m exp (k (gk(as) + gk(bs)))

)
,

where for the last inequality we used the crude estimate 1 + x ≤ ex. ¤
Several of the prior papers in this subject have used a general variational result for probabilities
involving convex functions [10,14], and we bound the resulting error terms for gk and our particular
parameters.
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Lemma 5.13 (Lemma 7 of [10]). Suppose that A and B are positive integers satisfying 2A < B,
and that (ai, bi)i=1,...n+1 satisfy a0 = b0 = A and si := ai+1 − ai ≥ 0 and ti := bi+1 − bi ≥ 0, as
well as the first three properties of Definition 5.6. For any s > 0 and any positive, smooth, convex,
decreasing function g : (0,∞) → (0,∞),

n∑

i=1

(
sig(bis) + tig(ais)

)
≥ 2

s

∫ Bs

As
g(t)dt− 2Bg

(
Bs

2

)
.

Remark. The parameters in this statement are slightly shifted from those used by Gravner and
Holroyd, but the proof is analogous.

Corollary 5.14. If A and B are as in Definition 5.1, then for s sufficiently small there exists a
constant c > 0 such that

n∑

i=1

(
sigk(bis) + tigk(ais)

)
≥ 2λks

−1 − c
(
A log s−1 − s−1 exp(−kBs)−B exp(−kBs/2)

)
.

Proof: We first consider the integral in the bound of Lemma 5.13, and write
∫ Bs

As
gk(z)dz =

∫ ∞

0
gk(z)dz −

∫ As

0
gk(z)dz −

∫ ∞

Bs
gk(z)dz.

The first integral equals λk by Lemma 3.1 (ii). Using Lemma 3.1 (iv) and our assumptions on A,
the second integral can be estimated by

cAs log(As)−1 ∼ cAs log s−1.

Lemma 3.1 (iii) and assumptions on B imply that the third integral can be estimated by

c

∫ ∞

Bs
e−kzdz ∼ ce−kBs.

Finally, for the second term of Lemma 5.13, Lemma 3.1 (iii) again gives that as s → 0,

Bgk

(
Bs

2

)
¿ B exp

(
−k

2
Bs

)
.

¤
Next we consider bounds involving the dimensions of a good sequence.

Lemma 5.15. Let n and ai, bi (i = 1, . . . , n + 1) be positive integers and denote the successive
differences by si := ai+1 − ai ≥ 0 and ti := bi+1 − bi ≥ 0 for i = 1, . . . , n. Further assume that the
dimensions satisfy all of the properties of a good sequence. Then for s → 0 the following bounds
are satisfied:

(i) n ¿ D−1 log s−1,

(ii)
n∑

i=1

siti
aibi

¿ D log s−1.

Proof: (i) To bound n, we use (i), (ii), and (iv) from Definition 5.6

(1 + D)n−1 ≤ an

an−1

an−1

an−2
. . .

a2

a1

bn

bn−1

bn−1

bn−2
. . .

b2

b1
=

an

a1

bn

b1
¿ B2

A2
.

Taking logarithms yields

(n− 1) log(1 + D) ¿ log
(

B

A

)
¿ log s−1.
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Thus

nD ¿ log s−1,

which gives the claim.
(ii) Simple uniform bounds and part (i) show that

n∑

i=1

siti
aibi

¿ D2n ¿ D log s−1.

¤
The above results are enough to bound the probability of any good sequence, and we further
estimate the total number of such sequences.

Lemma 5.16. The number of good sequences of rectangles is at most

exp
(
cD−1

(
log s−1

)2
)

,

where c > 0 is some constant.

Proof: First, there are at most 4B · (A + 1)B choices for R1. Next, given Ri there are less than
(BD)4 choices for Ri+1. The length of the sequence is n + 1, where n is bounded by Lemma 5.15,
and we have an overall bound of

¿ (A + 1)B2(BD)4n+4 ≤ exp (cn log B) ≤ exp
(
cD−1

(
log s−1

)2
)

.

¤
We end with one additional technical estimate.

Lemma 5.17. Suppose that B satisfies the preceding assumptions. Then for the range 0 ≤ a ≤ B,
there is a uniform asymptotic bound

egk(as) ¿
unif

(
B

a

) 1
k

as s → 0

Proof:
As z → 0, Lemma 3.1 (iv) implies that

egk(z) ¿ exp
(1

k
log z−1

)
=

1

z
1
k

,

and as z →∞, Lemma 3.1 (iii) gives

egk(z) ¿ exp
(
e−kz

)
¿ 1.

Recall that Bs →∞ as s → 0. By continuity and the above asymptotics, there is thus a sufficiently
large M and constant c such that if z ≤ M , then

egk(z) ≤ c

(
M

z

) 1
k

.

¤
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5.3. Proof of the upper bound in Theorem 1.1. We are now ready to prove the main result
of this section. By Lemma 5.8, we have

(5.2) P (indefinite growth) ≤ P (S(C) escapes) +
∑

good sequences
R1,...,Rn+1

P (G(R1))
n∏

i=1

P (D (Ri, Ri+1)) .

We note for future reference that we will use Lemma 5.10 to estimate P(S(C) escapes). For the
good sequences term, Lemma 5.12 says that

P (D (Ri, Ri+1))

¿
unif

exp
(
− (ti − 2(k − 1)) gk(ais)− (si − 2(k − 1)) gk(bis)

)
exp

(
sitis exp (k (gk(ais) + gk(bis)))

)
.

Applying the uniform bound from Lemma 5.17 gives

(5.3) P (D (Ri, Ri+1)) ¿
unif

exp
(
− (tigk(ais) + sigk(bis))

)(
B2

aibi

) 2(k−1)
k

exp
(

sitis

(
B2

aibi

))
.

We also use Lemma 5.11 to bound P(G(R1)) and Lemma 5.16 to bound the number of good
sequences. Combined with (5.3), this gives the following upper bound for the second term in (5.2):

exp
(
cD−1

(
log s−1

)2 − s0gk(b0s)− t0gk(a0s) + cA−1B
)

(5.4)

×
n∏

i=1

exp
(
− (tigk(ais) + sigk(bis))

)(
B2

aibi

) 2(k−1)
k

exp

(
sitis

(
B2

aibi

) )

¿
unif

exp

(
−

n∑

i=0

(
sigk(bis) + tigk(ais)

)
)

exp
(
cD−1(log s−1)2 + cA−1B

)(
B2

A2

) 2(k−1)
k

n

× exp

(
B2s

n∑

i=1

siti
aibi

)
.

Using Corollary 5.14, the first (multiplicative) term in (5.4) is bounded above by

exp
(
−2λk

s
+ cA log s−1 + cs−1 exp (−kBs)

)
exp

(
Bc exp

(
−k

2
Bs

) )
.

Next, Lemma 5.15 bounds the third term as

(
B2

A2

)cD−1 log s−1

≤ exp
(
cD−1

(
log s−1

)2
)

.

Finally, the last term of (5.4) is also bounded by Lemma 5.15, giving

exp

(
B2s

n∑

i=1

siti
aibi

)
≤ exp

(
B2Ds log s−1

)
.
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Combining all of these approximations gives the following upper bound for the second summand
of (5.4):

exp
(
− 2λks

−1 + c
(
A log s−1 + A−1B + D−1

(
log s−1

)2 + sB2D log s−1
)

(5.5)

+ c

(
s−1 exp (−kBs) + B exp

(
−kBs

2

)))
.

By assumption B À s−1 log s−1, and thus the last two terms are simply part of the error. Examining
the rest of the expression shows that this error is in fact optimized when B ∼ s−1 log s−1. We now
assume that we can write

A ∼ s−α
(
log s−1

)γ
D ∼ sβ

(
log s−1

)δ

for some positive constants α, β and some constants γ, δ, and tabulate the corresponding powers
that arise from the relevant terms in (5.5):

Term A log s−1 A−1B D−1
(
log s−1

)2
sB2D log s−1

s-power −α −1 + α −β −1 + β

log s−1-power 1 + γ 1− γ 2− δ 3 + δ

We first consider the s-powers, and easily see that the optimal choices are α = β = 1
2 . Turning to

the log s−1-powers, we find that the best choices are γ = 0, δ = −1
2 , and that the second summand

of (5.2) can be bounded by

exp
(
−2λks

−1 + cs−
1
2
(
log s−1

) 5
2

)
.

Furthermore, recalling Lemma 5.10 and our discussion of the parameter B, we have the competing
bound

P (S(C) escapes) ¿ exp
(
−cs−1

(
log s−1

)2
)

.

We can now prove the theorem statement, as

P (indefinite growth) ≤ exp
(
− 2λks

−1
)(

exp
(
s−1

(
2λk − c

(
log s−1

)2
))

+ exp
(
cs−

1
2
(
log s−1

) 5
2

))

¿ exp
(
− 2λks

−1 + cs−
1
2
(
log s−1

) 5
2

)
.

5.4. Upper bound for the Froböse Model. We end our study of percolation models with
the Froböse model and prove the remaining k = 1 case of Theorem 1.1. It is only necessary to
briefly mention the difference in comparison with the k = 1 modified case. As before a growing
configuration has a rectangle growth sequence, but in this case each shell not only has to be
nonempty, but must also have non-corner occupied sites. Thus growth happens in only one direction
at a time, which allows us to use disjointedness and the van der Berg – Kesten (BK) inequality
rather than the corner decomposition of Lemma 5.12. To be more precise (using the same notation
as before), if R grows to R′, then the disjoint intersection of events

(
m⋂

i=1

Ri nonempty

)
◦

(⋂̀

i=1

Ci nonempty

)



IMPROVED BOUNDS FOR GENERALIZED BOOTSTRAP PERCOLATION 27

occurs (here disjointedness means that it is possible to choose m + ` distinct nonempty cells, one
for each column and row). The BK inequality [13] then implies that

P (D(Ri, Ri+1)) ≤
(
1− qbi+ti

)si (
1− qai+si

)t
.

Therefore
∑

good sequences
R1,...,Rn+1

P (G(R1))
n∏

i=1

P (D (Ri, Ri+1))

¿ exp
(
D−1

(
log s−1

)2 − 2s−1
(
λ1 −As log s−1 − exp(−Bs)

)
+ B exp(−sB/2) + A−1B

)

¿ exp
(
− 2λ1s

−1 + c
(
D−1

(
log s−1

)2 + A log s−1 + A−1B
)

+ c (s exp(−Bs) + B exp(−Bs/2))
)
.

As before we choose B = s−1 log s−1 and write A = s−α
(
log s−1

)γ , D = sβ
(
log s−1

)δ. We see that
the error is optimized for α = 1

2 , β = 1
2 , γ = 0, and δ = 1. This gives us a savings of log s−1 over

Gravner and Holroyd’s arguments.

6. Proof of Theorem 1.3

We next turn to the improved probability bound. Using Theorem 2.1 with ui = 1− e−is yields
n∏

j=1

fk

(
e−js

) ≤ P
({Aj}n

j=1 has no k-gaps
) ≤

n∏

j=k

fk

(
e−js

)
.

Since the events form a decreasing, nested sequence, we may take the limit as n →∞. This gives

(6.1) exp


−

∞∑

j=1

gk(js)


 ≤ P

({Ai}∞j=1 has no k-gaps
) ≤ exp


−

∞∑

j=k

gk(js)


 .

We now use the Integral Comparison Theorem, which states that if h(z) is a decreasing, convex
function such that lim

z→∞h(z) = 0, then we have

h(1)
2

+
∫ ∞

1
h(z)dz ≤

∞∑

j=1

h(j) ≤
∫ ∞

0
h(z)dz.

This gives
(6.2)

exp


−

∞∫

0

gk(zs)dz


 ≤ P

({Aj}∞j=1 has no k-gaps
) ≤ exp


−gk(ks)

2
−

∞∫

0

gk(zs)dz +

k∫

0

gk(zs)dz


 .

Recall the integral evaluation from Lemma 3.1 (ii), and make the substitution w = zs. Then the
lower bound in (6.2) is simply

P
({Aj}∞j=1 has no k-gaps

) ≥ exp


−

∞∫

0

gk(w)
dw

s


 = exp

(−λks
−1

)
.
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The upper bound becomes

P
({Aj}∞j=1 has no k-gaps

) ≤ exp


−λks

−1 − gk(ks)
2

+
1
s

ks∫

0

gk(w)dw


 .

By Lemma 3.1 (iv), this has the asymptotic behavior

P
({Aj}∞j=1 has no k-gaps

) ≤ exp
(
−λks

−1 − 1
2k

(1 + o(1)) log s−1 + log s−1 (1 + o(1))
)

,

where the last term follows from the integral estimate
ks∫

0

gk(w)dw ≤
ks∫

0

(1 + o(1))
(
−1

k
log w

)
dw =

(
−1

k
+ o(1)

) (
w log w − w

∣∣∣
ks

0

)

=
(
−1

k
+ o(1)

) (
ks log(ks)− ks

)
= −s log s (1 + o(1)) .

This gives

(6.3) exp
(−λks

−1
) ≤ P

({Aj}∞j=1 has no k-gaps
) ≤ s−

(2k−1)
2k

(1+o(1)) · exp
(−λks

−1
)
,

as claimed.

Remark. The upper and lower bounds in (6.1) are easily seen to differ by a factor of at most
s−(k−1)/k in the asymptotic limit. By using the Integral Comparison Theorem to write the final
bound in the form of (6.3), we have introduced the additional error factor of s−1/2k.
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