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Abstract. Answering a question of Kac, we relate the character formulas for certain
s`(m, 1)∧ modules to automorphic forms. We show that these q-series are the “holomorphic
parts” of nonholomorphic modular functions.

1. Introduction

In an important series of papers [3, 4, 9], Kac and Wakimoto discovered deep connections
between the representation theory of affine Lie superalgebras and number theory. Their
1994 paper [3] shed new light on the representation of integers as sums of squares, and
it also inspired subsequent works in the subject by Milne, the second author, and Zagier
[5, 6, 7, 10]. In the same paper, Kac and Wakimoto also noticed that a q-series related to
Ramanujan’s mock theta functions is the denominator identity for the affine superalgebra
s`(2, 1)∧ . In his 2002 Ph.D. thesis, Zwegers [12] related Ramanujan’s mock theta functions
to weight 1/2 harmonic Maass forms, thereby forging a connection between representation
theory and harmonic Maass forms (at least in the case of s`(2, 1)∧).

In their 2001 paper [4], Kac and Wakimoto computed characters related to g`(m, 1)∧

and s`(m, 1)∧, and they represented them in terms of theta functions and a function they
referred to as a “multivariable Appell function” (see §4 of [4]). In view of the recent
works on harmonic Maass forms and Ramanujan’s mock theta functions (for example, see
[8, 11, 12]), Kac asked whether there is a connection between such characters and harmonic
Maass forms. This question is of particular interest due to the fact that Kac and Peterson
obtained the modularity of similar characters in earlier work [2].

Here we show that some of these q-series are (up to powers of q) indeed related to modular
forms. They turn out to be the “holomorphic parts” of some very nice nonholomorphic
modular functions. Moreover, these nonholomorphic modular functions turn out to be the
product of a weight 1/2 harmonic Maass form with a weight -1/2 quotient of Dedekind
eta-functions.

We consider the Kac-Wakimoto character formulas for the s`(m, 1)∧ modules L(Λ(s)),
where L(Λ(s)) is the irreducible s`(m, 1)∧ module with highest weight Λ(s) (see [4] for
definitions and background). If m ≥ 2 and s ∈ Z, then their work implies that

(1.1) trL(Λ(s))q
L0 = 2q−

s
2 · φ(q2)2

φ(q)m+2
·

∑
k=(k1,k2,...,km−1)∈Zm−1

q
1
2

Pm−1
i=1 ki(ki+1)

1 + q|k|−s
,
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where |k| :=
∑m−1

i=1 ki and

φ(q) :=
∞∏
n=1

(1− qn).

To emphasize the fact that we are working directly with Fourier expansions, we define a
related series Kr,s(τ), where q := e2πiτ and τ ∈ H. If r ≥ 1 and s ∈ Z, then let

(1.2) Kr,s(τ) := q−
s
2
η2(2τ)

ηr+3(τ)

∑
k=(k1,...,kr)∈Zr

q
1
2

Pr
i=1 ki(ki+1)

1 + q
Pr

i=1 ki−s
,

where η(τ) := q
1
24

∏∞
n=1(1−qn) is Dedekind’s weight 1/2 modular form. Since we have that

Km−1,s(τ) =
q

1
12
−m

24

2
trL(Λ(s))q

L0 ,

it suffices to relate the Kr,s(τ) to weight 0 nonholomorphic modular forms, the nonholo-
morphic modular functions.

To this end, for τ ∈ H and u ∈ C, let c := Im(u)/Im(τ), and define the real analytic
function R(u; τ) by

(1.3) R(u; τ) :=
∑
ν∈Z+ 1

2

(−1)ν−
1
2

{
sgn(ν)− E

(
(ν + c)

√
2Im(τ)

)}
e−2πiνuq−ν

2/2,

where

E(x) := 2

∫ x

0

e−πu
2

du = sgn(x)(1− β(x2)),

and β(x) :=
∫∞
x
u−

1
2 e−πudu. For integers a, b, c and d, with cd > 0, we define the weight

1/2 theta function

(1.4) ϑ(a, b, c, d; τ) :=
∑
n∈Z

q
cd
2 (n+ a

c
+ b

d)
2

.

These theta functions are related to the classical theta function

ϑ(u; τ) :=
∑
ν∈Z+ 1

2

eπiν
2τ+2πiν(u+ 1

2)

by the identity

ϑ(a, b, c, d; τ) = q
cd
2 (a

c
+ b

d
− 1

2)
2

ϑ

((
ad+ bc− cd

2

)
τ − 1

2
; cdτ

)
.

For each r ≥ 1, we define the finite cone Dr in Zr

(1.5) Dr := {d = (d1, d2, d3, . . . , dr) ∈ Zr : 0 ≤ di ≤ i− 1 for each 1 ≤ i ≤ r}.

For each d = (d1, d2, d3, . . . , dr) ∈ Dr, we define

ϑ̃d(τ) :=
r−1∏
i=1

ϑ(di,−di+1, i, i+ 1; τ).



CHARACTERS AND NONHOLOMORPHIC MODULAR FUNCTIONS 3

Then we define the weight −1/2 modular form Θr(τ) by

(1.6) Θr(τ) :=
η(2τ)2

η(τ)r+3
·

∑
d=(d1,...,dr)∈Dr

ϑ̃d(τ) · q
d2
r

2r ϑ

(
1

2
− drτ ; rτ

)
.

Remark. For r = 1 notice that D1 := {d = (d1) = (0)}, and that ϑ̃d(τ) := 1 since empty
products are taken to be 1. Therefore, it follows that

Θ1(τ) =
η(2τ)2

η(τ)4
· ϑ
(

1

2
; τ

)
= −2 · η(2τ)4

η(τ)5
.

This last equality follows from the classical identity that ϑ
(

1
2
, τ
)

= −2 · η(2τ)2

η(τ)
. The referee

and Sander Zwegers have pointed out more generally that

Θr(τ) = −2r
η(2τ)2r+2

η(τ)2r+3
.

This identity can be proven using the argument in the proof of Theorem 2.1 below. One
repeats the transformations in the proof with∑

k=(k1,...,kr)∈Zr

q
1
2

Pr
i=1 ki(ki+1) =

(∑
k∈Z

q
1
2
k(k+1)

)r

= 2rq−
r
8 · η(2τ)2r

η(τ)r

instead of Lr,s(τ). One then obtains a q-series which equals

−q−
r
8

∑
d∈Dr

q
d2
r

2r ϑ

(
1

2
− drτ ; rτ

)
ϑ̃d(τ) = −q−

r
8 · η(τ)r+3

η(2τ)2
·Θr(τ).

Using R(u; τ), Θr(τ) and Kr,s(τ), we define

(1.7) K̂r,s(τ) := q−
s2

2rKr,s(τ) +
1

2
q−

s2

2r Θr(τ)R(−sτ ; rτ).

Theorem 1.1. If r ≥ 1 and s ∈ Z, then K̂r,s(τ) is a nonholomorphic modular function.

Four remarks
1) In view of the fact that R(−sτ ; rτ) is a nonholomorphic real analytic function on H, we

refer to Θr(τ)R(−sτ ; rτ) as the “nonholomorphic part” of K̂r,s(τ). We refer to Kr,s(τ) as its
“holomorphic part”. Consequently, we find that the Kac-Wakimoto characters trL(Λ(s))q

L0

are, up to powers of q, the holomorphic parts of nonholomorphic modular functions. Strictly
speaking, this notion is only correct if s = 0, since in other cases the terms we add to obtain
an automorphic form also have holomorphic contributions.

2) By the remark after (1.6), we see that Θr(τ) is nonvanishing on the upper-half of the
complex plane. Therefore, it follows that

K̂r,s(τ)

Θr(τ)

is a weight 1/2 harmonic Maass form.
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3) It is now straightforward to deduce the modular transformations for K̂r,s(τ) for every
element in SL2(Z) using the results in § 2 and classical transformation laws for Dedekind’s
eta-function and the ϑa,b,c,d(τ). For brevity we do not give the tedious details here.
4) Although we consider trL(Λ(s))q

L0 for simplicity, we note that the general character

chL(Λ(s)) for s`(m, 1)∧ may also be expressed in terms of nonholomorphic Jacobi-type
forms. Using (4.2) of [4] and the q-series manipulations in §2 (decorated to accommodate
the zi factors), one obtains an expression involving classical theta functions and the µ̂
function of Zwegers. Theorem 2.4 then gives the result.

2. Proof of Theorem 1.1

Here we prove Theorem 1.1 by combining some q-series identities with work from Zwegers’s
thesis. We begin with some q-series identities.

2.1. q-series manipulations. To prove Theorem 1.1, it is enough to consider

Lr,s(τ) :=
∑

k=(k1,...,kr)∈Zr

q
1
2

P
i ki(ki+1)

1 + q−s+
P

i ki
.

We define

µd,r,s(τ) := q−
d
2

+ d2

2r

∑
n∈Z

q
rn
2

(n+1)−dn

1 + qrn−d−s
.

Theorem 2.1. We have

Lr,s(τ) =
∑

d=(d1,··· ,dr)∈Dr

ϑ̃d(τ)µdr,r,s(τ).

For the proof of Theorem 2.1, we require the following lemma.

Lemma 2.2. For j ≥ 2, M ∈ R, kj ∈ Z, and dj ∈ R, we define
(2.8)

aj :=
j(j + 1)

2

(
kj +

dj
j
− 1

j + 1
(kj+1 −M)

)2

− j

2(j + 1)
(kj+1 −M)2 + (k2

j+1 −Mkj+1).

Then under the change of variables

kj+1 7→ (j + 1)kj+1 + dj+1 +M,

kj 7→ kj + kj+1

aj becomes
(2.9)

j(j + 1)

2

(
kj +

dj
j
− dj+1

j + 1

)2

+
(j + 1)(j + 2)

2

(
kj+1 +

dj+1

j + 1
+

M

j + 2

)2

− M2(j + 1)

2(j + 2)
.

Proof. Under the transformation the aj become

j(j + 1)

2

(
kj +

dj
j
− dj+1

j + 1

)2

− j

2(j + 1)
((j+1)kj+1+dj+1)2+

(
(j + 1)kj+1 +

M

2
+ dj+1

)2

−M
2

4
.
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The first term is the first term of (2.9). We simplify the remaining terms as

(j + 1)(j + 2)

2
k2
j+1 + (j + 2)dj+1kj+1 + (j + 1)Mkj+1 +

j + 2

2(j + 1)
d2
j+1 +Mdj+1

=
(j + 1)(j + 2)

2

(
kj+1 +

dj+1

j + 1
+

M

j + 2

)2

− M2(j + 1)

2(j + 2)

which gives the claim. �

Proof of Theorem 2.1. The claim is simple in the case that r = 1. Therefore, we assume
that r ≥ 2. We make the change of variables kr 7→ kr−

∑r−1
i=1 ki. This transforms the series

into

Lr,s(τ) =
∑

k=(k1,...,kr)∈Zr

q
1
2
kr(kr+1)+

Pr−1
i=1 (k2

i−krki+ki
Pr−1

`=i+1 k`)

1 + q−s+kr
.

We now make several changes of variables which do not change the denominator of this
series. We start with the exponent

1

2
kr(kr + 1) +

r−1∑
i=1

(
k2
i − krki + ki

r−1∑
`=i+1

k`

)
.

Firstly we let for r > 2

k2 7→ 2k2 + kr −
r−1∑
`=3

k` + d2,

k1 7→ k1 − k2,

(2.10)

where 0 ≤ d2 ≤ 1. The only terms that are changed by this change of variables are(
k2

2 − krk2 + k2

r−1∑
`=3

k`

)
+

(
k2

1 − krk1 + k1

r−1∑
`=2

k`

)

=

(
k2 +

K

2

)2

− K2

4
+

(
k1 +

1

2
(k2 +K)

)2

− 1

4
(k2 +K)2,

where K := −kr +
∑r−1

`=3 k`. Now the change of variables (2.10) yields the expression(
2k2 −

K

2
+ d2

)2

−K
2

4
+

(
k1 +

d2

2

)2

−1

4
(2k2 + d2)2 =

(
k1 +

d2

2

)2

+3

(
k2 +

d2

2
− K

3

)2

−K
2

3
.

Thus the whole exponent equals

1

2
kr(kr + 1) +

r−1∑
i=3

(
k2
i − krki + ki

r−1∑
l=i+1

kl

)

+

(
k1 +

d2

2

)2

+ 3

(
k2 +

d2

2
+

1

3

(
kr −

r−1∑
j=3

kj

))2

− 1

3

(
kr −

r−1∑
j=3

kj

)2

.
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We now apply successively for 2 ≤ j ≤ r − 2 the transformations

kj+1 7→ (j + 1)kj+1 + dj+1 + kr −
r−1∑
`=j+2

k`,

kj 7→ kj + kj+1,

with 0 ≤ dj+1 ≤ j. We claim that after the jth step the exponent equals

(2.11)
kr
2

(kr + 1) +
r−1∑
i=j+2

(
k2
i − krki + ki

r−1∑
`=i+1

k`

)

+
(j + 1)(j + 2)

2

(
kj+1 +

dj+1

j + 1
− 1

j + 2

(
−kr +

r−1∑
`=j+2

k`

))2

− j + 1

2(j + 2)

(
−kr +

r−1∑
`=j+2

k`

)2

+
j(j + 1)

2

(
kj +

dj
j
− dj+1

j + 1

)2

+ · · ·+ 3

(
k2 +

d2

2
− d3

3

)2

+

(
k1 +

d2

2

)2

.

To see this, we use induction over j and Lemma 2.2. We first consider the case j = 2. The
only terms influenced by the change of variables are(

k2
3 − krk3 + k3

r−1∑
`=4

k`

)
+ 3

(
k2 +

d2

2
+

1

3

(
kr −

r−1∑
`=3

k`

))2

− 1

3

(
kr −

r−1∑
`=3

k`

)2

.

Equation (2.11) for j = 2 follows from Lemma 2.2 with j = 2 and M = kr−
∑r−1

`=4 k`. Next
we assume that (2.11) is true for j and we show that it holds also for j+ 1. The only terms
that play a role in the change of variables are(

k2
j+2 − krkj+2 + kj+2

r−1∑
`=j+3

k`

)

+
(j + 1)(j + 2)

2

(
kj+1 +

dj+1

j + 1
+

1

j + 2

(
kr −

r−1∑
`=j+2

k`

))2

− j + 1

2(j + 2)

(
−kr +

r−1∑
`=j+2

k`

)2

.

The claim now follows from Lemma 2.2 with j + 1 instead of j and M = kr −
∑r−1

`=j+3 k`.
Thus we have after all the above described transformations the exponent

kr
2

(kr + 1) +
r(r − 1)

2

(
kr−1 +

dr−1

r − 1
+
kr
r

)2

− (r − 1)

2r
k2
r

+

(
k1 +

d2

2

)2

+
1

2

r−2∑
`=2

`(`+ 1)

(
k` +

d`
`
− d`+1

`+ 1

)2

.

We make the change of variables for r ≥ 2

kr 7→ rkr − dr,
kr−1 7→ kr−1 − kr.
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Only the following terms play a role:

kr
2

(kr + 1) +
r(r − 1)

2

(
kr−1 +

dr−1

r − 1
+
kr
r

)2

− (r − 1)

2r
k2
r

=
1

2r

(
kr +

r

2

)2

− r

8
+

(r − 1)r

2

(
kr−1 +

dr−1

r − 1
+
kr
r

)2

.

Making the above described change of variables transforms this term into

(r − 1)r

2

(
kr−1 +

dr−1

r − 1
− dr

r

)2

+
rk2

r

2
− drkr +

rkr
2

+
d2
r

2r
− dr

2
.

This yields that Lr,s(τ) equals

∑
0≤di≤i−1

∑
ki∈Z

q
rk2

r
2
−drkr+ rkr

2
+

d2
r

2r
− dr

2
+ 1

2

Pr−1
`=2 `(`+1)

“
k`+

d`
`
−

d`+1
`+1

”2
+(k1+

d2
2 )

2

1 + qrkr−s−dr
.

The theorem now follows easily from the definition of ϑ̃d(τ) and µdr,r,s(τ). �

2.2. Zwegers’s µ-function and the proof of Theorem 1.1. In his thesis, Zwegers con-
structed weight 1/2 harmonic Maass forms by making use of the transformation properties
of Lerch sums. We briefly recall some of his important results.

For τ ∈ H, u, v ∈ C \ (Zτ + Z), Zwegers defined the function

(2.12) µ(u, v; τ) :=
z1/2

ϑ(v; τ)
·
∑
n∈Z

(−w)nqn(n+1)/2

1− zqn
,

where z := e2πiu, w := e2πiv, q := e2πiτ . Zwegers (see §1.3 of [12]) proved that µ(u, v; τ)
satisfies the following transformations.

Lemma 2.3. Assuming the notation above, we have that

µ(u, v; τ) = µ(v, u; τ),

µ(u+ 1, v; τ) = −µ(u, v; τ),

z−1wq−
1
2µ(u+ τ, v; τ) = −µ(u, v; τ)− iz−

1
2w

1
2 q−

1
8 ,

µ(u, v; τ + 1) = ζ−1
8 µ(u, v; τ) (ζN := e2πi/N)

(τ/i)−
1
2 eπi(u−v)2/τµ

(
u

τ
,
v

τ
;−1

τ

)
= −µ(u, v; τ) +

1

2i
h(u− v; τ),

where

h(z; τ) :=

∫ ∞
−∞

eπix
2τ−2πxzdx

cosh πx
.

Lemma 2.3 shows that µ(u, v; τ) is nearly a weight 1/2 Jacobi form, where τ is the
modular variable. Zwegers then used µ to construct harmonic Maass forms. Using µ and
R, Zwegers defined the real analytic function

(2.13) µ̂(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ).
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At torsion points, this function specializes to give weight 1/2 harmonic Maass forms. This
is apparent from the following theorem.

Theorem 2.4. Assuming the notation and hypotheses above, we have that

µ̂(u, v; τ) = µ̂(v, u; τ),

µ̂(u+ 1, v; τ) = z−1wq−
1
2 µ̂(u+ τ, v; τ) = −µ̂(u, v; τ),

ζ8µ̂(u, v; τ + 1) = −(τ/i)−
1
2 eπi(u−v)2/τ µ̂

(
u

τ
,
v

τ
;−1

τ

)
= µ̂(u, v; τ).

Moreover, if A =
(
α β
γ δ

)
∈ SL2(Z), then

µ̂

(
u

γτ + δ
,

v

γτ + δ
;
ατ + β

γτ + δ

)
= χ(A)−3(γτ + δ)

1
2 e−πiγ(u−v)2/(γτ+δ) · µ̂(u, v; τ),

where χ(A) := η(Aτ)/
(

(γτ + δ)
1
2η(τ)

)
.

Proof of Theorem 1.1. For the proof, we require the fact (see Theorem 1.3 of [1]) that if

Φ(τ, z) is a Jacobi form of weight k and index m, then for λ, µ ∈ Q, qmλ
2
Φ(τ, λτ + µ) is

a modular form of weight k on some congruence subgroup. Using that ϑ(u; τ) is a Jacobi

form of weight 1
2

and index 1
2

then yields that ϑ(a, b, c, d; τ) and thus ϑ̃ and Θr are modular
forms.

Next observe that

q−
s
2µdr,r,s(τ) = −iq

d2
r

2r ϑ

(
1

2
− drτ ; rτ

)
µ

(
1

2
− (s+ dr)τ,−drτ +

1

2
; rτ

)
.

For brevity we consider the s = 0 case. In the general case, one argues in an analogous
way after first employing the elliptic transformation laws in Lemma 2.3.

Using Theorem 2.4, we see that for α, β, γ, δ ∈ Q with −1
2
< γ − α < 1

2
we have

q−
1
2

(γ−α)2µ(γτ + δ, ατ + β; τ)

is the holomorphic part of a (nonholomorphic) modular form of weight 1
2
. Thus each of the

functions
µdr,r,0(τ)ϑ̃d(τ)

are holomorphic parts of nonholomorphic modular forms whose non-holomorphic part is
given by

1

2
q

d2
r

2r ϑ̃d(τ)ϑ

(
1

2
− drτ ; rτ

)
R(0; rτ).

Note that the only nonholomorphic contribution is R(0; rτ) which is independent of d. The
theorem now follows directly from Theorem 2.1. �

2.3. Some examples. Here we consider two examples of these results.

Example. We have seen that Θ1(τ) = −2η(2τ)4/η(τ)5. As a consequence, Theorem 1.1
gives the following nonholomorphic modular function

K̂1,s(τ) = q−
s2

2 K1,s(τ)− q−
s2

2
η(2τ)4

η(τ)5
R(−sτ ; τ).
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Example. For r = 2, we have that Θ2(τ) = −4η(2τ)6/η(τ)7. Theorem 1.1 gives the following
nonholomorphic modular function

K̂2,s(τ) = q−
s2

4 K2,s(τ)− 2q−
s2

4
η(2τ)6

η(τ)7
R(−sτ ; 2τ).
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