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Abstract. In 1944, Freeman Dyson initiated the study of ranks of integer partitions.
Here we solve the classical problem of obtaining formulas for Ne(n) (resp. No(n)),
the number of partitions of n with even (resp. odd) rank. Thanks to Rademacher’s
celebrated formula for the partition function, this problem is equivalent to that of
obtaining a formula for the coefficients of the mock theta function f(q), a problem
with its own long history dating to Ramanujan’s last letter to Hardy. Little was
known about this problem until Dragonette in 1952 obtained asymptotic results. In
1966, G. E. Andrews refined Dragonette’s results, and conjectured an exact formula
for the coefficients of f(q). By constructing a weak Maass-Poincaré series whose
“holomorphic part” is q−1f(q24), we prove the Andrews-Dragonette conjecture, and
as a consequence obtain the desired formulas for Ne(n) and No(n).

1. Introduction and Statement of Results

A partition of a positive integer n is any non-increasing sequence of positive integers
whose sum is n. As usual, let p(n) denote the number of partitions of n. The partition
function p(n) has the well known generating function

∞∑

n=0

p(n)qn =

∞∏

n=1

1

1 − qn
,

which is easily seen to coincide with q
1
24/η(z), where

η(z) := q1/24

∞∏

n=1

(1 − qn) (q := e2πiz)

is Dedekind’s eta-function, a weight 1/2 modular form. Rademacher famously em-
ployed this modularity to perfect the Hardy-Ramanujan asymptotic formula

(1.1) p(n) ∼ 1

4n
√

3
· eπ

√
2n/3

to obtain his exact formula for p(n) (for example, see Chapter 14 of [22]).
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To state his formula, let Is(x) be the usual I-Bessel function of order s, and let
e(x) := e2πix. Furthermore, if k ≥ 1 and n are integers, then let

(1.2) Ak(n) :=
1

2

√
k

12

∑

x (mod 24k)
x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

where the sum runs over the residue classes modulo 24k, and where

χ12(x) :=

(
12

x

)
.(1.3)

If n is a positive integer, then one version of Rademacher’s formula reads

(1.4) p(n) = 2π(24n− 1)−
3
4

∞∑

k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

In an effort to provide a combinatorial explanation of Ramanujan’s congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

Dyson introduced [17] the so-called “rank” of a partition, a delightfully simple statistic.
The rank of a partition is defined to be its largest part minus the number of its parts.
In this famous paper [17], Dyson conjectured that ranks could be used to “explain”
the congruences above with modulus 5 and 7. More precisely, he conjectured that the
partitions of 5n + 4 (resp. 7n + 5) form 5 (resp. 7) groups of equal size when sorted
by their ranks modulo 5 (resp. 7)1. He further postulated the existence of another
statistic, the so-called “crank”2, which allegedly would explain all three congruences.
In 1954, Atkin and Swinnerton-Dyer proved [9] Dyson’s rank conjectures, consequently
cementing the central role that ranks play in the theory of partitions.

To study ranks, it is natural to investigate a generating function. If N(m,n) denotes
the number of partitions of n with rank m, then it is well known that

1 +
∞∑

n=1

∞∑

m=−∞
N(m,n)zmqn = 1 +

∞∑

n=1

qn2

(zq; q)n(z−1q; q)n

,

where

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1).

1A short calculation reveals that this phenomenon cannot hold modulo 11.
2In 1988, Andrews and Garvan [8] found the crank, and they indeed confirmed Dyson’s speculation

that it “explains” the three Ramanujan congruences above. Recent work of Mahlburg [21] estab-
lishes that the Andrews-Dyson-Garvan crank plays an even more central role in the theory partition
congruences. His work concerns partition congruences modulo arbitrary powers of all primes ≥ 5.
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Therefore, if Ne(n) (resp. No(n)) denotes the number of partitions of n with even
(resp. odd) rank, then by letting z = −1 we obtain

(1.5) 1 +

∞∑

n=1

(Ne(n) −No(n))qn = 1 +

∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

We address the following classical problem: Determine exact formulas for Ne(n) and
No(n). In view of (1.4) and (1.5), since

p(n) = Ne(n) +No(n),

this question is equivalent to the problem of deriving exact formulas for the coefficients
α(n) of the series

f(q) = 1 +

∞∑

n=1

α(n)qn : = 1 +

∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2

= 1 + q − 2q2 + 3q3 − 3q4 + 3q5 − 5q6 + · · · .
(1.6)

The series f(q) is one of the third order mock theta functions Ramanujan defined
in his last letter to Hardy dated January 1920 (see pages 127-131 of [23]). Sur-
prisingly, very little is known about mock theta functions in general. For example,
Ramanujan’s claims about their analytic properties remain open. There is even de-
bate concerning the rigorous definition of a mock theta function, which, of course,
precedes the formulation of one’s order. Despite these seemingly problematic issues,
Ramanujan’s mock theta functions possess many striking properties, and they have
been the subject of an astonishing number of important works, (for example, see
[2, 3, 4, 5, 7, 12, 13, 14, 16, 19, 26, 27] to name a few). This activity realizes G.
N. Watson’s3 prophetic words:

“Ramanujan’s discovery of the mock theta functions makes it obvious that his skill and
ingenuity did not desert him at the oncoming of his untimely end. As much as any
of his earlier work, the mock theta functions are an achievement sufficient to cause
his name to be held in lasting remembrance. To his students such discoveries will be
a source of delight and wonder until the time shall come when we too shall make our
journey to that Garden of Proserpine (a.k.a. Persephone)...”

Returning to f(q), the problem of estimating its coefficients α(n) has a long history,
one which even precedes Dyson’s definition of partition ranks. Indeed, Ramanujan’s
last letter to Hardy already includes the claim that

α(n) = (−1)n−1
exp

(
π
√

n
6
− 1

144

)

2
√
n− 1

24

+O




exp
(

1
2
π
√

n
6
− 1

144

)

√
n− 1

24


 .

3This quote is taken from Watson’s 1936 Presidential Address to the London Mathematical Society
entitled “The final problem: An account of the mock theta functions” (see page 80 of [26]).
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Typical of his writings, Ramanujan offered no proof of this claim. Dragonette fi-
nally proved this claim in her 1951 Ph.D. thesis [16] written under the direction of
Rademacher. In his 1964 Ph.D. thesis, also written under Rademacher, Andrews im-
proved upon Dragonette’s work, and he proved4 that
(1.7)

α(n) = π(24n− 1)−
1
4

[
√

n ]∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· I 1

2

(
π
√

24n− 1

12k

)
+O(nε).

This result falls short of the problem of obtaining an exact formula for α(n), and as
a consequence represents the obstruction to obtaining formulas for Ne(n) and No(n).
In his plenary address “Partitions: At the interface of q-series and modular forms”,
delivered at the Millenial Number Theory Conference at the University of Illinois in
2000, Andrews highlighted this classical problem by promoting his conjecture5 of 1966
(see page 456 of [2], and Section 5 of [4]) for the coefficients α(n).

Conjecture. (Andrews-Dragonette)
If n is a positive integer, then

(1.8) α(n) = π(24n− 1)−
1
4

∞∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· I 1

2

(
π
√

24n− 1

12k

)
.

The following theorem gives the first exact formulas for the coefficients of a mock theta
function.

Theorem 1.1. The Andrews-Dragonette Conjecture is true.

Remark. Since Ne(n) = (p(n) + α(n))/2 and No(n) = (p(n) − α(n))/2, Theorem 1.1,
combined with (1.4), provides the desired formulas for Ne(n) and No(n).

To prove Theorem 1.1, we use recent work of Zwegers [27] which nicely packages
Watson’s transformation properties of f(q) in terms of real analytic vector valued
modular forms. Loosely speaking, Zwegers “completes” q−1/24f(q) to obtain a three
dimensional real analytic vector valued modular form of weight 1/2. We recall his
results in Section 2. To prove Theorem 1.1, we realize the q-series, whose coefficients
are given by the infinite series expansions in (1.8), as the “holomorphic part” of a weak
Maass form. This form is defined in Section 3.1 as a specialization of a Poincaré series,
and in Section 3.2 we confirm that the coefficients of its holomorphic part are indeed
in agreement with the expansions in (1.8). To complete the proof of Theorem 1.1, it
then suffices to establish a suitable identity relating this weak Maass form to Zwegers’
form. We achieve this in Section 5 by analyzing the image of these forms under the
differential operator ξ 1

2
(defined in Section 5). This task requires the Serre-Stark Basis

4This is a reformulation of Theorem 5.1 of [2] using the identity I 1

2

(z) =
(

2

πz

) 1

2 · sinh(z).
5This conjecture is suggested as a speculation by Dragonette in [16].
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Theorem for weight 1/2 holomorphic modular forms, and estimates on sums of the
A2k-sums derived in Section 4.

Acknowledgements

The authors thank George Andrews for helpful comments concerning the historical
background of the subject, and the authors thank John Friedlander, Sharon Garthwaite
and Karl Mahlburg for their helpful comments.

2. Modular transformation properties of q−
1
24 f(q)

Here we recall what is known about q−1/24f(q) and its modular transformation prop-
erties. An important first step was already achieved by G. N. Watson in [26]. Although
f(q) is not the Fourier expansion of a usual meromorphic modular form, in this classic
paper Watson determined modular transformation properties which strongly suggested
that f(q) is a “piece” of a real analytic modular form, as opposed to a classical mero-
morphic modular form.

Watson’s modular transformation formulas are very complicated, and are difficult
to grasp at first glance. In particular, the collection of these formulas involve another
third order mock theta function, as well as terms arising from Mordell integrals. Recent
work of Zwegers [27] nicely packages Watson’s results in the modern language of real
analytic vector valued modular forms. We recall some of his results as they pertain to
f(q).

We begin by fixing notation. Let ω(q) be the third order mock theta function

ω(q) : =

∞∑

n=0

q2n2+2n

(q; q2)2
n+1

=
1

(1 − q)2
+

q4

(1 − q)2(1 − q3)2
+

q12

(1 − q)2(1 − q3)2(1 − q5)2
+ · · · .

(2.1)

If q := e2πiz, where z ∈ H, then define the vector valued function F (z) by

(2.2) F (z) = (F0(z), F1(z), F2(z))
T := (q−

1
24 f(q), 2q

1
3ω(q

1
2 ), 2q

1
3ω(−q 1

2 ))T .

Similarly, let G(z) be the vector valued non-holomorphic function defined by

(2.3) G(z) = (G0(z), G1(z), G2(z))
T := 2i

√
3

∫ i∞

−z

(g1(τ), g0(τ), −g2(τ))
T

√
−i(τ + z)

dτ,
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where the gi(τ) are the cuspidal weight 3/2 theta functions

g0(τ) :=
∞∑

n=−∞
(−1)n

(
n+

1

3

)
e3πi(n+ 1

3)
2
τ ,

g1(τ) := −
∞∑

n=−∞

(
n+

1

6

)
e3πi(n+ 1

6)
2
τ ,

g2(τ) :=

∞∑

n=−∞

(
n+

1

3

)
e3πi(n+ 1

3)
2
τ .

(2.4)

Using these vector valued functions, Zwegers defines H(z) by

(2.5) H(z) := F (z) −G(z).

The following description of H(z) is the main result of [27].

Theorem 2.1. (Zwegers)
The function H(z) is a vector valued real analytic modular form of weight 1/2 satisfying

H(z + 1) =



ζ−1
24 0 0
0 0 ζ3
0 ζ3 0


H(z),

H(−1/z) =
√
−iz ·




0 1 0
1 0 0
0 0 −1


H(z),

where ζn := e2πi/n. Furthermore, H(z) is an eigenfunction of the Casimir operator

Ω 1
2

:= −4y2 ∂2

∂z∂z
+ iy ∂

∂z
+ 3

16
with eigenvalue 3

16
, where z = x+ iy, ∂

∂z
= 1

2

(
∂
∂x

− i ∂
∂y

)
,

and ∂
∂z

= 1
2

(
∂
∂x

+ i ∂
∂y

)
.

We give a consequence of Zwegers’ result in terms of weak Maass forms of half-
integral weight. To make this precise, suppose that k ∈ 1

2
+ Z. If v is odd, then define

εv by

(2.6) εv :=

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).

The weight k Casimir operator is defined by

(2.7) Ωk := −4y2 ∂2

∂z∂z̄
+ 2iky

∂

∂z̄
+

2k − k2

4
.
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Notice that the weight k hyperbolic Laplacian

(2.8) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)

is related to the Casimir operator Ωk by the simple identity

Ωk = ∆k +
2k − k2

4
,

where z = x+ iy with x, y ∈ R.
Following Bruinier and Funke, we now recall the notion [11] of a weak Maass form

of half-integral weight.

Definition 2.2. Suppose that k ∈ 1
2

+ Z, N is a positive integer, and that ψ is a
Dirichlet character with modulus 4N . A weak Maass form of weight k on Γ0(4N) with
Nebentypus character ψ is any smooth function f : H → C satisfying the following:

(1) For all A = ( a b
c d ) ∈ Γ0(4N) and all z ∈ H, we have6

f(Az) = ψ(d)

(
c

d

)2k

ε−2k
d (cz + d)k f(z).

(2) We have that ∆kf = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps of

Γ0(4N).

Before we state a useful corollary to Theorem 2.1, we recall certain facts about
Dedekind sums and their role in describing the modular transformation properties of
Dedekind’s eta-function. If x ∈ R, then let

((x)) :=

{
x− bxc − 1

2
for x ∈ R \ Z,

0 if x ∈ Z.

For coprime integers c and d, let s(d, c) be the usual Dedekind sum

s(d, c) :=
∑

µ (mod c)

((µ
c

))((dµ
c

))
.

In terms of these sums, we define ωd,c by

ωd,c := eπis(d,c).(2.9)

Using this notation, if ( a b
c d ) ∈ SL2(Z), with c > 0, then we have7

(2.10) η

(
az + b

cz + d

)
= i−

1
2 · ω−d,c · exp

(
πi(a + d)

12c

)
· (cz + d)

1
2 · η(z).

6This transformation law agrees with Shimura’s notion of half-integral weight modular forms [25].
7This formula is easily derived from the formulas appearing in Chapter 9 of [22].
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Remark. The exponential sums defined by (1.2) may also be described in terms of
Dedekind sums. In particular, if k ≥ 1 and n are integers, then Ak(n) is also given by
(see (120.5) on page 272 of [22])

Ak(n) =
∑

x (mod k)∗

ω−x,k · e
(nx
k

)
,(2.11)

where the sum runs over the primitive residue classes x modulo k.

Theorem 2.1 implies the following convenient corollary.

Corollary 2.3. The function M(z) := F0(24z) − G0(24z) is a weak Maass form of
weight 1/2 on Γ0(144) with Nebentypus character χ12.

Sketch of the proof. It is well known that η(24z) is a cusp form of weight 1/2 for the
group Γ0(576) with Nebentypus χ12. For integers n, we obviously have

M̃(z + n) = e(−n/24) · M̃(z),

where M̃(z) = F0(z) − G0(z). Therefore, to prove the claim it suffices to compare
the automorphy factors of M(z) with those appearing in (2.10) when interpreted for
η(24z). By Theorem 2.1 (see also Theorem8 2.2 of [2]), if ( a b

c d ) ∈ Γ0(2), with c > 0,
then

M̃

(
az + b

cz + d

)
= i−

1
2 · ω−1

−d,c · (−1)
c+1+ad

2 · e
(
−a + d

24c
− a

4
+

3dc

8

)
(cz + d)

1
2 · M̃(z).

In view of these formulas, it is then straightforward to verify that the automorphy
factors above agree with those for η(24z) when restricted to Γ0(576). Consequently,
it then follows that M(z) is also a weak Maass form of weight 1/2 on Γ0(576) with
Nebentypus χ12.

In order to verify that M(z) satisfies the desired transformation law under Γ0(144),
it suffices to check that its images under the representatives for the non-trivial classes
in Γ0(144)/Γ0(576) behave properly. For example, if H(z) = (H0(z), H1(z), H2(z))

T ,
then Theorem 2.1 gives

M

(
z

288z + 1

)
= H0

(
24z

12(24z) + 1

)
=

(
−i
(

12(24z) + 1

−24z

)) 1
2

·H1

(
12(24z) + 1

−24z

)

=

(
−i
(

12(24z) + 1

−24z

)) 1
2

·H1

(
− 1

24z

)

= (288z + 1)
1
2 ·H0(24z) = (288z + 1)

1
2 ·M(z).

This is the desired transformation law under z → 1
288z+1

. The analogous computation
for the remaining representatives completes the proof. �

8There is a minor typo in the displayed formula which is easily found when reading the proof.
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Remark. Let ψ (mod 6) be the Dirichlet character

ψ(n) :=

{
1 if n ≡ 1 (mod 6),

−1 if n ≡ 5 (mod 6).

The theta-function

ϑ(ψ; z) :=

∞∑

n=1

ψ(n)n qn2

is well known to be a cusp form of weight 3/2 on Γ0(144) with Nebentypus χ12 (for
example, see [25]). One easily sees that

g1(24z) = −1

6
· ϑ(ψ; z).

In fact, one could also use this fact to deduce Corollary 2.3.

3. The Poincaré series Pk(s; z)

Here we construct a Poincaré series which has the property that the Fourier coeffi-
cients of its “holomorphic part”, when s = 3/4 and k = 1/2, are given by the infinite
series expansions appearing in (1.8). In Section 3.1, we begin by defining this series
as a trace over Möbius transformations, and in Section 3.2 we compute its Fourier
expansion. The main result of this calculation is the reproduction of the infinite series
formulas in (1.8) as coefficients of the holomorphic part of a weak Maass form of weight
1/2 on Γ0(144) with Nebentypus character χ12.

3.1. The construction. Suppose that k ∈ 1
2

+ Z. We now define an important class
of Poincaré series Pk(s; z). For matrices ( a b

c d ) ∈ Γ0(2), with c ≥ 0, define the character
χ(·) by

(3.1) χ

((
a b
c d

))
:=

{
e
(
− b

24

)
if c = 0,

i−1/2(−1)
1
2
(c+ad+1)e

(
−a+d

24c
− a

4
+ 3dc

8

)
· ω−1

−d,c if c > 0.

Remark. The character χ is defined to coincide with the automorphy factor for the real
analytic form F0(z) −G0(z) when restricted to Γ0(2).

Throughout, let z = x+ iy, and for s ∈ C, k ∈ 1
2

+ Z, and y ∈ R \ {0}, let

(3.2) Ms(y) := |y|− k
2Mk

2
sgn(y), s− 1

2
(|y|),

where Mν,µ(z) is the standard M-Whittaker function which is a solution to the differ-
ential equation

∂2u

∂z2
+

(
−1

4
+
ν

z
+

1
4
− µ2

z2

)
u = 0.

Furthermore, let

ϕs,k(z) := Ms

(
−πy

6

)
e
(
− x

24

)
.
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It is straightforward to confirm that ϕs,k(z) is an eigenfunction of the Casimir operator

Ωk = −4y2 ∂2

∂z∂z̄
+ 2iky

∂

∂z̄
+

2k − k2

4

with eigenvalue s(1−s). Using this notation, we now define the Poincaré series Pk(s; z)
by

(3.3) Pk(s; z) :=
2√
π

∑

M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−kϕs,k(Mz).

Here Γ∞ is the subgroup of translations in SL2(Z)

Γ∞ :=

{
±
(

1 n
0 1

)
: n ∈ Z

}
.

Remark. Strictly speaking, the definition of Pk(s; z) is not well defined because χ
was only defined for those matrices with c ≥ 0. In the definition, simply choose
representatives for Γ∞\Γ0(2) with non-negative c.

If k ≤ 1/2 (resp. k ≥ 3/2), then the specialization of Pk(s; z) at s = 1 − k/2 (resp.
s = k/2) is a weak Maass form of weight k. The defining series is absolutely convergent
for Pk

(
1 − k

2
; z
)

(resp. Pk

(
k
2
; z
)
) for k < 1/2 (resp. k > 3/2). We obtain the Maass

forms when k = 1/2 (resp. k = 3/2) by a process of continuation using the convergence
of the Fourier expansion (which is shown in Section 4 in the case where k = 1/2). Here
we prove the case which is of interest in the present work.

Theorem 3.1. If k ∈ 1
2
+ Z with k ≤ 1

2
, then the series Pk

(
1 − k

2
; z
)

is a real analytic
function and satisfies, for M = ( a b

c d ) ∈ Γ0(2), the transformation

Pk

(
1 − k

2
;Mz

)
= χ(M) (cz + d)k Pk

(
1 − k

2
; z

)
.

In particular, the function Pk

(
1 − k

2
; 24z

)
is a weak Maass form of weight k for Γ0(144)

with Nebentypus χ12.

Proof. We first assume that k < 1/2. Since ϕs,k(z) = O
(
yRe(s)− k

2

)
as y → 0, the series

Pk

(
1 − k

2
; z
)

is absolutely convergent for k < 1/2. Furthermore, since ϕs,k(z) is an

eigenfunction of Ωk with eigenvalue (2k − k2)/4, it follows directly that Pk

(
1 − k

2
; z
)

is a real analytic function which is annihilated by ∆k. That Pk

(
1 − k

2
; 24z

)
is a weak

Maass form for Γ0(144) with Nebentypus χ12 follows as in the proof of Corollary 2.3.
The case where k = 1/2 requires a little more care. In Theorem 3.2, we shall compute

the Fourier coefficients of P 1
2

(
3
4
; z
)
, and it will turn out that these expressions are

convergent. This convergence will follow from Corollary 4.2. Combined with these
additional facts, the proof of Theorem 3.1, in the case where k = 1/2, follows as
above. �
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3.2. The Fourier expansion. Here we compute the Fourier expansion of P 1
2

(
3
4
; z
)
,

and confirm that its “holomorphic part” agrees with the conjectured expansions for the
coefficients of the mock theta function q−

1
24 f(q). We first require some more notation.

For s ∈ C and y ∈ R \ {0}, let

(3.4) Ws(y) := |y|− 1
4W 1

4
sgn(y), s− 1

2
(|y|),

where Wν,µ denotes the usual W -Whittaker function. For y > 0, we shall require the
following relations, which are easily deduced from standard properties of Whittaker
functions (for example, see [6] or [1]):

W 3
4
(y) = e−

y

2 ,(3.5)

W 3
4
(−y) = e

y

2 · Γ
(

1

2
, y

)
,(3.6)

M 3
4
(−y) =

1

2

(√
π − Γ

(
1

2
, y

))
· e y

2 ,(3.7)

where

Γ(a, x) :=

∫ ∞

x

e−tta
dt

t

is the incomplete Gamma function. Furthermore, let J 1
2
(x) be the usual J-Bessel

function of order 1/2.
Using this notation, we obtain the following Fourier expansion for P 1

2

(
3
4
; z
)
.

Theorem 3.2. Assuming the notation above, we have that

P 1
2

(
3

4
; z

)
=

(
1 − π− 1

2 · Γ
(

1

2
,
πy

6

))
· q− 1

24 +
0∑

n=−∞
γy(n)qn− 1

24 +
∞∑

n=1

β(n)qn− 1
24 ,

where for positive integers n we have

β(n) = π(24n− 1)−
1
4

∞∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· I 1

2

(
π
√

24n− 1

12k

)
,

and for non-positive integers n we have

γy(n) = π
1
2 |24n− 1|− 1

4 · Γ
(

1

2
,
π|24n− 1| · y

6

)

×
∞∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· J 1

2

(
π
√
|24n− 1|
12k

)
.
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Remark. The convergence of the coefficients β(n) and γy(n) will be established by
Corollary 4.2. From this one obtains the convergence of the Fourier expansion of
P 1

2

(
3
4
; z
)
.

Proof of Theorem 3.2. We first compute the Fourier expansion of P 1
2
(s; z), and then

set s = 3/4. First we describe a set of representatives for Γ∞\Γ0(2). We select a
single matrix ( a b

c d ) for each pair (c, d), where (c, d) runs through all coprime elements
in N×Z, with 2|c, together with the pair (c, d) = (0, 1). For each such pair, we choose
(a, b) arbitrarily so that ad− bc = 1.

We now compute the Fourier expansion by explicitly computing the contribution
from each such matrix representative. The contribution in P 1

2
(s; z) coming from c = 0

equals

2√
π
e
(
− x

24

)
Ms

(
−πy

6

)
.

Using (3.7), when s = 3/4 we obtain
(

1 − π− 1
2 · Γ

(
1

2
,
πy

6

))
· q− 1

24 .

The contribution to P 1
2
(s; z) for c > 0, can easily be seen to equal

i
1
2

∑

c>0
2|c

c−
1
2

∑

d (mod c)∗

(−1)
1
2
(c+1+ad) · e

(
d

24c
+
a

4
− 3dc

8

)
· ω−d,c

∑

n∈Z

(z + d/c+ n)−
1
2 Ms

(
− πy

6c2 |z + d/c+ n|2
)
e

(
− 1

24c2
Re

(
1

z + d/c+ n

))
.

To compute the Fourier expansion of this function, we let

f(z) :=
∑

n∈Z

(z + n)−
1
2 Ms

(
− πy

6c2 |z + n|2
)
e

(
− 1

24c2
Re

(
1

z + n

))
.

This function has a Fourier expansion

f(z) =
∑

n∈Z

ay(n)e2πi(n− 1
24)x,

where

ay(n) =

∫

R

z−
1
2Ms

(
− πy

6c2|z|2
)
e

(
− x

24c2|z|2 −
(
n− 1

24

)
x

)
dx.

This integral is computed on page 357 of [18] (see also page 33 of [10]).
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An easy calculation using (2.11) shows that

(−1)b
c+1
2

cA2c

(
n− c (1 + (−1)c)

4

)

=
∑

d (mod 2c)∗

ω−d,2c(−1)
2c+1+ad

2 e

(
a− 3dc

4
+
nd

2c

)
.

Using (3.5) and (3.6), it is simple to confirm the stated Fourier expansion. �

4. Some estimates for sums involving Ak(n)

Strictly speaking, the proof of Theorem 3.1 is incomplete when k = 1/2. To make
it complete, it suffices to show that the formulas for the coefficients α(n) and β(n) in
Theorem 3.2 are convergent. Using (1.2), it turns out that it will be sufficient to obtain
estimates for certain expressions involving the following sums:

(4.1) ρ1(n; k) :=
∑

x (mod 48k)
x2≡−24n+1 (mod 48k)

χ12(x) · e
( x

24k

)
,

(4.2) ρ2(n; k) :=
∑

x (mod 12k)
x2≡−24n+1 (mod 12k)

χ12(x) · i
x2

−1
12k · e

( x

24k

)
.

4.1. The required estimates. The following theorem, which is obtained by general-
izing an old argument of Hooley (see Section 6 of [20]), will give the necessary estimates
for these sums.

Theorem 4.1. If n and k ≥ 1 are integers, then we have the estimates:
∣∣∣∣∣
∑

k≥1 odd

ρ1(n; k)

k

∣∣∣∣∣ = O(|24n− 1| 12 )
∣∣∣∣∣
∑

k≥2 even

ρ1(n; k)

k

∣∣∣∣∣ and

∣∣∣∣∣
∑

k≥2 even

ρ2(n; k)

k

∣∣∣∣∣ = O(|24n− 1| 12 ).

Theorem 4.1 easily implies the following estimates.

Corollary 4.2. The following estimates are true:

(1) For positive integers n, we have
∣∣∣∣∣∣

∞∑

k=b√nc+1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· I 1

2

(
π
√

24n− 1

12k

)∣∣∣∣∣∣
= O((24n− 1)

3
4 ).
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(2) For non-positive integers n, we have
∣∣∣∣∣∣∣∣

∞∑

k=1

(−1)b
k+1
2

cA2k

(
n− k(1+(−1)k)

4

)

k
· J 1

2

(
π
√

|24n− 1|
12k

)
∣∣∣∣∣∣∣∣
= O(|24n− 1| 34 ).

Remark. We prove Theorem 4.1 by modifying an elegant argument of Hooley involving
the interplay between quadratic congruences and the representation of integers by
quadratic forms. Instead of modifying Hooley’s argument, one could instead amplify
his strategy by employing spectral methods applied to Maass forms. Although such
an approach would give stronger estimates, Theorem 4.1 is sufficient for the proof of
Theorem 1.1.

Proof of Corollary 4.2. By (1.2), it follows that

(4.3)
A2k

(
n− k(1+(−1)k)

4

)

k
=
ρ(n; k)√

24k
,

where

(4.4) ρ(n; k) :=
∑

x (mod 48k)

x2≡−24n+6k(1+(−1)k)+1 (mod 48k)

χ12(x) · e
( x

24k

)
.

If k is odd, then note that ρ(n; k) = ρ1(n; k).
Suppose that k is even. Using the fact that (x + 12k)2 ≡ x2 + 24k (mod 48k), one

may group the sum defining ρ2(n; k) into two pairs of equal sums. Arguing in this way,
it is not difficult to show that

4e
( n

2k

)
ρ2(n; k) = 2ρ1(n; k) + 2i

∑

x (mod 48k)
x2≡−24n+1+12k (mod 48k)

χ12(x) · e
( x

24k

)

= 2ρ1(n; k) + 2iρ(n; k).

Combining (4.3) with these facts gives

(4.5)
A2k

(
n− k(1+(−1)k)

4

)

k
=





ρ1(n;k)√
24k

for odd k,

i·ρ1(n;k)√
24k

− 2ie( n
2k )ρ2(n;k)
√

24k
for even k.

Since we have that

I 1
2

(
π
√

24n− 1

12k

)
∼ J 1

2

(
π
√
|24n− 1|
12k

)
∼ |24n− 1| 14√

6k
,
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as k → +∞, observation (4.5), the trivial bounds for those summands with 1 ≤ k <

b√nc + 1 (note. We have that J 1
2
(x) =

√
2

πx
· sin(x)), combined with the estimates in

Theorem 4.1, gives the desired estimates. �

4.2. Proof of Theorem 4.1. To prove Theorem 4.1, we closely follow the proof of
Theorem 1 of [20]. Given an integer N , his theorem gives estimates for sums of form

∑

k≤X

S(h; k),

where

S(h; k) :=
∑

x (mod k)
x2≡N (mod k)

e

(
hx

k

)
.

Theorem 4.1 essentially involves “twisted” versions of such sums which are further
modified by dividing each summand by k.

We require the following well-known estimate for incomplete Kloosterman sums
(note. see Lemma 3 of [20]).

Lemma 4.3. If h, r 6= 0, α, and β are integers satisfying 0 ≤ β − α ≤ 2|r|, then we
have

∑

α≤s≤β
gcd(r,s)=1

e

(
−hs̄
r

)
= O

(
|r| 12 · gcd(h, r)

1
2d(r) log(2|r|)

)
,

where d(r) denotes the number of positive divisors of r, and s̄ denotes the inverse of s
modulo r.

Proof of Theorem 4.1. For brevity, we only prove the first estimate. The other cases
follow in an analogous way. The argument is based on the action of subgroups of
SL2(Z) on quadratic forms. For X ∈ R, we define

(4.6) R(n;X) :=
∑

k≥1 odd
12k≤X

ρ1(n; k)

k
.

For an odd positive integer k, let

Q(x, y) := [12k, b, c] := 12kx2 + bxy + cy2(4.7)

be an integral binary quadratic form with discriminant −24n+1. Clearly, the coefficient
b, of Q, solves the congruence

b2 ≡ −24n+ 1 (mod 48k).(4.8)

Conversely, every pair of integers (k, b), where k is an odd positive integer and b a
solution of the congruence (4.8), corresponds to such a quadratic form (4.7). For every
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odd k and integer x that solves (4.8), there are integers a, b, c, α, β, γ, and δ with
αδ − βγ = 1, 24|γ, and a ≡ 12 (mod 24) such that

12k = aα2 + bαγ + cγ2 =: kα,γ,(4.9)

x = 2aαβ + b(αδ + βγ) + 2cγδ =: xα,γ .(4.10)

Therefore, we have that

x

24k
=

2aαβ + b(αδ + βγ) + 2cγδ

2(aα2 + bαγ + cγ2)
.(4.11)

Since α 6= 0, this equals, for γ 6= 0, the quantity

2β(aα2 + bαγ + cγ2) + bα + 2cγ

2α(aα2 + bαγ + cγ2)
= −γ

α
+

bα + 2cγ

2α(aα2 + bαγ + cγ2)
=: ϑα,γ .(4.12)

Here γ denotes the inverse of γ modulo α. In case γ = 0 (i.e., α = ±1), we set

ϑα,γ :=
b

2a
.

Using these observations, we have that

R(n;X) = 12
∑

Q=[a,b,c]

∑

α,γ

χ12(xα,γ)

kα,γ
· e (ϑα,γ) ,(4.13)

where the outer sum runs over a set of representatives of quadratic forms Q = [a, b, c]
of discriminant −24n + 1 (positive definite forms when −24n + 1 < 0) with a ≡ 12
(mod 24), under the action of Γ0(24). Of course, the number of such quadratic forms is
finite. The inner sum runs over coprime integers α, γ with 24|γ, 0 < aα2 + bαγ+ cγ2 ≤
X, and the summation is restricted for each quadratic form to one representation of
the form (4.9) and (4.10).

Let us first consider the case that −24n + 1 < 0 (i.e. the positive definite case). In
this case, we have

R(n;X) = 12
∑

Q=[a,b,c]

1

|ΓQ|
∑

α,γ

χ12(xα,γ)

kα,γ
· e (ϑα,γ) ,(4.14)

where ΓQ denotes the isotropy subgroup of Q in Γ0(24), and the inner sum runs over
coprime integers α, γ with 24|γ, and 0 < aα2 + bαγ + cγ2 ≤ X. By the theory of
reduced forms, we may assume that

a, b, c� (24n− 1)
1
2 ,(4.15)

where the implied constant is absolute.
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Since 24|γ, the case |α| = |γ| = 1 cannot occur in the inner summation of (4.14).
Hence, we can write the inner sum as

∑

α,γ

χ12(xα,γ)

kα,γ
· e (ϑα,γ) =

∑

|γ|<|α|
+
∑

|α|<|γ|
=:
∑

10

+
∑

11

.

Since both sums can be estimated in exactly the same way, we only consider Σ10. In
this case, we have

|α| < A · |24n− 1| 14 ·X 1
2 =: An,X ,(4.16)

F1(α) ≤ γ ≤ F2(α),(4.17)

for some positive constant A. Here F1(α) and F2(α) are given by

F1(α) := 24

⌊
F1(α)′

24

⌋
,

F2(α) := 24

⌊
F2(α)′

24

⌋
,

F1(α)′ := max

(
−|α|,−bα

2c
− 1

c

(
cX +

(1 − 24n)α2

4

) 1
2

)
,

F2(α)′ := min

(
|α|,−bα

2c
+

1

c

(
cX +

(1 − 24n)α2

4

) 1
2

)
.

If we let

ϕ(α, γ) :=
χ12(xα,γ)

kα,γ
· e
(

bα + 2cγ

2α(aα2 + bαγ + cγ2)

)
,

then
∑

10

=
∑

1≤|α|<An,X

∑

F1(α)≤γ≤F2(α)
(α,γ)=1
24|γ 6=0

e

(
−γ
α

)
ϕ(α, γ) + e

(
b

2a

)
.(4.18)

By partial summation, for α 6= ±1, the inner sum equals
∑

F1(α)≤µ≤F2(α)
(α,γ)=1

24|µ

g(µ) (ϕ(α, µ) − ϕ(α, µ+ 24)) + g (F2(α))ϕ (α, F2(α) + 24) ,(4.19)

where

g(µ) :=
∑

F1(α)
24

≤γ≤ µ

24
(α,γ)=1

e

(
−24 · γ

α

)
.
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When α = ±1, we let the summation run over µ 6= 0, and we include the extra term
e
(

b
2a

)
. Using the series expansion for the exponential function, one finds that

(4.20) ϕ(α, µ) − ϕ(α, µ+ 24) � |α|−3(24n− 1)
1
2 ,

and one trivially finds that

(4.21) ϕ (α, F2(α) + 24) � |α|−2.

Moreover, by Lemma 4.3, we have that

g(µ) � |α| 12d(α) log(2|α|).(4.22)

Inserting (4.20), (4.21), and (4.22) in (4.19), we find that (4.19) can be estimated by

|α|− 5
2d(α) log(2|α|)(24n− 1)

1
2

∑

F1(α)≤µ≤F2(α)

1 + |α|− 3
2d(α) log(2|α|)

� |α|− 3
2d(α) log(2|α|)(24n− 1)

1
2 + |α|− 3

2d(α) log(2|α|)
� (24n− 1)

1
2 |α|− 3

2
+ε.

Inserting this into (4.18), we find that
∑

10

� (24n− 1)
1
2

∑

1≤|α|<An,X

|α|− 3
2
+ε + 1 � (24n− 1)

1
2 ,

where we obtained the last estimate by comparing the sum with an integral. The sum∑
11 is estimated in exactly the same way, and this gives the desired estimate in the

case that −24n + 1 < 0.
We just make some short comments for the case where −24n+1 > 0. For simplicity,

suppose that the quadratic forms considered are primitive (the general case is treated
similarly). We can moreover assume that a > 0 and c < 0. It is well known that every
representation of 12k by ax2 + bxy + cy2 contains exactly one representation of 12k
such that

x, y > 0(4.23)

y ≤ au

t− bu
· x,(4.24)

where (t, u) is a solution of the Pell equation

t2 + (24n− 1)u2 = 4,

where t and u are positive integers. Morover, if the inequalities (4.23) hold, then the
quadratic form only attains positive values, and so the inner sum in (4.13) correspond-
ing to a primitive form Q = [a, b, c] can be written as

∑

α,γ

χ12(xα,γ)

kα,γ
· e (ϑα,γ) ,
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where the sum runs over positive coprime integers α, γ with 24|γ, aγ2 + bαγ+ cγ2 ≤ X
and γ ≤ auα

t−bu
. This sum can now be estimated as in the positive definite case above. �

5. Proof of Theorem 1.1

Here we combine the main results of the previous sections to prove Theorem 1.1.
For convenience, we let

(5.1) P (z) := P 1
2

(
3

4
; 24z

)
.

Canonically decompose P (z) into a non-holomorphic and a holomorphic part

(5.2) P (z) = Pnh(z) + Ph(z).

In particular, we have that

Ph(z) = q−1 +
∞∑

n=1

β(n)q24n−1,

where the β(n) are defined in Theorem 3.2.
By Theorem 3.1, P (z) is a weak Maass form of weight 1/2 for Γ0(144) with Neben-

typus χ12. Similarly, the function

M(z) := F0(24z) −G0(24z),

where F0 and G0 are defined by (2.2) and (2.3), by Corollary 2.3, is also a weak Maass
form of weight 1/2 on Γ0(144) with Nebentypus χ12. Decompose M(z) into a non-
holomorphic and a holomorphic part

(5.3) M(z) = Mnh(z) +Mh(z).

In particular, observe that
Mh(z) = q−1f(q24).

Thanks to Theorem 3.2, to prove Theorem 1.1 it suffices to show that Mh(z) = Ph(z).
This identity obviously follows if we establish that

P (z) = M(z).

First we establish the following lemma.

Lemma 5.1. In the notation above, we have

Pnh(z) = Mnh(z).

Proof. To prove Lemma 5.1, we apply an anti-linear differential operator ξk defined by

ξk(g)(z) := 2iyk ∂
∂z̄
g(z).(5.4)

In their work on Theta lifts, Bruinier and Funke (see Proposition 3.2 of [11]) show
that if g is a weak Maass form of weight k for the group Γ0(4N) with Nebentypus
χ, then ξk(g) is a weakly holomorphic modular form of weight 2 − k on Γ0(4N) with
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Nebentypus χ (i.e. those whose poles (if there are any) are supported at the cusps of
Γ0(4N)). Furthermore, ξk has the property that its kernel consists of those weight k
weak Maass forms which are weakly holomorphic modular forms.

We first apply ξ 1
2

to the Fourier expansion of P (z) given in Theorem 3.2. Since

ξ 1
2
(g) = 0 for holomorphic g, and since ξ 1

2
is anti-linear, we just have to compute

ξ 1
2

((
Γ
(

1
2
, 4π |24n− 1| y

)))
, where n is a non-positive integer. In this case, we have

that

ξ 1
2

(
Γ

(
1

2
, 4π|24n− 1|y

))
= −(4π|24n− 1|)1/2e4π(24n−1)y .

Therefore

ξ 1
2
(P (z)) =

∞∑

n=0

a(n)e2πi(24n+1)z ,

where a(n), for n 6= 0, is given by

(5.5) −2π(24n+ 1)
1
4

∞∑

k=1

(−1)b k+1
2 c · A2k

(
−n− k(1+(−1)k)

4

)

k
· J 1

2

(
π
√

24n+ 1

12k

)
,

and, for n = 0, is given by

(5.6) 2 − 2π

∞∑

k=1

(−1)bk+1
2 c · A2k

(
−k(1+(−1)k)

4

)

k
· J 1

2

( π

12k

)
.

By Corollary 4.2, this implies that the weakly holomorphic modular form ξ 1
2
(P (z)) is

indeed a holomorphic modular form of weight 3/2 on Γ0(144) with Nebentypus χ12. Its
non-zero coefficients are also easily seen to be supported on exponents in the arithmetic
progression 1 (mod 24).

Now we apply ξ 1
2

to M(z). It is easily seen that

ξ 1
2
(M(z)) = −24 · g1(−24z̄) = 4ϑ(ψ; z),

and so it is a cusp form of weight 3/2 on Γ0(144) with Nebentypus χ12. Obviously,
its Fourier coefficients are supported on exponents in the arithmetic progression 1
(mod 24).

Therefore, ξ 1
2
(P (z)) and ξ 1

2
(M(z)) are both holomorphic modular forms of weight

3/2 on Γ0(144) with Nebentypus χ12. Using the dimension formulas for spaces of
half-integral weight modular forms (for example, see [15]), it follows that

dimC

(
S1/2 (Γ0(144), χ12)

)
= −24 + dimC

(
M3/2 (Γ0(144), χ12)

)
,

where S1/2 (Γ0(144), χ12) (resp. M3/2 (Γ0(144), χ12)) denotes the space of cusp (resp.
holomorphic modular) forms of weight 1/2 (resp. 3/2) on Γ0(144) with Nebentypus
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χ12. The Serre-Stark Basis Theorem for modular forms of weight 1/2 [24] implies that

(5.7) dimC(M1/2(Γ0(144), χ12)) = dimC(S1/2(Γ0(144), χ12)) = 0,

since 576 = 4 · f(χ12)
2 - 144, where f(χ12) = 12 is the conductor of χ12. Therefore, we

find that

dimC

(
M3/2 (Γ0(144), χ12)

)
= 24.

Since ξ 1
2
(P (z)), ξ 1

2
(M(z)) ∈ M3/2(Γ0(144), χ12) both have the property that their

Fourier coefficients are supported on exponents of the form 24n + 1 ≥ 1, choose a
constant c so that the coefficient of q, and hence all the coefficients up to and including
q24, of ξ 1

2
(P (z)) and c · ξ 1

2
(M(z)) agree. By dimensionality, this in turn implies that

ξ 1
2
(P (z)) = c · ξ 1

2
(M(z)), and so we have that

Pnh(z) = c ·Mnh(z).

To complete the proof of Lemma 5.1, we must establish that c = 1. To this end, we
let

E(z) := P (z) − c ·M(z).

This function is a weakly holomorphic modular form of weight 1/2 on Γ0(144) with
Nebentypus χ12. By (1.7) and Corollary 4.2, we have that

E(z) = Ph(z) − c ·Mh(z) = (1 − c)q−1f(q24) +
∑

n≥0

A(n)q24n−1,

where |A(n)| = O
(
(24n− 1)

3
4
+ε
)

for positive integers n. By the proof of Theorem 2.1

(see [26] and [27]), applying the map z 7→ −1
z

returns a non-holomorphic contribution
unless c = 1. Since E(z) does not have a non-holomorphic component, it follows that
c = 1, which in turn proves that Pnh(z) = Mnh(z). �

Remark. In the proof of Lemma 5.1, it is shown that ξ 1
2
(P (z)) = ξ 1

2
(M(z)) = 4ϑ(ψ; z).

We illustrate the rate of convergence of the formulas in (5.5) and (5.6). By truncating
these infinite series expansions after 750 terms, one obtains the following numerical
approximation

1

4
ξ 1

2
(P (z)) ∼ 0.989q − 5.008q25 + 7.019q49 + 0.110q73 − 0.043q97 − 10.939q121 + · · ·

= q − 5q25 + 7q49 − 11q121 + · · · .

Returning to the proof of Theorem 1.1, by Lemma 5.1, it follows that

P (z) −M(z) = Ph(z) −Mh(z) = q−1 +

∞∑

n=1

β(n)q24n−1 − q−1f(q24) =

∞∑

n=1

ν(n)q24n−1
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is a weakly holomorphic modular form of weight 1/2 on Γ0(144) with Nebentypus χ12.
By (1.7) and Corollary 4.2, it follows that

|ν(n)| = O
(
n

3
4
+ε
)
.

Therefore, P (z)−M(z) is a holomorphic modular form. However, by (5.7), this space
is trivial, and so we find that P (z) −M(z) = 0, which in turn implies that

q−1 +
∞∑

n=1

β(n)q24n−1 = q−1f(q24).

Theorem 1.1 now follows from Theorem 3.2.
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