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Abstract. For 2 < k ∈ 1

2
Z, we define lifts of cuspidal Poincaré series in Sk(Γ0(N))

to weight 2 − k harmonic weak Maass forms. This construction answers a question
of Dyson by providing the general framework “explaining” Ramanujan’s mock theta
functions. As an application, we show that the number of partitions of a positive
integer n is the “trace” of singular moduli of a Maass form arising from the lift of a
weight 4 cusp form corresponding to a Calabi-Yau threefold.

1. Introduction and Statement of Results

Ramanujan proved that the partition function p(n) satisfies the congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Although these congruences are not difficult to prove, the generic theory [1, 2, 21] of par-
tition congruences is quite complicated, and depends critically on the interplay between
deeper structures in the theory of modular forms. Congruences such as

p(48037937n + 1122838) ≡ 0 (mod 17)

depend on the Deligne-Serre theory of `-adic Galois representations, and Shimura’s the-
ory of half-integral weight modular forms. Shimura’s theory is built around lifts which
map half-integral weight cusp forms to integer weight cusp forms.

We describe another lift, one which maps cuspidal Poincaré series to harmonic weak
Maass forms. Using these maps, we obtain an arithmetic formula exhibiting p(n) as the
“trace” of singular moduli of a Maass form arising from a Calabi-Yau threefold.

First we describe these lifts. Suppose that 2 < k ∈ 1
2
Z, and that N is a positive

integer (with 4 | N if k ∈ 1
2
Z \ Z). Let Maass2−k(Γ0(N), 0) be the space of weight

2 − k harmonic weak Maass forms on Γ0(N) (see Section 2), and let Weakk(Γ0(N)) be
the space of weight k weakly holomorphic modular forms on Γ0(N), where a weakly
holomorphic modular form is any meromorphic modular form whose poles (if any) are
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supported at cusps. The differential operator ξw := 2iyw ∂
∂z

defines a map

ξ2−k : Maass2−k(Γ0(N), 0) −→ Weakk(Γ0(N)).

Let Maass∗2−k(Γ0(N)) be the subspace of those f(z) ∈ Maass2−k(Γ0(N), 0) for which
ξ2−k(f(z)) ∈ Sk(Γ0(N)), the weight k elliptic cusp forms on Γ0(N). It turns out that
ker(ξ2−k) = Weak2−k(Γ0(N)).

For every positive integer m, let H(m, k, N ; z) ∈ Sk(Γ0(N)) be the classical holomor-
phic Poincaré series (see Section 3.2). These forms generate Sk(Γ0(N)). Similarly, for
every positive integer m we construct (see Section 3.3) Maass-Poincaré series

F (m, 2 − k, N ; z) ∈ Maass∗2−k(Γ0(N)).

Using these series, we let

(1.1) Lk,N(H(m, k, N ; z)) := F (m, 2 − k, N ; z).

This defines the lifting of cuspidal Poincaré series in Sk(Γ0(N)) to Maass∗2−k(Γ0(N))
which is dual to the differential operator ξ2−k.

Theorem 1.1. Assume the notation and hypotheses above. The following are true:

(1) We have that

fH(m,k,N ;z)(z) := Lk,N(H(m, k, N ; z)) − i(k − 1)(2πm)k−1

∫ i∞

−z

H(m, k, N ;−τ)

(−i(τ + z))2−k
dτ

is a holomorphic function on the complex upper half-plane H.
(2) We have that

ξ2−k(Lk,N (H(m, k, N ; z)) = (k − 1) · (4πm)k−1 · H(m, k, N ; z).

Remark. Since Poincaré series in Sk(Γ0(N)) are dependent, we stress that these lifting
maps are defined on Poincaré series, not the space Sk(Γ0(N)).

Remark. Theorem 1.1 (1) is typical of results in the theory of automorphic integrals
(for example, see works by Knopp and Niebur [17, 20]), where automorphic forms arise
from period integrals of cusp forms. Thanks to explicit formulas for our Poincaré series,
Theorem 1.1 (1) follows from an elementary integral identity (see Proposition 4.1).

Now we turn to the motivating problem of providing an arithmetic formula for p(n).
To this end, let gC(z) ∈ S4(Γ0(6)) be the eta-product

(1.2) gC(z) := η2(z)η2(2z)η2(3z)η2(6z) =
∞
∑

n=1

a(n)qn = q − 2q2 − 3q3 + 4q4 + · · · ,

where q := e2πiz, and where η(z) is Dedekind’s eta-function. This form corresponds (see
Mortenson’s thesis [18] and Verrill’s paper [24]) to the Calabi-Yau threefold

Y : x +
1

x
+ y +

1

y
+ z +

1

z
+ xy +

1

xy
+ yz +

1

yz
+ xyz +

1

xyz
= t +

1

t
− 2.
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For odd primes p, this implies that a(p) = p3 − p2 − 13−N(p), where N(p) := #Y (Fp).
If ‖ · ‖ denotes the usual Petersson norm, then define C(z) ∈ Maass0(Γ0(6),−2) by

(1.3) C(z) := − 1

96π3 ‖ gC ‖2
·
(

1

2πi

∂

∂z
+

1

2πImz

)

(L4,6(gC(z))) .

Due to the fact that the lifting maps are defined on Poincaré series, C(z) is not well
defined as given above. Later in the paper we resolve this issue by describing gC(z) in
terms of the first Poincaré series in S4(Γ0(6)).

Remark. In terms of symmetric-square L-functions, (1.3) implies

C(z) = − 64

27π · L(Sym2(gC), 1)
·
(

1

2πi

∂

∂z
+

1

2πImz

)

(L4,6(gC(z))) .

For positive d ≡ 0, 3 (mod 4), let Q(p)
d be the set of positive definite integral binary

quadratic forms (including imprimitive forms) Q(x, y) = [a, b, c] = ax2 + bxy + cy2 of

discriminant −d = b2 − 4ac, where 6 | a. The group Γ0(6) acts on Q(p)
d in the usual way.

For each Q, let τQ be the unique root of Q(x, 1) = 0 in H, and let ΓτQ
⊆ Γ0(6) be its

isotropy subgroup. As in the theory of complex multiplication, we refer to each C(τQ)
as a singular modulus. For positive integers n, let

(1.4) Tr(p)(n) :=
∑

Q∈Q
(p)
24n−1

.

Γ0(6)

χ12(Q)C(τQ)

#ΓτQ

,

where χ12(Q) = χ12([a, b, c]) :=
(

12
b

)

. The following gives the formula for p(n).

Theorem 1.2. If n is a positive integer, then

p(n) =
Tr(p)(n)

24n − 1
.

Remark. This phenomenon, where coefficients of half-integral weight forms are “traces”
of singular moduli was observed by Zagier [25]. Recent papers by the authors [6] and
Bruinier and Funke [12] give generalizations.

In Section 2 we recall facts about weak Maass forms. In Section 3 we construct
the Poincaré series H(m, k, N ; z) and F (m, 2 − k, N ; z), and we compute their Fourier
expansions. In Sections 4 and 5 we prove Theorems 1.1 and 1.2. In Section 6 we explain
how Theorem 1.1 is related to Ramanujan’s mock theta functions.
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2. Weak Maass forms

We recall the notion of a weak Maass form of weight k ∈ 1
2
Z. If z = x + iy ∈ H with

x, y ∈ R, then the weight k hyperbolic Laplacian is given by

(2.1) ∆k := −y2

(

∂2

∂x2
+

∂2

∂y2

)

+ iky

(

∂

∂x
+ i

∂

∂y

)

.

For odd integers d, define εd by

(2.2) εd :=

{

1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

If N is a positive integer (with 4 | N if k ∈ 1
2
Z \ Z), then a weak Maass form of weight

k on Γ0(N) is any smooth function M : H → C satisfying the following:

(1) For all A = ( a b
c d ) ∈ Γ0(N) and all z ∈ H, we have

M(Az) =

{

(cz + d)kM(z) if k ∈ Z,
(

c
d

)2k
ε−2k
d (cz + d)k M(z) if k ∈ 1

2
Z \ Z.

Here
(

c
d

)

denotes the extended Legendre symbol, and
√

z is the principal branch
of the holomorphic square root.

(2) There is a complex number λ for which ∆kM = λM .
(3) The function M(z) has at most linear exponential growth at cusps.

Remark. These transformation laws occur in Shimura’s theory of half-integral weight
modular forms [23].

Let Maassk(Γ0(N), λ) denote the space of weight k weak Maass forms on Γ0(N) with
eigenvalue λ with respect to ∆k. Those forms with λ = 0 are called harmonic, and they
are relevant for Theorem 1.1. Here we recall some facts due to Bruinier and Funke (see
Proposition 3.2 of [11]).

Lemma 2.1. The differential operator ξk := 2iyk ∂
∂z

maps

ξk : Maassk(Γ0(N), 0) −→ Weak2−k(Γ0(N)),

and ker(ξk) = Weakk(Γ0(N)).

3. Poincaré series

To prove Theorem 1.1, we rely on explicit Fourier expansions (one could also argue
directly with the defining series). Throughout, we rely on classical special functions
whose properties and definitions may be found in [3]. We give them since they are
useful in applications (for example, see [5]). In Section 3.1 we first recall the classical
construction of Poincaré series (see [10, 15, 16]). In Sections 3.2 and 3.3 we give explicit
Fourier expansions in terms of classical special functions (see [3] for more on these special
functions).
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3.1. The fundamental Poincaré series. Suppose that k ∈ 1
2
Z, and that N is a

positive integer (with 4 | N if k ∈ 1
2
Z \ Z). For A = ( a b

c d ) ∈ Γ0(N), define j(A, z) by

(3.1) j(A, z) :=

{√
cz + d if k ∈ Z,

(

c
d

)

ε−1
d

√
cz + d if k ∈ 1

2
Z \ Z,

where εd is defined by (2.2), and where
√

z is the principal branch of the holomorphic
square root as before. As usual, for A ∈ Γ0(N) and functions f : H → C, we let

(3.2) (f |k A)(z) := j(A, z)−2kf(Az).

Let m be an integer, and let ϕm : R+ → C be a function which satisfies ϕm(y) = O(yα),
as y → 0, for some α ∈ R. If e(α) := e2πiα as usual, then

(3.3) ϕ∗
m(z) := ϕm(y)e(mx)

is fixed by the group of translations Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}. Given this data we let

P (m, k, N, ϕm; z) :=
∑

A∈Γ∞\Γ0(N)

(ϕ∗
m |k A)(z).(3.4)

The explicit Fourier expansions are given in terms of the Kloosterman sums

(3.5) Kk(m, n, c) :=

{

∑

v(c)× e
(

mv+nv
c

)

if k ∈ Z,
∑

v(c)×

(

c
v

)2k
ε2k

v e
(

mv+nv
c

)

if k ∈ 1
2
Z \ Z.

In the sums above, v runs through the primitive residue classes modulo c, and v denotes
the multiplicative inverse of v modulo c. The following lemma gives the fundamental
properties of such Poincaré series (for example, see Proposition 3.1 of [13] where N = 4).

Lemma 3.1. If k > 2 − 2α, then the following are true.

(1) Each Poincaré series P (m, k, N, ϕm; z) is a weight k Γ0(N)-invariant function.
(2) Near the cusp at ∞, the function P (m, k, N, ϕm; z)−ϕ∗

m(z) has moderate growth.
Near the other cusps, P (m, k, N, ϕm; z) has moderate growth.

(3) If P (m, k, N, ϕm; z) is twice continuously differentiable, then it has the locally
uniformly absolutely convergent Fourier expansion

P (m, k, N, ϕm; z) = ϕ∗
m(z) +

∑

n∈Z

a(n, y)e(nx),

where

a(n, y) :=
∞
∑

c>0
c≡0 (mod N)

c−kKk(m, n, c)

∫ ∞

−∞

z−kϕm

(

y

c2|z|2
)

e

(

− mx

c2|z|2 − nx

)

dx.
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3.2. The holomorphic Poincaré series H(m, k, N ; z). Suppose that 2 < k ∈ 1
2
Z,

and that N is a positive integer (with 4 | N if k ∈ 1
2
Z \ Z). For positive integers m, let

(3.6) H(m, k, N ; z) := P (m, k, N, 1; z).

Lemma 3.1, combined with facts about Petersson norms, implies the following well
known proposition (for example, see Chapter 3 of [16]).

Proposition 3.2. The set of Poincaré series {H(m, k, N ; z) : m ≥ 1} spans Sk(Γ0(N)).
Moreover, if δ(m, n) is the Kronecker delta-function and Jk−1 is the usual J-Bessel
function, then H(m, k, N ; z) =

∑∞
n=1 bm(n)qn, where

bm(n) =
( n

m

)
k−1
2






δ(m, n) + 2πi−k

∑

c>0
c≡0 (mod N)

Kk(m, n, c)

c
· Jk−1

(

4π
√

nm

c

)






.

3.3. Maass-Poincaré series F (m, 2 − k, N ; z). Although the series F (m, 2 − k, N ; z)
are less well known, they have appeared in earlier works [6, 10, 13, 15, 19]. To define
them, again suppose that 2 < k ∈ 1

2
Z, and that N is a positive integer (with 4 | N if

k ∈ 1
2
Z \ Z). To employ Lemma 3.1, we first select an appropriate function ϕ.

Let Mν, µ(z) be the usual M-Whittaker function. For complex s, let

Ms(y) := |y|− k
2 Mk

2
sgn(y), s− 1

2
(|y|),

and for positive m let ϕ−m(z) := M1− k
2
(−4πmy). We now let

(3.7) F (m, 2 − k, N ; z) := P (−m, 2 − k, N, ϕ−m; z).

Lemma 3.1 leads to the following proposition (for a proof in the N = 4 case see [6]).

Proposition 3.3. Each F (m, 2 − k, N ; z) is in Maass2−k(Γ0(N), 0). Moreover, if Ik−1

is the usual I-Bessel function, and Γ(a, x) is the incomplete Γ-function, then

F (m, 2 − k, N ; z) = (1 − k) (Γ(k − 1, 4πmy)− Γ(k − 1)) q−m +
∑

n∈Z

c(n, y) qn.

1) If n < 0, then

c(n, y) = 2πik(1 − k) Γ(k − 1, 4π|n|y)
∣

∣

∣

n

m

∣

∣

∣

1−k
2

×
∑

c>0
c≡0 (mod N)

K2−k(−m, n, c)

c
· Jk−1

(

4π
√

|mn|
c

)

.

2) If n > 0, then

c(n, y) = −2πikΓ(k)
( n

m

)
1−k
2

∑

c>0
c≡0 (mod N)

K2−k(−m, n, c)

c
· Ik−1

(

4π
√

|mn|
c

)

.
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3) If n = 0, then

c(0, y) = −2kπkikmk−1
∑

c>0
c≡0 (mod N)

K2−k(−m, 0, c)

ck
.

4. Proof of Theorem 1.1

Throughout, suppose that 2 < k ∈ 1
2
Z, and that N is a positive integer (with 4 | N if

k ∈ 1
2
Z \ Z).

We begin with an elementary integral identity.

Proposition 4.1. If n is a positive integer, then
∫ i∞

−z

e2πinτ

(−i(τ + z))2−k
dτ = i(2πn)1−k · Γ(k − 1, 4πny)q−n.

Proof. This identity follows by the direct calculation
∫ i∞

−z

e2πinτ

(−i(τ + z))2−k
dτ =

∫ i∞

2iy

e2πin(τ−z)

(−iτ)2−k
dτ = i(2πn)1−k · Γ(k − 1, 4πny) q−n.

�

Proof of Theorem 1.1. We first prove Theorem 1.1 (2). For convenience, let

F (m, 2 − k, N ; z) = (k − 1)Γ(k − 1)q−m +

∞
∑

n=0

a(n)qn +

∞
∑

n=1

b(n) Γ(k − 1, 4πny) q−n.

The operator ξ2−k is anti-linear, and it has the property that ξ2−k(f) = 0 for holomorphic
functions f . We also have the identity

ξ2−k (Γ(k − 1, 4πny)) = −(4πn)k−1 e−4πny.

These facts imply that

ξ2−k (F (m, 2 − k, N ; z)) = −(4π)k−1
∞
∑

n=1

nk−1b(n) qn.

By the definition of Lk,N , Theorem 1.1 (2) follows from the identity

K2−k(−m,−n, c) = Kk(m, n, c).

To prove Theorem 1.1 (1), it suffices to compare the Fourier expansion of

∫ i∞

−z̄

H(m, k, N ;−τ )

(−i(τ + z))2−k
dτ
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with the non-holomorphic part of F (m, 2 − k, N ; z). If H(m, k, N ; z) =
∑∞

n=1 b(n)qn,
then by Proposition 4.1 we find that

∫ i∞

−z̄

H(m, k, N ;−τ )

(−i(τ + z))2−k
dτ = i(2π)1−k

∞
∑

n=1

b(n)

nk−1
Γ(k − 1, 4πny) q−n.

The claim now follows from the formulas in Propositions 3.2 and 3.3. �

5. Proof of Theorem 1.2

In earlier work [7], the authors proved that if n is a positive integer, then

p(n) =
1

24n − 1

∑

Q∈Q
(p)
24n−1

.

Γ0(6)

χ12(Q)P (τQ)

#ΓτQ

,

where

(5.1) P (z) := 4π
∑

A∈Γ∞\Γ0(6)

Im(Az)
1
2 I 3

2
(2πIm(Az))e(−Re(Az)).

This was obtained by reformulating Rademacher’s exact formula using Salié sums.
Therefore, it suffices to show that

P (z) = − 1

96π3 ‖ gC ‖2
·
(

1

2πi

∂

∂z
+

1

2πImz

)

(L4,6(gC(z))) .

Since dimC(S4(Γ0(6))) = 1, it follows (for example, see Chapter 3 of [16]) that

gC(z) = 32π3 ‖ gC ‖2 ·H(1, 4, 6; z).

Therefore, it suffices to show that

P (z) = −1

3

(

1

2πi

∂

∂z
+

1

2πImz

)

F (1,−2, 6; z).

For this we need the Fourier expansion of P (z) which was computed by Niebur [20].
Correcting some typographical errors in his paper, we find that

P (z) = 4πI 3
2
(2πy)y

1
2 e−2πix +

∑

n∈Z

b(n, y)qn,
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where
(5.2)

b(n, y) :=































































8π3

3y

∑

c>0
c≡0 (mod 6)

K−2(−1, 0, c)

c4
if n = 0,

8πy1/2e2πnyK 3
2
(2πny)

∑

c>0
c≡0 (mod 6)

K−2(−1, n, c)

c
· I3

(

4π
√

n

c

)

if n > 0,

8πy1/2e2πnyK 3
2
(2π|n|y)

∑

c>0
c≡0 (mod 6)

K−2(−1, n, c)

c
· J3

(

4π
√

|n|
c

)

if n < 0.

Thanks to Proposition 3.3 and (5.2), the theorem is obtained (after some computation)
using the identities:

Γ(3, y) = e−y
(

y2 + 2y + 2
)

,

∂

∂z
Γ(3, 4π|n|y) = 32π3i|n|3y2e−4π|n|y,

I 3
2
(z) =

( z

2π

)1/2
(

1

z2

(

e−z − ez
)

+
1

z

(

ez + e−z
)

)

,

K 3
2
(z) =

( π

2z

)1/2

e−z

(

1 +
1

z

)

.

6. Relationship with Ramanujan’s Mock theta functions

Ramanujan’s mock theta functions are a collection of 22 “strange” q-series such as

(6.1) f(q) := 1 +
∞
∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

They do not arise as the minor modification of a modular form. Nevertheless, a wealth
of evidence, such as identities involving mock theta functions and modular forms, sug-
gested a strong connection between these objects (for example, see [4] and the references
therein). Determining their place in the theory of automorphic forms was a puzzle for
many decades, a quandary nicely described [14] by Freeman Dyson in 1987:

“The mock theta-functions give us tantalizing hints of a grand synthesis still to be dis-
covered. Somehow it should be possible to build them into a coherent group-theoretical
structure, analogous to the structure of modular forms which Hecke built around the old
theta-functions of Jacobi. This remains a challenge for the future.”

In his 2002 Ph.D. thesis [26, 27], Zwegers made an important breakthrough. Loosely
speaking, he “completed” the mock theta functions to obtain weight 1/2 weak Maass
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forms. In the case of f(q), it turns out that (see Corollary 2.3 of [5])

Mf(z) := q−1f(q24) − 2i
√

3 · Nf (z)

is a weight 1/2 weak Maass form on Γ0(144) with Nebentypus χ12(·) :=
(

12
·

)

, where

Nf (z) := −
∫ i∞

−24z

∑∞
n=−∞

(

n + 1
6

)

e3πi(n+ 1
6)

2
τ

√

−i(τ + 24z)
dτ.

In the context of Theorem 1.1 (1), Nf (z) plays the role of the period integral, and the
mock theta function f(q) plays the role of the holomorphic function fH(m,k,N ;z)(z).

Zwegers’ work, combined with recent work by the authors [5, 8, 9], establishes that
the mock theta functions (resp. certain q-series arising from the Rogers-Fine basic
hypergeometric series) are the holomorphic parts of weight 1/2 (resp. 3/2) harmonic
weak Maass forms. In these cases, the non-holomorphic parts are indeed period integrals
of weight 3/2 (resp. 1/2) theta functions. Theorem 1.1 illustrates this phenomenon for
all other possible half-integral weights.

Despite this beautiful picture, many questions remain. For example, we ask:

Question. Can any of the fH(m,k,N ;z)(z) be represented as a combinatorial q-series such
as those appearing in the theory of basic hypergeometric series?
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