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1. Introduction and Statement of Results

“The mock theta-functions give us tantalizing hints of a grand synthesis still to be
discovered. Somehow it should be possible to build them into a coherent group-theoretical
structure, analogous to the structure of modular forms which Hecke built around the
old theta-functions of Jacobi. This remains a challenge for the future.”

Freeman Dyson, 1987
Ramanujan Centenary Conference

Dyson’s quote (see page 20 of [16]) refers to 22 peculiar q-series, such as

(1.1) f(q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

which were defined by Ramanujan and Watson decades ago. In his last letter to Hardy
dated January 1920 (see pages 127-131 of [27]), Ramanujan lists 17 such functions,
and he gives 2 more in his “Lost Notebook” [27]. In his paper “The final problem: An
account of the mock theta functions” [32], Watson defines 3 further functions.

Surprisingly, much remains unknown about these enigmatic series. Ramanujan’s
claims about their analytic properties remain open, and there is even debate concerning
the rigorous definition of such a function. Despite these seemingly problematic issues,
Ramanujan’s mock theta functions indeed possess many striking properties, and they
have been the subject of an astonishing number of important works (for example, see
[5, 6, 7, 8, 12, 13, 14, 18, 19, 20, 23, 27, 28, 32, 33, 35, 36] to name a few). Watson
predicted this high level of activity in his 1936 Presidential Address to the London
Mathematical Society with his prophetic words (see page 80 of [32]):

“Ramanujan’s discovery of the mock theta functions makes it obvious that his skill and
ingenuity did not desert him at the oncoming of his untimely end. As much as any
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of his earlier work, the mock theta functions are an achievement sufficient to cause
his name to be held in lasting remembrance. To his students such discoveries will be
a source of delight and wonder until the time shall come when we too shall make our
journey to that Garden of Proserpine (a.k.a. Persephone)...”

G. N. Watson, 1936.

In his 2002 Ph.D. thesis [36], written under the direction of Zagier, Zwegers made an
important step in the direction of Dyson’s “challenge for the future”. He related many
of Ramanujan’s mock theta functions to real analytic vector valued modular forms. We
make another step by establishing that Dyson’s own rank generating function can be
used to construct the desired “coherent group-theoretical structure, analogous to the
structure of modular forms which Hecke built around old theta functions of Jacobi”. We
show that the specializations of his partition rank generating function R(ζ; q), where
ζ 6= 1 is a root of unity, are “holomorphic parts” of weak Maass forms. Moreover,
we show that the “non-holomorphic parts” of these forms are period integrals of theta
functions, thereby realizing Dyson’s speculation that such a picture should involve
theta functions. We shall use these results to systematically obtain Ramanujan-type
congruences for Dyson’s rank partition functions.

To describe the historical context of these results, we begin by recalling classical facts
about partitions and modular forms which inspired Ramanujan to originally define the
mock theta functions. A partition of a non-negative integer n is any non-increasing
sequence of positive integers whose sum is n. As usual, let p(n) denote the number
of partitions of n. The partition function p(n) has the well known infinite product
generating function

(1.2)
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
,

which coincides with q
1
24 /η(z), where

η(z) := q1/24

∞∏
n=1

(1− qn) (q := e2πiz)

is Dedekind’s weight 1/2 modular form. Modular forms have played a central role in
the theory of partitions, largely due to the fact that many generating functions in the
subject, such as (1.2), are related to infinite product modular forms such as Dedekind’s
eta-function and the Siegel-Klein forms.

On the other hand, many partition generating functions are “Eulerian” forms, also
known as q-series, which do not naturally appear in modular form theory. However
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there are famous examples, such as the Rogers-Ramanujan identities

1 +
∞∑

n=1

qn2

(1− q)(1− q2) · · · (1− qn)
=

1∏∞
n=1(1− q5n−1)(1− q5n−4)

,

1 +
∞∑

n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)
=

1∏∞
n=1(1− q5n−2)(1− q5n−3)

,

where Eulerian forms are essentially modular forms. As another example, we note that

(1.3)
∞∑

n=0

p(n)qn = 1 +
∞∑

n=1

qn2

(1− q)2(1− q2)2 · · · (1− qn)2
.

The mock theta functions stand out in this context. Although they are not modular,
they possess striking properties which prompted Dyson to set forth his challenge of
1987. In this regard, the focus of our attention is a particularly exceptional family of
such series, the specializations of Dyson’s own rank generating function. In an effort
to provide a combinatorial explanation of Ramanujan’s congruences for p(n), Dyson
introduced [15] the so-called “rank” of a partition, a delightfully simple statistic. The
rank of a partition is defined to be its largest part minus the number of its parts. More
precisely, he conjectured that the partitions of 5n + 4 (resp. 7n + 5) form 5 (resp.
7) groups of equal size when sorted by their ranks modulo 5 (resp. 7)1. He further
postulated the existence of another statistic, the so-called “crank”2, which allegedly
would explain all three Ramanujan congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

In 1954, Atkin and Swinnerton-Dyer proved [10] Dyson’s rank conjectures.
If N(m, n) denotes the number of partitions of n with rank m, then it is well known

that

(1.4) R(w; q) := 1 +
∞∑

n=1

∞∑
m=−∞

N(m,n)wmqn = 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n

,

1A short calculation reveals that this phenomenon cannot hold modulo 11.
2In 1988, Andrews and Garvan [9] found the crank, and they indeed confirmed Dyson’s speculation

that it explains the three Ramanujan congruences above. Recent work of Mahlburg [24] establishes
that the Andrews-Dyson-Garvan crank plays an even more central role in the theory partition congru-
ences. His work concerns partition congruences modulo arbitrary powers of all primes ≥ 5. Other work
by Garvan, Kim and Stanton [17] gives a different “crank” for several other Ramanujan congruences.
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where

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a; q)∞ :=
∞∏

m=0

(1− aqm).

Obviously, by letting w = 1, we obtain (1.3).
Letting w = −1, we obtain the series

R(−1; q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

This series is the mock theta function f(q) given in (1.1). In earlier work [11], the
present authors proved that q−1R(−1; q24) is the “holomorphic part” of a weak Maass
form. This is a special case of our first result.

To make this precise, we begin by recalling the notion of a weak Maass form of half-
integral weight k ∈ 1

2
Z \ Z. If z = x + iy with x, y ∈ R, then the weight k hyperbolic

Laplacian is given by

(1.5) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

If v is odd, then define εv by

(1.6) εv :=

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).

A weak Maass form of weight k on a subgroup Γ ⊂ Γ0(4) is any smooth function
f : H → C satisfying the following:

(1) For all A = ( a b
c d ) ∈ Γ and all z ∈ H, we have3

f(Az) =

(
c

d

)2k

ε−2k
d (cz + d)k f(z).

(2) We have that ∆kf = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps of Γ.

Suppose that 0 < a < c are integers, and let ζc := e2πi/c. If fc := 2c
gcd(c,6)

, then define

the theta function Θ
(

a
c
; τ
)

by

(1.7) Θ
(a

c
; τ
)

:=
∑

m (mod fc)

(−1)m sin

(
aπ(6m + 1)

c

)
· θ
(
6m + 1, 6fc;

τ

24

)
,

3This transformation law agrees with Shimura’s notion of a half-integral weight modular form [30].
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where

(1.8) θ(α, β; τ) :=
∑

n≡α (mod β)

ne2πiτn2

.

Throughout, let `c := lcm(2c2, 24), and let ˜̀c := `c/24. It is well known that Θ
(

a
c
; `cτ

)
is a cusp form of weight 3/2. Using this cuspidal theta function, we define the function
S1

(
a
c
; z
)

by the period integral

(1.9) S1

(a

c
; z
)

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

Θ
(

a
c
; `cτ

)√
−i(τ + z)

dτ.

Using this notation, define D
(

a
c
; z
)

by

(1.10) D
(a

c
; z
)

:= −S1

(a

c
; z
)

+ q−
`c
24 R(ζa

c ; q`c).

Moreover, define the group Γc by

(1.11) Γc :=

〈(
1 1
0 1

)
,

(
1 0
`2
c 1

)〉
.

Theorem 1.1. If 0 < a < c, then D
(

a
c
; z
)

is a weak Maass form of weight 1/2 on Γc.

When a/c = 1/2, it turns out that D
(

1
2
; z
)

is a weak Maass form on Γ0(144) with

Nebentypus character χ12(·) =
(
12
·

)
. This fact was established by the authors in [11],

and it plays a central role in the proof of the Andrews-Dragonette Conjecture on the
coefficients of f(q). In view of this fact, it is natural to suspect that D

(
a
c
; z
)

is often
a weak Maass form on a group larger than Γc. For odd c, we establish the following.

Theorem 1.2. If 0 < a < c, where c is odd, then D
(

a
c
; z
)

is a weak Maass form of

weight 1/2 on Γ1(144f 2
c
˜̀
c).

Theorem 1.2 is implied by a general result about vector valued weight 1/2 weak Maass
forms for the modular group SL2(Z) (see Theorem 3.4), a result which is of independent
interest.

Remark. We refer to S1

(
a
c
; z
)

(resp. q−
`c
24 R(ζa

c ; q`c)) as the non-holomorphic (resp.

holomorphic) part of the Maass form D
(

a
c
; z
)
. To justify this, one notes that S1

(
a
c
; z
)

is non-holomorphic in z, and that

∂

∂z

(
q−

`c
24 R(ζa

c ; q`c)
)

= 0.

Here we have that ∂
∂z

:= 1
2

(
∂
∂x

+ i ∂
∂y

)
. In particular, q−

`c
24 R(ζa

c ; q`c) is the part of the

Fourier expansion of D
(

a
c
; z
)

which is given as a series expansion in q = e2πiz (see
Proposition 4.1).
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Theorems 1.1 and 1.2 provide a new perspective on the role that modular forms
play in the theory of partitions. They imply that the generating functions for Dyson’s
rank partition functions are related to Maass forms and modular forms. If r and t are
integers, then let N(r, t; n) be the number of partitions of n whose rank is r (mod t).

Theorem 1.3. If 0 ≤ r < t are integers, then
∞∑

n=0

(
N(r, t; n)− p(n)

t

)
q`tn− `t

24

is the holomorphic part of a weak Maass form of weight 1/2 on Γt. Moreover, if t is

odd, then it is on Γ1(144f 2
t
˜̀
t).

This result allows us to relate many “sieved” generating functions to weakly holomor-
phic modular forms, those forms whose poles (if there are any) are supported at cusps.

Theorem 1.4. If 0 ≤ r < t are integers, where t is odd, and P - 6t is prime, then∑
n≥1

(24`tn−`t
P )=−(−24 è

t
P )

(
N(r, t; n)− p(n)

t

)
q`tn− `t

24

is a weight 1/2 weakly holomorphic modular form on Γ1(144f 2
t
˜̀
tP4).

These results are useful for studying Dyson’s rank partition generating functions.
Atkin and Swinnerton-Dyer [10] confirmed Dyson’s conjecture that for every integer n
and every r we have

(1.12) N(r, 5; 5n + 4) =
p(5n + 4)

5
,

(1.13) N(r, 7; 7n + 5) =
p(7n + 5)

7
,

thereby providing a combinatorial “explanation” of Ramanujan partition congruences
with modulus 5 and 7. It is not difficult to use our results to give alternative proofs of
these rank identities, as well as others of similar type.

Armed with Theorems 1.2, 1.4 and 3.4, one can obtain deeper results about ranks.
They can be used to obtain asymptotic formulas for the N(r, t; n) partition functions.
Indeed, the present authors have already successfully employed the theory of weak
Maass forms to solve the more difficult problem of obtaining exact formulas in the case
of the functions N(0, 2; n) and N(1, 2; n) (see Theorem 1.1 of [11]). For odd t, one can
use Theorem 3.4 and the “circle method” to obtain asymptotics. Since the details are
messy and lengthy, for brevity we have chosen to address asymptotics in a later paper.
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Here we turn to the question of congruences, the subject which originally motivated
Dyson to define partition ranks. In this direction, we shall employ a method first used
by the second author in [25] in his work on p(n). We show that Dyson’s rank partition
functions satisfy congruences of Ramanujan type, a result which nicely complements
the recent blockbuster paper [24] by Mahlburg on the Andrews-Garvan-Dyson crank.

Theorem 1.5. Let t be a positive odd integer, and let Q - 6t be prime. If j is a positive
integer, then there are infinitely many non-nested arithmetic progressions An+B such
that for every 0 ≤ r < t we have

N(r, t; An + B) ≡ 0 (mod Qj).

Three remarks.
1) The congruences in Theorem 1.5 may be viewed as a combinatorial decomposition
of the partition function congruence

p(An + B) ≡ 0 (mod Qj).

2) By “non-nested”, we mean that there are infinitely many arithmetic progressions
An + B, with 0 ≤ B < A, with the property that there are no progressions which
contain another progression.

3) Theorem 1.5 is in sharp contrast to Mahlburg’s recent result [24] on the Andrews-
Garvan-Dyson crank. For example, his results imply that congruences modulo Qj exist
for all the crank partition functions with modulus t = Q. On the other hand, Theorem
1.5 proves congruences for powers of those primes Q ≥ 5 which do not divide the rank
modulus t.

Conjecture. Theorem 1.5 holds for those primes Q ≥ 5 which divide t.

To prove these theorems, we require a number of new results. First of all, the
proof of Theorem 1.2 requires transformation laws for some new classes of mock theta
functions. In Section 2, we derive these transformation formulas, and we recall recent
work of Gordon and McIntosh [19]. In Section 3, we use the results of Section 2 to
construct the vector valued Maass forms whose properties are the content of Theorem
3.4. We conclude Section 3 with proofs of Theorems 1.1, 1.2, and 1.3. In Section 4, we
prove Theorem 1.4, and then give the proof of Theorem 1.5. The proof of Theorem 1.5
relies on Q-adic properties of weakly holomorphic half-integral weight modular forms,
and Q-adic Galois representations associated to modular forms.

Acknowledgements

The authors thank George Andrews, Matthew Boylan, Jan H. Bruinier, Freeman
Dyson, Sharon Garthwaite, Frank Garvan, Karl Mahlburg, and Jean-Pierre Serre for
their helpful comments.
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2. Modular transformation formulas

Here we derive modular transformation formulas for R(ζ; q) and allied functions.
In Section 2.1, we first recall transformation laws obtained recently by Gordon and
McIntosh [19], and in Section 2.2 we derive transformation formulas for closely allied
functions. In Section 2.3 we combine these results to produce an infinite family of
vector valued modular forms under SL2(Z).

2.1. Transformation laws of Gordon and McIntosh. To state the transformation
formulas of Gordon and McIntosh, we require the following series. If 0 < a < c are
integers and q := e2πiz, then we let

M
(a

c
; z
)

= M
(a

c
; q
)

:=
1

(q; q)∞

∞∑
n=−∞

(−1)nqn+a
c

1− qn+a
c

· q
3
2
n(n+1),

M1

(a

c
; z
)

= M1

(a

c
; q
)

:=
1

(q; q)∞

∞∑
n=−∞

(−1)n+1qn+a
c

1 + qn+a
c

· q
3
2
n(n+1),

N
(a

c
; z
)

= N
(a

c
; q
)

:=
1

(q; q)∞

(
1 +

∞∑
n=1

(−1)n (1 + qn)
(
2− 2 cos

(
2πa
c

))
1− 2qn cos

(
2πa
c

)
+ q2n

· q
n(3n+1)

2

)
,

N1

(a

c
; z
)

= N1

(a

c
; q
)

:=
1

(q; q)∞

∞∑
n=0

(−1)n (1− q2n+1)

1− 2qn+ 1
2 cos

(
2πa
c

)
+ q2n+1

· q
3n(n+1)

2 .

(2.1)

Two remarks.
1) Gordon and McIntosh show the following q-series identities

(2.2) M
(a

c
; q
)

=
∞∑

n=1

qn(n−1)

(q
a
c ; q)n · (q1−a

c ; q)n

,

(2.3) N
(a

c
; q
)

= 1 +
∞∑

n=1

qn2∏n
j=1

(
1− 2 cos

(
2πa
c

)
qj + q2j

) .
2) If 0 < a < c are integers, then (2.1) and (2.3) imply the important fact that

(2.4) R(ζa
c ; q) = N

(a

c
; q
)

.
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To state their transformation laws, we require the following Mordell integrals

J
(a

c
; α
)

:=

∫ ∞

0

e−
3
2
αx2 ·

cosh
((

3a
c
− 2
)
αx
)

+ cosh
((

3a
c
− 1
)
αx
)

cosh(3αx/2)
dx,

J1

(a

c
; α
)

:=

∫ ∞

0

e−
3
2
αx2 ·

sinh
((

3a
c
− 2
)
αx
)
− sinh

((
3a
c
− 1
)
αx
)

sinh(3αx/2)
dx.

(2.5)

By modifying the seminal arguments of Watson [32], Gordon and McIntosh (see page
199 of [19]) proved the following theorem.

Theorem 2.1. Suppose that 0 < a < c are integers, and that α and β have the property
that αβ = π2. If q := e−α and q1 := e−β, then we have

q
3a
2c (1−a

c )−
1
24 ·M

(a

c
; q
)

=

√
π

2α
csc
(aπ

c

)
q
− 1

6
1 ·N

(a

c
; q4

1

)
−
√

3α

2π
· J
(a

c
; α
)

,

q
3a
2c (1−a

c )−
1
24 ·M1

(a

c
; q
)

= −
√

2π

α
q

4
3
1 ·N1

(a

c
; q2

1

)
−
√

3α

2π
· J1

(a

c
; α
)

.

2.2. Modular transformation formulas for allied series. Theorem 2.1 is not suf-
ficient for fully understanding the modularity properties of the functions N

(
a
c
; q
)

=
R(ζa

c ; q) under the Möbius transformations arising from SL2(Z). Indeed, under transla-
tions the functions M and M1 transform to allied functions whose modularity properties
must be deduced. To this end, it is necessary to define further series which will allow
us to view the functions in the previous subsection as pieces of the components of a
vector valued function whose transformations we shall determine under the generators
of SL2(Z). Suppose that c is a positive integer, and suppose that a and b are integers
for which 0 ≤ a, b < c. Using this notation, define M(a, b, c; z) by

(2.6) M(a, b, c; z) = M(a, b, c; q) :=
1

(q; q)∞

∞∑
n=−∞

(−1)nqn+a
c

1− ζb
cq

n+a
c

· q
3
2
n(n+1).

In addition, if b
c
6∈ {0, 1

2
, 1

6
, 5

6
}, then define the integer k(b, c) by

(2.7) k(b, c) :=


0 if 0 < b

c
< 1

6
,

1 if 1
6

< b
c

< 1
2
,

2 if 1
2

< b
c

< 5
6
,

3 if 5
6

< b
c

< 1.
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Furthermore, throughout we let e(α) := e2πiα. Using this notation, then define the
series N(a, b, c; z) by

N(a, b, c; z) = N(a, b, c; q)

:=
1

(q; q)∞

 ie
(
− a

2c

)
q

b
2c

2
(
1− e

(
−a

c

)
q

b
c

) +
∞∑

m=1

K(a, b, c, m; z) · q
m(3m+1)

2

 ,
(2.8)

where

K(a, b, c, m; z)

:= (−1)m sin
(

πa
c
−
(

b
c
+ 2k(b, c)m

)
πz
)

+ sin
(

πa
c
−
(

b
c
− 2k(b, c)m

)
πz
)
qm

1− 2 cos
(

2πa
c
− 2πbz

c

)
qm + q2m

.
(2.9)

Moreover, define the Mordell integral

J(a, b, c; α) :=

∫ ∞

−∞
e−

3
2
αx2+3αx a

c ·
(
ζb
ce
−αx + ζ2b

c e−2αx
)

cosh
(
3αx/2− 3πi b

c

) dx.(2.10)

Using this notation, we obtain the following transformation laws.

Theorem 2.2. Suppose that c is a positive integer, and that a and b are integers for
which 0 ≤ a < c, 0 < b < c and b

c
6∈
{

1
2
, 1

6
, 5

6

}
. Furthermore, suppose that α and β have

the property that αβ = π2. If q := e−α and q1 := e−β, then

q
3a
2c (1−a

c )−
1
24 ·M(a, b, c; q) =√

8π

α
e−2πi a

c
k(b,c)+3πi b

c(
2a
c
−1)ζ−b

c q
4b
c

k(b,c)− 6b2

c2
− 1

6

1 ·N(a, b, c; q4
1)−

√
3α

8π
ζ−5b
2c · J(a, b, c; α).

Two remarks.
1) Although b is non-zero in Theorem 2.2, note that M(a, 0, c; q) = M

(
a
c
; q
)
. Therefore,

Theorem 2.1, combined with Theorem 2.2, gives the appropriate transformation laws
of every M(a, b, c; q), where 0 < a < c and 0 ≤ b < c, provided that b

c
6∈
{

1
2
, 1

6
, 5

6

}
.

2) Observe that M(1, 1, 2; q) = −M1

(
1
2
; q
)
. Therefore, the case where 2a = c and

b
c

= 1
2

is also covered by Theorem 2.1.

Proof of Theorem 2.2. To prove this theorem, we argue with contour integration in a
manner which is very similar to earlier work of Watson [32]. We consider a contour
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integral which is basically the function M(a, b, c; q). Define this integral I by

I := I1 + I2 :=
1

2πi

∫ ∞−iε

−∞−iε

π

sin(πτ)
· e−α(τ+a

c )

1− ζb
ce
−α(τ+a

c )
· e−

3
2
ατ(τ+1)dτ

− 1

2πi

∫ ∞+iε

−∞+iε

π

sin(πτ)
· e−α(τ+a

c )

1− ζb
ce
−α(τ+a

c )
· e−

3
2
ατ(τ+1)dτ.

(2.11)

Here ε > 0 is sufficiently small enough so that 1 − ζb
ce
−α(τ+a

c ) is non-zero for −ε ≤
Im(τ) ≤ ε. This is indeed possible since 1− ζb

ce
−α(τ+a

c ) = 0 if and only if

τ = −a

c
+

2πi
(

b
c
+ n
)

α
=: τn

(here we need the condition that b 6= 0).
By construction, we have that the poles of the integrand only arise from the roots

of sin(πτ), and they are the points τ ∈ Z. The residue of the integrand in τ = n ∈ Z
equals

(−1)nqn+a
c

1− ζb
c · qn+a

c

· q
3n(n+1)

2 .

For Re(τ) →∞, the integrand is of rapid decay, and so the Residue Theorem implies
that

I =
∞∑

n=−∞

(−1)nqn+a
c

1− ζb
c · qn+a

c

· q
3n(n+1)

2 = (q; q)∞ ·M(a, b, c; q).(2.12)

We now compute the integrals I1 and I2. We first consider I2. Using (2.11) and the
identity

1

sin(πτ)
= −2i

∞∑
n=0

e(2n+1)πiτ ,

which holds for τ ∈ H, we find that

I2 =
1

2πi

∞∑
n=0

∫ ∞+iε

−∞+iε

2πi
e(2n+1)πiτ−α(τ+a

c )−
3
2
ατ(τ+1)

1− ζb
c · e

−α(τ+a
c )

dτ =:
1

2πi

∞∑
n=0

Jn.

We now reformulate I2 in a useful way by shifting the paths of integration through the
points ωn, the saddle points of

exp

(
(2n + 1)πiτ − 3

2
ατ 2

)
.
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These are the points given by

ωn =
(2n + 1)πi

3α
.

By the Residue Theorem, we have to take into account those points τm for which m ≥ 0
and that satisfy

(2n + 1)

3
> 2

(
b

c
+ m

)
.(2.13)

(That no poles lie on the path of integration follows from the condition that b
c
6∈{

1
2
, 1

6
, 5

6

}
). Using definition (2.7), we have that (2.13) is equivalent to

n ≥ 3m + k(b, c).

At the points τm, the integrand has the residue

λn,m :=
2πi

α
· e(2n+1)πiτm−α(τm+a

c )−
3
2
ατm(τm+1)

=
2πi

α
· ζ−b

c · e−(2n+1)πi a
c
+3πi(m+ b

c)(2a
c
−1) · q−

3a
2c (1−a

c ) · q2(2n+1)( b
c
+m)−6( b

c
+m)

2

1 .

Hence the Residue Theorem, combined with a reordering of summation, implies that

(2.14) I2 =
∑
m≥0

∑
n≥3m+k(b,c)

λn,m +
∑
n≥0

J
′

n,

where

J
′

n :=

∫ ∞+ωn

−∞+ωn

e(2n+1)πiτ−α(τ+a
c )−

3
2
ατ(τ+1)

1− ζb
c · e

−α(τ+a
c )

dτ.

Using the fact that

λn+1,m = e−2πi a
c · q4(m+ b

c)
1 · λn,m,

we find that

∑
m≥0

∑
n≥3m+k(b,c)

λn,m =
∑
m≥0

λ3m+k(b,c),m

1− e−2πi a
c · q4(m+ b

c)
1

=
2πi

α
· e−(2k(b,c)+1)a

c
πi−3πi(1−2a

c )
b
c · ζ−b

c · q−
3a
2c (1−a

c ) · q
2(2k(b,c)+1) b

c
− 6b2

c2

1

×
∞∑

m=0

(−1)mq
6m2+2(2k(b,c)+1)m
1

1− e−2πi a
c · q4(m+ b

c)
1

.

(2.15)
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Now we compute the integral I1 by arguing as above using the identity

1

sin(πτ)
= 2i

∞∑
n=0

e−(2n+1)πiτ ,

which holds for −τ ∈ H. Again by the Residue Theorem, we find that

(2.16) I1 =
∑
m≥1

∑
n≥3m−k(b,c)

µn,m +
∑
n≥0

K
′

n,

where

K
′

n :=

∫ ∞+eωn

−∞+eωn

e(2n+1)πiz−α(z+a
c )−

3
2
αz(z+1)

1− ζb
c · e

−α(z+a
c )

dz.

Here the points ω̃n are given by

ω̃n := −(2n + 1)πi

3α
,

and

µn,m :=
2πi

α
· e−(2n+1)πiτ−m−α(τ−m+a

c )−
3
2
ατ−m(τ−m+1)

=
2πi

α
· ζ−b

c · e(2n+1)πi a
c
+3πi(−m+ b

c)(2a
c
−1) · q−

3a
2c (1−a

c ) · q2(2n+1)(− b
c
+m)−6( b

c
−m)

2

1 .

As in the case of I2, we obtain∑
m≥1

∑
n≥3m−k(b,c)

µn,m =
2πi

α
e(−2k(b,c)+1)a

c
πi−3πi(1−2a

c )
b
c · ζ−b

c · q−
3a
2c (1−a

c ) · q
2(2k(b,c)−1) b

c
− 6b2

c2

1

×
∞∑

m=1

(−1)mq
6m2+2(−2k(b,c)+1)m
1

1− e2πi a
c · q4(m− b

c)
1

.

This fact, combined with (2.14), (2.15), and (2.16), implies that

I1 + I2 =
4π

α
e−2k(b,c)a

c
πi+3πi(−1+2a

c )
b
c · ζ−b

c · q−
3a
2c (1−a

c ) · q
4k(b,c) b

c
− 6b2

c2

1

×

 ie−πi a
c · q

2b
c

1

2 ·
(
1− e−2πi a

c · q
4b
c

1

) +
∞∑

m=1

K̃(a, b, c, m; q1) · q6m2+2m
1

+
∑
n≥0

(J ′n + K ′
n) ,
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where

K̃(a, b, c, m; q1)

:= (−1)m sin
(

πa
c
− iβ

(
2b
c

+ 4k(b, c)m
))

+ sin
(

πa
c
− iβ

(
2b
c
− 4k(b, c)m

))
q4m
1

1− 2 cos
(
2π a

c
− 4i b

c
β
)
· q4m

1 + q8m
1

.

By (2.8), we then find that

I1 + I2 =
4π

α
e−2k(b,c)a

c
πi+3πi(−1+2a

c )
b
c ζ−b

c q−
3a
2c (1−a

c )q
4k(b,c) b

c
− 6b2

c2

1

(
q4
1; q

4
1

)
∞ N

(
a, b, c; q4

1

)
+
∑
n≥0

(J ′n + K ′
n) .

(2.17)

Hence the proof of the theorem essentially boils down to the computation of∑
n≥0

(J ′n + K ′
n) .

We first compute the J ′n integrals. For this we need the identity

t

1− t
=

t−
1
2 + t

1
2 + t

3
2

t−
3
2 − t

3
2

,

which we apply when t = ζb
c · e

−α(τ+a
c ). This identity implies that the integrand in J ′n

equals

ζ−5b
2c · e(2n+1)πiτ+ 3

2
α a

c
− 3

2
ατ2

(
ζb
c · e

−α(τ+a
c ) + ζ2b

c · e−2α(τ+a
c ) + ζ3b

c · e−3α(τ+a
c )
)

(
ζ−3b
2c · e

3
2
α(τ+a

c ) − ζ3b
2c · e

− 3
2
α(τ+a

c )
) .

In the integrand we now put τ = −a
c

+ p + x, where

p :=
(2n + 1)πi

3α
,

and where x is a real variable running from −∞ to ∞. This easily gives

J ′n =
(−1)n+1i

2
· ζ−5b

2c · q
(2n+1)2

6
1 · q−

3a
2c (1−a

c )

∫
R

(
ζb
c · e−

(2n+1)πi
3 e−αx + ζ2b

c · e−
2(2n+1)πi

3 e−2αx − ζ3b
c e−3αx

)
cosh

(
3
2
αx− 3πi b

c

) · e−
3
2
αx2+3α a

c
x dx.



DYSON’S RANKS AND MAASS FORMS 15

In the same way, we obtain

K ′
n =

(−1)ni

2
· ζ−5b

2c q
(2n+1)2

6
1 q−

3a
2c (1−a

c )

∫
R

(
ζb
c · e

(2n+1)πi
3 e−αx + ζ2b

c · e
2(2n+1)πi

3 e−2αx − ζ3b
c e−3αx

)
cosh

(
3
2
αx− 3πi b

c

) · e−
3
2
αx2+3α a

c
x dx.

Since we have that

sin

(
(2n + 1)π

3

)
= sin

(
2(2n + 1)π

3

)
,

for every integer n we obtain the expression

J ′n + K ′
n = (−1)n+1 · ζ−5b

2c · q
(2n+1)2

6
1 · q−

3a
2c (1−a

c ) · sin
(

(2n + 1)π

3

)
∫

R

(
ζb
c · e−αx + ζ2b

c · e−2αx
)

cosh
(

3
2
αx− 3πi b

c

) e−
3
2
αx2+3α a

c
x dx

= (−1)n+1 · ζ−5b
2c · q

(2n+1)2

6
1 · q−

3a
2c (1−a

c ) · sin
(

(2n + 1)π

3

)
J(a, b, c; α).

Now by Euler’s identity

2
∞∑

n=0

(−1)n sin

(
(2n + 1)π

3

)
q

(2n+1)2

6
1 =

√
3 · q

1
6
1 ·
(
q4
1; q

4
1

)
∞ ,

we find that
∞∑

n=0

(J ′n + K ′
n) = −

√
3

2
· ζ−5b

2c · q
1
6
1 · q

− 3
2

a
c (1−a

c )
(
q4
1; q

4
1

)
∞ J(a, b, c; α).

This fact, combined with (2.11), (2.12), and (2.17) then gives

(q; q)∞M(a, b, c; q)

=
4π

α
· e−2k(b,c)a

c
πi+3πi(−1+2a

c )
b
c · ζ−b

c · q−
3a
2c (1−a

c ) · q
4k(b,c) b

c
− 6b2

c2

1 ·
(
q4
1; q

4
1

)
∞ ·N

(
a, b, c; q4

1

)
−
√

3

2
· ζ−5b

2c · q
1
6
1 · q

− 3
2

a
c (1−a

c ) ·
(
q4
1; q

4
1

)
∞ J(a, b, c; α).

By the transformation law for Dedekind’s eta-function, it is straightforward to deduce
that

(q; q)∞ =

√
2π

α
· q−

1
24 · q

1
6
1

(
q4
1; q

4
1

)
∞ ,



16 KATHRIN BRINGMANN AND KEN ONO

from which the statement of the theorem follows easily. �

2.3. An infinite family of vector valued Maass forms. It turns out that the
transformations in Theorems 2.1 and 2.2 allow us to produce an infinite family of
vector valued weight 1/2 weak Maass forms, one for every positive odd integer c. To
this end, it suffices to determine the images of the components of these forms under
the generators of SL2(Z):

z 7→ z + 1 and z 7→ −1

z
.

If c is a positive odd integer, then for every pair of integers 0 ≤ a, b < c define the
functions

N
(a

c
; q
)

= N
(a

c
; z
)

:= csc
(aπ

c

)
· q−

1
24 ·N

(a

c
; q
)

,(2.18)

M
(a

c
; q
)

= M
(a

c
; z
)

:= 2q
3a
2c
·(1−a

c )−
1
24 ·M

(a

c
; q
)

,(2.19)

M(a, b, c; q) = M(a, b, c; z) := 2q
3a
2c
·(1−a

c )−
1
24 ·M(a, b, c; q),(2.20)

N (a, b, c; q) = N (a, b, c; z)

:= 4e−2πi a
c
k(b,c)+3πi b

c(
2a
c
−1) · ζ−b

c · q
b
c
k(b,c)− 3b2

2c2
− 1

24 ·N(a, b, c; q).

(2.21)

Remark. Notice that a must be non-zero for the function N
(

a
c
; q
)
.

Theorem 2.3. Suppose that c is a positive odd integer, and that a and b are integers
for which 0 ≤ a < c and 0 < b < c.

(1) For all z ∈ H we have

N
(a

c
; z + 1

)
= ζ−1

24 · N
(a

c
; z
)

,

N (a, b, c; z + 1) = ζ3b2

2c2 · ζ−1
24 · N (a− b, b, c; z),

M
(a

c
; z + 1

)
= ζ5a

2c · ζ−3a2

2c2 · ζ−1
24 · M(a, a, c; z),

M(a, b, c; z + 1) = ζ5a
2c · ζ−3a2

2c2 · ζ−1
24 · M(a, a + b, c; z),

where a is required to be non-zero in the first and third formula.
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(2) For all z ∈ H we have

1√
−iz

· N
(

a

c
;−1

z

)
= M

(a

c
; z
)

+ 2
√

3
√
−iz · J

(a

c
;−2πiz

)
,

1√
−iz

· N
(

a, b, c;−1

z

)
= M(a, b, c; z) + ζ−5b

2c

√
3
√
−iz · J(a, b, c;−2πiz),

1√
−iz

· M
(

a

c
;−1

z

)
= N

(a

c
; z
)
− 2

√
3i

z
· J
(

a

c
;
2πi

z

)
,

1√
−iz

· M
(

a, b, c;−1

z

)
= N (a, b, c; z)− ζ−5b

2c

√
3i

z
· J
(

a, b, c;
2πi

z

)
,

where a is required to be non-zero in the first and third formula.

Remark. Strictly speaking, the functions in Theorem 2.3 do not always have the prop-
erty that their defining parameters lie in the interval [0, c). For example, this occurs
whenever a − b (resp. a + b) is not in the interval [0, c). In such cases, one defines
the corresponding functions in the obvious way, and then observes that the resulting
functions equal, up to a precise root of unity, the corresponding functions where a− b
(resp. a + b) are replaced by their reduced residue classes modulo c. Lastly, the reader
should recall the first remark after Theorem 2.2.

Proof of Theorem 2.3. The first claim follows from the definitions of the series. The
second claim follows from Theorems 2.1 and 2.2 by letting α = −2πiz and 2πi

z
. �

3. Weak Maass forms

Here we prove Theorems 1.1 and 3.4 using the results from the previous section. In
Section 3.1, we explicitly construct the non-holomorphic and holomorphic parts of the
functions D

(
a
c
; z
)
, we derive their images under the generators of Γc, and we prove

Theorem 1.1.

3.1. The Non-holomorphic and holomorphic parts of D
(

a
c
; z
)
. Using Theorem

2.1, here we construct a weak Maass form of weight 1/2 using N
(

a
c
; q
)
. The arguments

we employ are analogous to those employed by Zwegers in his work on Ramanujan’s
mock theta functions (for example, see Section 3 of [35], or [36]).

We begin with the transformation formulas for the relevant series. As in the in-
troduction, suppose that 0 < a < c are integers. Define the vector valued function
F
(

a
c
; z
)

by

F
(a

c
; z
)

:=
(
F1

(a

c
; z
)

, F2

(a

c
; z
))T

=
(
sin
(πa

c

)
N
(a

c
; `cz

)
, sin

(πa

c

)
M
(a

c
; `cz

))T

,

(3.1)
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where `c := lcm(2c2, 24). Similarly, define the vector valued (non-holomorphic) func-
tion G

(
a
c
; z
)

by

G
(a

c
; z
)

=
(
G1

(a

c
; z
)

, G2

(a

c
; z
))T

:=

(
2
√

3 sin
(πa

c

)√
−i`cz · J

(a

c
;−2πi`cz

)
,
2
√

3 sin
(

πa
c

)
i`cz

· J
(

a

c
;
2πi

`cz

))T

.

(3.2)

The transformations in Theorem 2.1 imply that these two vector valued functions are
intertwined by the generators of Γc.

Lemma 3.1. Assume the notation and hypotheses above. For z ∈ H, we have

F
(a

c
; z + 1

)
= F

(a

c
; z
)

,

1√
−i`cz

· F
(

a

c
;− 1

`c
2z

)
=

(
0 1
1 0

)
· F
(a

c
; z
)

+ G
(a

c
; z
)

.

Proof. The first transformation law follows from the simple fact that both components
of F

(
a
c
; z
)

are given as series in q with integer exponents. The second transformation
follows from Theorem 2.3. �

The Mordell vector G
(

a
c
; z
)

appearing in Lemma 3.1 may be interpreted in terms of

period integrals of the theta function Θ
(

a
c
; τ
)
. The next lemma makes this precise.

Lemma 3.2. Assume the notation and hypotheses above. For z ∈ H, we have

G
(a

c
; z
)

=
i`

1
2
c sin

(
πa
c

)
√

3

∫ i∞

0

(
(−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

)
, Θ
(

a
c
; `cτ

)
,
)T

√
−i(τ + z)

dτ.

Proof. For brevity, we only prove the asserted formula for the first component of
G
(

a
c
; z
)
. The proof of the second component follows in the same way.

By analytic continuation, we may assume that z = it with t > 0. By a change of
variables, using (2.5), we find that

J

(
a

c
;
2π

`ct

)
= `ct ·

∫ ∞

0

e−3`cπtx2 ·
cosh

((
3a
c
− 2
)
2πx

)
+ cosh

((
3a
c
− 1
)
2πx

)
cosh(3πx)

dx.
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Using the Mittag-Leffler theory of partial fraction decompositions (see e.g. [34] pages
134-136), a direct calculation shows that

cosh
((

3a
c
− 2
)
2πx

)
+ cosh

((
3a
c
− 1
)
2πx

)
cosh(3πx)

=
−i√
3π

∑
n∈Z

(−1)n sin
(

πa(6n+1)
c

)
x− i

(
n + 1

6

) − i√
3π

∑
n∈Z

(−1)n sin
(

πa(6n+1)
c

)
−x− i

(
n + 1

6

) .

By introducing the extra term 1

i(n+ 1
6)

, we just have to consider

∫ ∞

−∞
e−3π`ctx2

∑
n∈Z

(−1)n sin

(
πa(6n + 1)

c

)(
1

x− i
(
n + 1

6

) +
1

i
(
n + 1

6

)) dx.

Since this expression is absolutely convergent, thanks to Lebesgue’s Theorem of dom-
inated convergence, we may interchange summation and integration to obtain

J

(
a

c
;
2π

`ct

)
=
−`cit√

3π

∑
n∈Z

(−1)n sin

(
πa(6n + 1)

c

)∫ ∞

−∞

e−3π`ctx2

x− i
(
n + 1

6

) dx.

For all s ∈ R \ {0}, we have the identity∫ ∞

−∞

e−πtx2

x− is
dx = πis

∫ ∞

0

e−πus2

√
u + t

du

(this follows since both sides are solutions of
(
− ∂

∂t
+ πs2

)
f(t) = πis√

t
and have the same

limit 0 as t 7→ ∞ and hence are equal). Hence we may conclude that

J

(
a

c
;
2π

`ct

)
=

`ct

6
√

3

∑
n∈Z

(−1)n(6n + 1) sin

(
πa(6n + 1)

c

)∫ ∞

0

e−π(n+1/6)2u

√
u + 3`ct

du.

Substituing u = −3`ciτ , and interchanging summation and integration (which is al-
lowed by Lebesgue’s Theorem of dominated convergence) gives

J

(
a

c
;
2π

`ct

)
=
−it`c

3
2

6

∫ i∞

0

∑
n∈Z(−1)n(6n + 1) sin

(
πa(6n+1)

c

)
e3πi`cτ(n+ 1

6)
2

√
−i(τ + it)

dτ.

Now the claim follows since one can easily see that the sum over n coincides with
definition (1.7). �
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To prove Theorem 1.1, we must determine the necessary modular transformation
properties of the vector

S
(a

c
; z
)

=
(
S1

(a

c
; z
)

, S2

(a

c
; z
))

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

(
Θ
(

a
c
; `cτ

)
, (−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

))T

√
−i(τ + z)

dτ.

(3.3)

Since Θ
(

a
c
; `cz

)
is a cusp form, the integral above is absolutely convergent. The next

lemma shows that S
(

a
c
; z
)

satisfies the same transformations as F
(

a
c
; z
)
.

Lemma 3.3. Assume the notation and hypotheses above. For z ∈ H, we have

S
(a

c
; z + 1

)
= S

(a

c
; z
)

,

1√
−i`cz

· S
(

a

c
;− 1

`c
2z

)
=

(
0 1
1 0

)
· S
(a

c
; z
)

+ G
(a

c
; z
)

.

Proof. Using the Fourier expansion of Θ
(

a
c
; z
)
, one easily sees that

S1

(a

c
; z + 1

)
= S1

(a

c
; z
)

.

Using classical facts about theta functions (for example, see equations (2.4) and (2.5)
of [30]), we also have that

S2

(a

c
; z + 1

)
= S2

(a

c
; z
)

.

Hence, it suffices to prove the second transformation law. We directly compute

1√
−i`cz

·S
(

a

c
;− 1

`c
2z

)

=
i sin

(
πa
c

)
`c

1
2

√
3
√
−i`cz

∫ i∞

1
`c2z̄

(
Θ
(

a
c
; `cτ

)
, (−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

))T

√
−i
(
τ − 1

`c
2z

) dτ.

By making the change of variable τ 7→ − 1
`c

2τ
, we obtain

1√
−i`cz

· S
(

a

c
;− 1

`c
2z

)

=
i sin

(
πa
c

)
`c

1
2

√
3

∫ −z̄

0

(
(−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

)
, Θ
(

a
c
, `cτ

))T

√
−i (τ + z)

dτ.
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Consequently, we obtain the desired conclusion

1√
−i`cz

· S
(

a

c
;− 1

`c
2z

)
−
(

0 1
1 0

)
· S
(a

c
; z
)

=
i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

0

(
(−i`cτ)−

3
2 Θ
(

a
c
;− 1

`cτ

)
, Θ
(

a
c
; `cτ

))T

√
−i (τ + z)

dτ = G
(a

c
; z
)

.

�

Proof of Theorem 1.1. Using (2.1), (2.4), (2.18), and (3.1), we find that we have already
determined the transformation laws satisfied by D

(
a
c
; z
)
. Since we have(

1 0
`c

2 1

)
=

(
0 1

−`c
2 0

)(
1 −1
0 1

)(
0 − 1

`c
2

1 0

)
,

where the first and third matrices on the right provide the same Möbius transformation
on H, the transformation laws for D

(
a
c
; z
)

follow from Lemma 3.1 and Lemma 3.3.

Now we show that D
(

a
c
; z
)

is annihilated by

∆ 1
2

= −y2

(
∂2

∂x2
+

∂2

∂y2

)
+

iy

2

(
∂

∂x
+ i

∂

∂y

)
= −4y

3
2

∂

∂z

√
y

∂

∂z̄
.

Since q−
`c
24 R(ζa

b ; q`c) is a holomorphic function in z, we get

∂

∂z̄

(
D
(a

c
; z
))

= − ∂

∂z̄

(
S1

(a

c
; z
))

=
sin
(

πa
c

)
√

6y
·Θ
(a

c
;−`cz̄

)
.

Hence, we find that
√

y ∂
∂z̄

(
D
(

a
c
; z
))

is anti-holomorphic, and so

∂

∂z

√
y

∂

∂z̄

(
D
(a

c
; z
))

= 0.

To complete the proof, it suffices to show that D
(

a
c
; z
)

has at most linear exponential

growth at cusps. The period integral S1

(
a
c
; z
)

is convergent since Θ
(

a
c
; `cτ

)
is a weight

3/2 cusp form (for example, see Section 2 of [30]). This fact, combined with the
transformation laws in Theorems 1.1 and 1.2, allow us to conclude that D

(
a
c
; z
)

has
at most linear exponential growth at cusps. �

3.2. Vector valued weak Maass forms of weight 1/2. Theorem 1.1 is a hint of a
more general modular transformation law which holds for larger groups than Γc. Using
Theorem 2.3, here we produce an infinite family of vector valued weak Maass forms
for SL2(Z).
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Suppose that c is a positive odd integer. For integers 0 ≤ a < c and 0 < b < c,
define the functions

T1

(a

c
; z
)

:= − i√
3

∫ i∞

−z̄

θ
(

a
c
; τ
)√

−i(τ + z)
dτ,(3.4)

T2

(a

c
; z
)

:= − i√
3

∫ i∞

−z̄

(−iτ)−
3
2 θ
(

a
c
;− 1

τ

)√
−i(τ + z)

dτ,(3.5)

T1 (a, b, c; z) := − ζ−5b
2c

2
√

3

∫ i∞

−z̄

θ (a, b, c; τ)√
−i(τ + z)

dτ,(3.6)

T2 (a, b, c; z) := − ζ−5b
2c

2
√

3

∫ i∞

−z̄

(−iτ)−
3
2 θ
(
a, b, c;− 1

τ

)√
−i(τ + z)

dτ.(3.7)

If we let tc := lcm(c, 6), then define Θ(a, b, c; τ) by
(3.8)

Θ(a, b, c; τ) :=
∑

m (mod tc)

(−1)m sin
(π

3
(2m + 1)

)
e2πim a

c · θ
(
2cm + 6b + c, 2ctc;

τ

24c2

)
.

Recall that the theta functions θ(α, β; τ) are defined by (1.8). Using this notation,
define the following functions

G1

(a

c
; z
)

:= N
(a

c
; z
)
− T1

(a

c
; z
)

,(3.9)

G2

(a

c
; z
)

:= M
(a

c
; z
)
− T2

(a

c
; z
)

,(3.10)

G1 (a, b, c; z) := N (a, b, c; z)− T1 (a, b, c; z) ,(3.11)

G2 (a, b, c; z) := M (a, b, c; z)− T2 (a, b, c; z) .(3.12)

These functions constitute a vector valued weak Maass form of weight 1/2. Here
we recall this notion more precisely. A vector valued weak Maass form of weight k
for SL2(Z) is any finite set of smooth functions, say v1(z), . . . , vm(z) : H → C, which
satisfy the following:

(1) If 1 ≤ n1 ≤ m and A =

(
a b
c d

)
∈ SL2(Z), then there is a root of unity ε(A, n1)

and an index 1 ≤ n2 ≤ m for which

vn1(Az) = ε(A, n1)(cz + d)kvn2(z)

for all z ∈ H.
(2) For each 1 ≤ n ≤ m we have that ∆kvn = 0.
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If c is a positive odd integer, then let Vc be the “vector” of functions defined by

Vc :=
{
G1

(a

c
; z
)

,G2

(a

c
; z
)

: with 0 < a < c
}

⋃
{G1(a, b, c; z),G2(a, b, c; z) : (a, b) with 0 ≤ a < c and 0 < b < c} .

Theorem 3.4. Assume the notation above. If c is a positive odd integer, then Vc is a
vector valued weak Maass form of weight 1/2 for the full modular group SL2(Z).

Sketch of the proof. The proof of Theorem 3.4 follows along the lines of the proof of
Theorem 1.1. Therefore, for brevity here we simply provide a sketch of the proof and
make key observations.

As in the proof of Lemma 3.2, one first shows that

2
√

3

iz
· J
(

a

c
;
2πi

z

)
=

i√
3

∫ i∞

0

Θ
(

a
c
; τ
)√

−i(τ + z)
dτ,

2
√

3
√
−iz · J

(a

c
;−2πiz

)
=

i√
3

∫ i∞

0

(−iτ)−
3
2 Θ
(

a
c
;− 1

τ

)√
−i(τ + z)

dτ,

ζ−5b
2c

√
3

iz
· J
(

a, b, c;
2πi

z

)
=

ζ−5b
2c

6c

∫ i∞

0

Θ (a, b, c; τ)√
−i(τ + z)

dτ,

ζ−5b
2c

√
3
√
−iz · J (a, b, c;−2πiz) =

ζ−5b
2c

6c

∫ i∞

0

(−iτ)−
3
2 Θ
(
a, b, c;− 1

τ

)√
−i(τ + z)

dτ.

Arguing as in the proof of Lemma 3.3, one then establishes that the functions Ti satisfy
the same transformation laws under the generators of SL2(Z) as the corresponding
functions N and M appearing in (3.9)-(3.12). That the functions G1 and G2 satisfy
suitable transformation laws under SL2(Z) follows easily from the “closure” of the
formulas in Theorem 2.3.

To complete the proof, it suffices to show that each component is annihilated by the
weight 1/2 hyperbolic Laplacian ∆ 1

2
, and satisfies the required growth conditions at

the cusps. These facts follow mutatis mutandis as in the proof of Theorem 1.1. �

Sketch of the Proof of Theorem 1.2. By Theorem 3.4, the transformation laws of the
components of the given vector valued weak Maass forms are completely determined
under all of SL2(Z). Observe that D

(
a
c
; z
)

is the image of G1

(
a
c
; z
)

by letting z →
`cz. Therefore, the modular transformation properties of D

(
a
c
; z
)

are inherited by

the modularity properties of Θ
(

a
c
; `cτ

)
when applied to the definition of S1

(
a
c
; z
)
. By

Proposition 2.1 of [30], it is known that Θ
(

a
c
; `cτ

)
is on Γ1(144f 2

c
˜̀
c), and the result

follows. �
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Remark. The phenomenon above where the modularity properties of a theta function
imply the modular transformation laws of a Maass form was first observed by Hirze-
bruch and Zagier [21]. In their work, the period integral of the classical Jacobi theta

function θ(τ) =
∑

n∈Z e2πin2τ is the non-holomorphic part of their Γ0(4) weight 3/2
Maass form F(z). The modularity in Theorem 1.2 follows mutatis mutandis (see page
92 of [21]).

3.3. Proof of Theorem 1.3. Now we use Theorems 1.1 and 1.2 to prove Theorem
1.3. If 0 ≤ r < t are integers, then we begin by claiming that

(3.13)
∞∑

n=0

N(r, t; n)qn =
1

t

∞∑
n=0

p(n)qn +
1

t

t−1∑
j=1

ζ−rj
t ·R(ζj

t ; q).

There is just one partition of 0, the empty partition. We define its rank to be 0. Since
we have

∞∑
n=0

p(n)qn = R(1; q),

it follows that the right hand side of (3.13) is

1

t

t−1∑
j=0

ζ−rj
t ·R(ζj

t ; q).

Therefore the nth coefficient of this series, say a(n), is given by

a(n) =
1

t

t−1∑
j=0

ζ−rj
t

∞∑
m=−∞

ζmj
t N(m, n) =

1

t

∞∑
m=−∞

N(m,n)
t−1∑
j=0

ζ
(m−r)j
t .

Equation (3.13) follows since the inner sum is t if m ≡ r (mod t), and is 0 otherwise.
By Theorems 1.1, 1.2, and (3.13), we obtain

∞∑
n=0

(
N(r, t; n)− p(n)

t

)
q`tn− `t

24 =
1

t

t−1∑
j=1

ζ−rj
t S1

(
j

t
; z

)
+

1

t

t−1∑
j=1

ζ−rj
t D

(
j

t
; z

)
.

Theorem 1.3 follows since each S1

(
j
t
; z
)

is non-holomorphic.

4. Ramanujan congruences for ranks

Here we use Theorem 1.2 to prove that many of Dyson’s partition functions satisfy
Ramanujan-type congruences. To prove this, we first show that “sieved” generating
functions are indeed already weakly holomorphic modular forms. This observation is
the content of Theorem 1.4. Armed with this observation, it is not difficult to prove
Theorem 1.5. The proof is a generalization of an argument employed by the second
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author which proved the existence of infinitely many Ramanujan-type congruences for
the partition function p(n) [25].

4.1. Sieved generating functions. To prove Theorem 1.4, we first explicitly calcu-
late the Fourier expansions of the Maass forms D

(
a
c
; z
)
. To give these expansions, we

require the incomplete Gamma-function

(4.1) Γ(a; x) :=

∫ ∞

x

e−tta−1 dt.

Proposition 4.1. For integers 0 < a < c, we have

D
(a

c
; z
)

= q−
`c
24 +

∞∑
n=1

∞∑
m=−∞

N(m, n)ζam
c q`cn− `c

24

+
i sin

(
πa
c

)
`

1
2
c√

3

∑
m (mod fc)

(−1)m sin

(
aπ(6m + 1)

c

) ∑
n≡6m+1 (mod 6fc)

γ(c, y; n)q−
è
cn2

,

where

γ(c, y; n) :=
i√
2π ˜̀c · Γ

(
1

2
; 4π ˜̀cn2y

)
.

Proof. It suffices to compute the Fourier expansion of the period integral S1

(
a
c
; z
)
. By

definition, we find that

− S1

(a

c
; z
)

=
i sin

(
πa
c

)
`

1
2
c√

3

∑
m (mod fc)

(−1)m sin

(
aπ(6m + 1)

c

)

×
∑

n≡6m+1 (mod 6fc)

∫ i∞

−z

ne2πin2 è
cτ√

−i(τ + z)
dτ.

To complete the proof, one observes that∫ i∞

−z

ne2πin2 è
cτ√

−i(τ + z)
dτ = γ(c, y; n) · q− è

cn2

.

This integral identity follows by the following changes of variable∫ i∞

−z

ne2πin2 è
cτ√

−i(τ + z)
dτ =

∫ i∞

2iy

ne2πin2 è
cn2(τ−z)

√
−iτ

dτ

= i

∫ ∞

2y

ne2πin2 è
c(iu−z)

√
u

du = inq−
è
cn2

∫ ∞

2y

e−2πn2 è
cu

√
u

du.

�
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Proof of Theorem 1.4. If f(z) is a function on the upper half-plane, λ ∈ 1
2
Z, and(

a b
c d

)
∈ GL+

2 (R), then we define the usual slash operator by

(4.2) f(z)
∣∣
λ

(
a b
c d

)
:= (ad− bc)

λ
2 (cz + d)−λf

(
az + b

cz + d

)
.

Suppose that 0 < a < c are integers, where c is odd. Since S1

(
a
c
; z
)

is the period
integral of a cusp form, and since R(ζa

c ; q) has no poles in the upper half of the complex
plane (which is easily seen by comparing with (1.3), a function with no poles in the
upper half plane), it follows that D

(
a
c
; z
)

has no poles on the upper half of the complex
plane.

Furthermore, suppose that P - 6c is prime. For this prime P , let

g :=
P−1∑
v=1

(
v

P

)
e

2πiv
P

be the usual Gauss sum with respect to P . Define the function D
(

a
c
; z
)
P by

(4.3) D
(a

c
; z
)
P

:=
g

P

P−1∑
v=1

(
v
P

)
D
(a

c
; z
)
| 1
2

(
1 − v

P
0 1

)
.

By construction, D
(

a
c
; z
)
P is the P quadratic twist of D

(
a
c
; z
)
. In other words, the nth

coefficient in the q-expansion of D
(

a
c
; z
)
P is

(
n
P

)
times the nth coefficient of D

(
a
c
; z
)
.

That this holds for the non-holomorphic part follows from the fact that the factors
γ(c, y; n) appearing in Proposition 4.1 are fixed by the transformations in (4.3).

Generalizing the classical argument on twists of modular forms in the obvious way
(for example, see Proposition 17 of [22]), D

(
a
c
; z
)
P is a weak Maass form of weight 1/2

on Γ1(144f 2
c
˜̀
cP2). By Proposition 4.1, it follows that

(4.4) D
(a

c
; z
)
−
(
− ˜̀c
P

)
D
(a

c
; z
)
P

is a weak Maass form of weight 1/2 on Γ1(144f 2
c
˜̀
cP2) with the property that its non-

holomorphic part is supported on summands of the form ∗q− è
cP2n2

. These terms are
annihilated by taking the P-quadratic twist of this Maass form. Consequently, by
the discussion above, we obtain a weakly holomorphic modular form of weight 1/2

on Γ1(144f 2
c
˜̀
cP4). Thanks to (4.4), the conclusion of Theorem 1.4 follows easily by

arguing as in the proof of Theorem 1.3. �
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4.2. Ramanujan-type Congruences. Here we use Theorem 1.4 and facts about
eigenvalues of Hecke operators to prove Theorem 1.5. Basically, the result follows from
the general phenomenon that coefficients of weakly holomorphic modular forms sat-
isfy Ramanujan-type congruences. This phenomenon was first observed by the second
author in his first work on Ramanujan congruences for p(n) [25]. Subsequent general-
izations of this argument appear in [1, 2, 24, 31]. Since this strategy is now quite well
known, for brevity we only offer sketches of proofs.

To prove Theorem 1.5, we shall employ a recent general result of Treneer [31], which
generalizes earlier works by Ahlgren and the second author on weakly holomorphic
modular forms. In short, Theorem 1.4, combined with her result, reduces the proof of
Theorem 1.5 to the fact that any finite number of half-integral weight cusp forms with
integer coefficients are annihilated modulo a fixed prime power by a positive proportion
of half-integral weight Hecke operators.

The following theorem is easily obtained by generalizing the proof of Theorem 2.2
of [26].

Theorem 4.2. Suppose that f1(z), f2(z), . . . , fs(z) are half-integral weight cusp forms
where

fi(z) ∈ Sλi+
1
2
(Γ1(4Ni)) ∩ OK [[q]],

and where OK is the ring of integers of a fixed number field K. If Q is prime and j ≥ 1
is an integer, then the set of primes L for which

fi(z) | Tλi
(L2) ≡ 0 (mod Qj),

for each 1 ≤ i ≤ s, has positive Frobenius density. Here Tλi
(L2) denotes the usual L2

index Hecke operator of weight λi + 1
2
.

Sketch of the Proof. By the commutativity of the Hecke operators of integer and half-
integral weight under the Shimura correspondence [30], it suffices to show that a posi-
tive proportion of primes L have the property that

Sh(fi) | T2λi
(L) ≡ 0 (mod Qj),

for each 1 ≤ i ≤ s. Here Sh(fi) denotes the image of fi(z) under the Shimura corre-
spondence, and T2λi

(L) denotes the usual Lth weight 2λi Hecke operator. Theorem 2.2
of [26] ensures that the set of such primes L has positive Frobenius density provided
that a single such prime L - lcm(4, Q, N1, . . . , Ns) exists. That such primes L exist is
essentially a classical observation of Serre (for example, see §6 of [29]). �

Two remarks.
1) The primes L in Theorem 4.2 may be chosen to lie in the arithmetic progression
L ≡ −1 (mod lcm(4, Q, N1, . . . , Ns)).
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2) Strictly speaking, Serre only states his observations for integer weight modular forms
on a congruence subgroup Γ0(N) with fixed Nebentypus and fixed weight. To verify
the claim, one examines the Q-adic Galois representation

ρ := ⊕fρf ,

where the indices f walk over all the weight 2λi newforms with Nebentypus whose
levels divide 4Ni. By the Chebotarev Density Theorem, the claim follows since the
number of such f is finite, and the fact that each ρf is odd and has the property
that their corresponding traces of Frobenius elements Q-adically interpolate the Hecke
eigenvalues of f .

Sketch of the Proof of Theorem 1.5. Suppose that P - 6tQ is prime. By Theorem 1.4,
for every 0 ≤ r < t

(4.5) F (r, t,P ; z) =
∞∑

n=1

a(r, t,P ; n)qn :=
∑

(24`tn−`t
P )=−(−24 è

t
P )

(
N(r, t; n)− p(n)

t

)
q`tn− `t

24

is a weakly holomorphic modular form of weight 1/2 on Γ1(144f 2
t
˜̀
tP4). Furthermore,

by the work of Ahlgren and the second author [2], it is known that

(4.6) P (t,P ; z) =
∞∑

n=1

p(t,P ; n)qn :=
∑

(24`tn−`t
P )=−(−24 è

t
P )

p(n)q`tn− `t
24

is a weakly holomorphic modular form of weight −1/2 on Γ1(576˜̀tP4). In particular,

observe that all of these forms are modular with respect to Γ1(576f 2
t
˜̀
tP4).

Now since Q - 576f 2
t
˜̀
tP4, a recent result of Treneer (see Theorem 3.1 of [31]),

generalizing earlier observations of Ahlgren and Ono [2, 3, 25], implies that there is a
sufficiently large integer m for which∑

Q-n

a(r, t,P ; Qmn)qn,

for all 0 ≤ r < t, and ∑
Q-n

p(t,P ; Qmn)qn

are all congruent modulo Qj to forms in the graded ring of half-integral weight cusp

forms with algebraic integer coefficients on Γ1(576f 2
t
˜̀
tP4Q2).

Theorem 4.2 applies to these t+1 forms, and it guarantees that a positive proportion
of primes L have the property that these t + 1 half-integral weight cusp forms modulo
Qj are annihilated by the index L2 half-integral weight Hecke operators. Theorem 1.5
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now follows mutatis mutandis as in the proof of Theorem 1 of [25] (see the top of page
301 of [25]). �

Remark. Treneer states her result for weakly holomorphic modular forms on Γ0(4N)
with Nebentypus. We are using a straightforward extension of her result to Γ1(4N)
which is obtained by decomposing such forms into linear combinations of forms with
Nebentypus. It is not difficult to produce such decompositions involving algebraic
linear combinations of modular forms whose Fourier coefficients are algebraic integers
(which is important when proving congruences). For example, one can multiply each
such form by a suitable odd power of η(24z) ∈ S 1

2
(Γ0(576),

(
12
·

)
) to obtain an integer

weight cusp form with integer coefficients. One may rewrite such forms as an algebraic
linear combination of cusp forms with algebraic integer coefficients using the theory of
newforms with Nebentypus. Then divide each resulting summand by the original odd
power of η(24z), which is non-vanishing on H, to obtain the desired decomposition into
weakly holormophic forms with Nebentypus.
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