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Abstract. Inspired by the original definition of mock theta functions by Ramanu-
jan, a number of authors have considered the question of explicitly determining their
behavior at the cusps. Moreover, these examples have been connected to important
objects such as quantum modular forms and ranks and cranks by Folsom, Ono,
and Rhoades. Here we solve the general problem of understanding Ramanujan’s
definition explicitly for any weight 1

2 mock theta function, answering a question of
Rhoades. Moreover, as a side product, our results give a large, explicit family of
modular forms.

1. Introduction

In this paper, we study a general problem of Rhoades [21] on the nature of mock
theta functions near the cusps, inspired by important examples of Ramanujan [3],
Folsom, Ono, and Rhoades [11], and others (for example, see [1, 12, 27]). In particular,
we resolve the problem and further prove a related conjecture of Rhoades, in addition
to describing large, explicit families of quantum modular forms.

Before stating the precise question of Rhoades, we briefly recall the history of the
mock theta functions. They were first introduced by Ramanujan in 1920 in his famous
“deathbed” letter to Hardy (see pages 220-224 of [3]). Since then, they have provided
an enormous number of intriguing questions and their underlying structure remained
a deep mystery for decades [23]. Thanks to the pioneering work of Zwegers [28] and
Bruinier and Funke [6], we finally understand this structure in terms of so-called
harmonic Maass forms (see Section 2.1 for a precise definition). This revelation has
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spawned a completely new field of number theory with myriad applications, which
range from moonshine [8], combinatorics [4], black holes [10], and central derivatives
of elliptic curves [7], just to name a few (see also the surveys [19, 25]).

In this paper, we revisit Ramanujan’s original definition in a very explicit manner.
His definition is vague and in some sense strange, which makes it difficult to inter-
pret it correctly. However, he offered a list of 17 motivating examples of what he
called Eulerian series, meaning that they are q-hypergeometric series. For instance,
Ramanujan considered the q-series defined by

f(q) :=
∑
n≥0

qn
2

(−q)2n
,

where throughout q := e2πiτ with τ ∈ H and, for n ∈ N0 ∪ {∞}, (a)n := (a; q)n :=∏n−1
j=0 (1−aqj). He noticed that all of his examples look like classical modular forms (or

theta functions, as he called them) as one approaches roots of unity. However, he con-
jectured that they do not arise in a trivial manner from modular forms. Specifically,
his definition is as follows.

Historical Definition (Ramanujan [3]). A mock theta function is a function F (q),
defined for |q| < 1, satisfying the following conditions:

(i) There are infinitely many roots of unity ξ such that as q approaches ξ radially
from inside the unit disk, F (q) grows exponentially.

(ii) For every root of unity ξ, there exists a (weakly holomorphic) modular form
Mξ(q) and a rational number α such that F (q)−qαMξ(q) is bounded as q → ξ
radially.

(iii) There does not exist a single (weakly holomorphic) modular form M(q) such
that F (q)−M(q) is bounded as q approaches any root of unity.

For the mock theta function f defined above, Ramanujan [3] noted that it is
bounded as one approaches odd order roots of unity, and he made a specific claim
about its behavior near even order roots of unity (where there is a pole). Ramanu-
jan’s claim was later proven by Watson [23], and it states that for any primitive even
order 2k root of unity ξ

lim
q→ξ

(
f(q)− (−1)kb(q)

)
= O(1), (1.1)

where b(q) := (q)∞
(−q)2∞

is a modular form (up to a power of q). This shows that f
satisfies parts (i) and (ii) of the historical definition. Moreover, the O(1) constants in
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(1.1) can be given explicitly for primitive even order 2k roots of unity ξ [11]:

lim
q→ξ

(
f(q)− (−1)kb(q)

)
= −4

k−1∑
n=0

(−ξ; ξ)2n ξ
n+1. (1.2)

Inspired by Ramanujan’s observation, Folsom, Ono, and Rhoades recently fit (1.2)
into an infinite family (see [11], Theorem 1.2). Moreover, it turns out that their
results give a deep and surprising connection between the generating functions of the
important combinatorial sequences counting ranks, cranks, and unimodal sequences.

Although much progress had been made in understanding the mock theta functions
from a modern point of view, it is only recently that experts in the field of Maass
forms have turned back to take a closer look at Ramanujan’s original ideas. In
particular, Berndt remarked in 2013 that no one had actually proven that any of
Ramanujan’s mock theta functions satisfy his own definition [2]. This problem was
solved by Griffin, Ono, and the second author [14], who proved that all of Ramanujan’s
mock theta functions satisfy the historical definition (see [21] for related results and
questions). This progress was made possible by Zwegers’ construction [28] of functions
satisfying what we refer to as the modern definition of a mock theta function. Roughly
speaking, the modern definition, due to Zagier, is as follows (for the exact definition
of the related objects, see Section 2.1).

Modern Definition (Zagier [25], Section 5). A mock theta function is a function
F (q), defined for |q| < 1, which can be written as qαG(q) for some α ∈ Q and some
function G which is the holomorphic part of a harmonic Maass form, such that the
shadow of G is a unary theta function.

Although the result of Griffin, Ono, and the second author answers Ramanujan’s
conjecture in an abstract sense, it does not address his question of explicitly finding
the functions and constants in part (ii) of the historical definition. It is thus natural
to ask: What is the deeper structure underlying relations like (1.2)? Concretely, we
consider the following problem to fully address the final challenge of Ramanujan.

Problem. For a general mock theta function, how can one determine the modular
forms Mξ in Ramanujan’s definition in a systematic and explicit way (preferably in
terms of theta functions), and how can one compute the constants in part (ii) of
Ramanujan’s definition as finite sums?

In order to address this problem in a uniform manner, we first need a convenient
set of functions to generate all the mock theta functions. This is provided by the



4 KATHRIN BRINGMANN AND LARRY ROLEN

universal mock theta function g2 of Gordon and McIntosh [13]. We first recall the
definition

g2(ζ; q) :=
∑
n≥0

(−q)nq
n(n+1)

2

(ζ)n+1(ζ−1q)n+1

. (1.3)

It is well-known that g2 is a mock Jacobi form, which implies that if ζ := e2πiz and
z is a torsion point (i.e., z ∈ Qτ + Q), then g2(ζ; q) is a mock theta function [15].
The reason this function is called universal is that all mock theta functions of weight
1/2 can be expressed in terms of linear combinations of specializations of g2 and
classical modular forms (for more on universality and examples, see [13]). Using the
function g2, we now state Rhoades’ question, where throughout we let e(x) := e2πix

and ζhk := e(h/k).

Question (Rhoades [21], Question 3.4). How can one explicitly determine modular
forms fa,b,A,B,h,k in a uniform way such that g2(ζab qA; qB) − fa,b,A,B,h,k(q) is bounded
as q → ζhk ? Moreover, how can one describe finite formulas for the constants

Qa,b,A,B,h,k := lim
q→ζhk

(
g2
(
ζab q

A; qB
)
− fa,b,A,B,h,k(q)

)
?

Two remarks.
1) Here and throughout we abuse notation and refer to fa,b,A,B,h,k as a modular form
if there exist α, β ∈ Q for which qαfa,b,A,B,h,k(q

β) is modular on some congruence
subgroup.

2) Although Rhoades asked an analogous question for another universal mock theta
function g3, (6.1) of [13] shows that g3 may be expressed in terms of g2. Thus,
Theorem 1.1 does give a finite, simple answer to Rhoades’ question in this case as
well; we leave the details to the interested reader.

3) We may, and do, assume throughout without loss of generality that 0 ≤ h
k
, A
B
, a
b
< 1,

and also that (h, k) = (a, b) = (A,B) = 1.

In this paper, we completely solve the problem of Rhoades.

Theorem 1.1. The functions fa,b,A,B,h,k in Rhoades’ question may be expressed as
simple linear combinations of a finite list of canonical theta functions. Moreover, this
decomposition yields simple, finite formulas for the resulting constants Qa,b,A,B,h,k.
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Remark. We give the explicit forms of the modular forms fa,b,A,B,h,k and the constants
Qa,b,A,B,h,k in Propositions 5.1, 5.2, and 5.3. We invite the reader to read Section 6
for a simple example which illustrates the theorem.

As another application of Theorem 1.1, we recall that our question is closely related
to a new type of nearly modular object known as a quantum modular form (see
Section 2.2 for the definition). Although this is a very nascent field, the known
examples of quantum modular forms have already been related to many important
topics such as knot invariants [26], combinatorics and partial theta functions [11], and
Maass waveforms [24]. In particular, quantum modular forms related to mock theta
functions were recently considered in [9] from a formal point of view. Our result gives
an explicit understanding of a very large family of quantum modular forms, which
itself subsumes many of the previous examples. As another corollary of our explicit
procedure, Theorem 1.1 also allows us to answer a conjecture of Rhoades about the
finiteness of explicit procedures for choosing fa,b,A,B,h,k.

Conjecture 1.2 (Rhoades, [21]). For any fixed a, b, A,B, as h
k
ranges over Q, only

finitely many modular forms fa,b,A,B,h,k are needed to cancel out the singularities of
g2
(
ζab q

A; qB
)
.

The precise statement of Theorem 1.1 in Propositions 5.1, 5.2, and 5.3 shows that
this conjecture is true, and that in fact at most 3 modular forms fa,b,A,B,h,k are required
in general.

The paper is organized as follows. In Section 2, we recall some definitions and basic
results from the theories of harmonic Maass forms, quantum modular forms, and q-
hypergeometric series. In particular, we review an important formula of Mortenson
which is crucial for the proof of our main theorem. In Section 3, we analyze the
location of the zeros and poles of the hypergeometric series defining g2(ζab qA; qB). We
then give some estimates in Section 4 needed for the proof of Theorem 1.1, which
itself is proven on a case-by-case basis in Section 5. We conclude in Section 6 with
an illuminating example and some concluding discussion.
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2. Preliminaries

2.1. Harmonic Maass forms. Maass forms were introduced by Maass [17] and
generalized by Bruinier and Funke [6] to allow growth at the cusps. To give their
definition, we first recall the usual weight κ hyperbolic Laplacian operator given by
(τ = u+ iv)

∆κ := −v2
(
∂2

∂u2
+

∂2

∂v2

)
+ iκv

(
∂

∂u
+ i

∂

∂v

)
.

Moreover, for odd d, we set

εd :=

{
1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4),

and let ( ··) be the usual Jacobi symbol. For κ ∈ 1
2

+Z, we then define Petersson slash
operator for γ = ( a bc d ) ∈ Γ0(4) by

F |κγ(τ) := ε2κd

( c
d

)
(cτ + d)−κF

(
aτ + b

cτ + d

)
.

We now give the definition of harmonic Maass forms.

Definition 2.1. A harmonic (weak) Maass form of weight κ ∈ 1
2

+Z on a congruence
subgroup Γ ⊆ Γ0(4) is any C2 function F : H→ C satisfying:

(i) For all γ ∈ Γ, we have that F |κγ = F.
(ii) We have that ∆κ(F ) = 0.

(iii) There exists a polynomial PF (q) =
∑

n≤0CF (n)qn ∈ C[q−1] such that F (τ)−
PF (q) = O(e−εv) for some ε > 0 as v → +∞. We require analogous condi-
tions at all of the cusps of Γ.

We denote the space of weight κ harmonic Maass forms on Γ by Hκ(Γ). A key
property of harmonic Maass forms is that they canonically split into a holomorphic
piece and a non-holomorphic piece. Namely, if we define Γ(α, v) :=

∫∞
v
e−ttα−1dt,

then any F ∈ Hκ(Γ) (for κ 6= 1) decomposes as F = F+ + F−, where

F+(τ) =
∑

n�−∞

c+F (n)qn, F−(τ) =
∑
n<0

c−F (n)Γ(1− κ, 4π|n|v)qn,

for some complex numbers c+F (n), c−F (n). We refer to F+ as the holomorphic part and
to F− as the non-holomorphic part. We call a q-series which is the holomorphic part
of some harmonic Maass form a mock modular form. Another crucial operator in
the theory of harmonic Maass forms is given by ξκ := 2ivκ ∂

∂τ
, which defines a map



RADIAL LIMITS OF MOCK THETA FUNCTIONS 7

ξκ : Hκ(Γ) → S2−κ(Γ). Bruinier and Funke proved [6] that ξκ surjects onto S2−κ(Γ).
Following Zagier, we call ξκ(F ) the shadow of F+.

We now review a few facts regarding Zwegers’ µ function, which he used [28] to
write several of Ramanujan’s mock theta functions in terms of canonical Appell sums.
Specifically, let

µ(z1, z2; τ) :=
a

1
2

ϑ(z2)

∑
n∈Z

(−b)nq n
2+n
2

1− aqn

where a := e2πiz1 , b := e2πiz2 , and

ϑ(z) := ϑ(z; τ) = −iq
1
8 ζ−

1
2 (q)∞(ζ)∞

(
ζ−1q

)
∞

is Jacobi’s theta function. We need the following shifting property of µ, where

Θ (z1, z2, z) := Θ (z1, z2, z; τ) =
1

2πi

ϑ′(0)ϑ(z1 + z2 + z)ϑ(z)

ϑ(z1)ϑ(z2)ϑ(z1 + z)ϑ(z2 + z)
.

Lemma 2.2 ([28], Proposition 1.4 (7)). For z1, z2, z1+z, z2+z 6∈ Zτ+Z, the following
identity holds:

µ(z1 + z, z2 + z; τ)− µ(z1, z2; τ) = Θ (z1, z2, z) .

The function µ is what Zwegers calls a mock Jacobi form, and is fundamental to
our modern understanding of mock theta functions. In particular, if we specialize
z1, z2 ∈ Qτ + Q, then µ(z1, z2; τ) is a mock theta function.

2.2. Quantum modular forms. We next give the definition of quantum modular
forms (see [24] for a general survey).

Definition. A function f : Q → C is a quantum modular form of weight κ ∈ 1
2
Z on

a congruence subgroup Γ if for all γ ∈ Γ, the cocycle

rγ(x) := f |κ(1− γ)(x)

extends to an open subset of R and is analytically “nice”. Here “nice” could mean
continuous, smooth, real-analytic etc.

One of the most striking examples of a quantum modular form is given by Kontse-
vich’s “strange” function F (q) [26]

F (q) :=
∑
n≥0

(q)n.
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This function is strange as it does not converge on any open subset of C, but is a
finite sum if q is a root of unity. Zagier’s study of F depends on the sum of tails
identity ∑

n≥0

(
η(τ)− q

1
24 (q)n

)
= η(τ)D (τ) +

√
6η̃(τ), (2.1)

where η(τ) := q1/24(q)∞, D(τ) := −1
2
+
∑

n≥1
qn

1−qn , and for any weight 2−κ cusp form
F (τ) :=

∑
n≥1 aF (n)qn, we define the Eichler integral F̃ (τ) :=

∑
n≥1 aF (n)nκ−1qn.

The key observation of Zagier is that in (2.1), the functions η(τ) and η(τ)D(τ) ap-
proach zero to infinite order as τ → h

k
. Hence, at a root of unity ξ, F (ξ) is the limiting

value of η̃, which he shows has quantum modular properties. In fact, as shown in
[5], general Eichler integrals of half-integral weight modular forms are closely con-
nected with the radial limits of mock theta functions. This is related to recent work
of Choi, Lim, and Rhoades [9], which implies the following result about the function
Q : Q→ C defined by Q(h/k) := Qa,b,A,B,h,k.

Theorem 2.3 ([9], Theorem 1.5). Assuming the notation above, Q(x) is a quantum
modular form of weight 1/2 on some congruence subgroup whose cocycles are all real-
analytic on R except at one point.

2.3. Some useful formulas for q-series. In this subsection, we give several useful
q-series identities which are crucial to the proof of Theorem 1.1. Since we know many
properties of µ very explicitly, it is very useful in the proof of Theorem 1.1 to write
g2 in terms of µ and the function

K(z; τ) :=
η(2τ)4

iζη(τ)2ϑ(2z; 2τ)
,

as in the following lemma.

Lemma 2.4 ([15], Theorem 1.1). The following identity holds:

g2(ζ; q) = K(z; τ)− iq−
1
4µ(2z, τ ; 2τ)

In order to estimate the growth of certain q-series at the cusps, we also need the
following important relation between g2 and an Appell sum.

Lemma 2.5 ([15], Lemma 3.2). The following identity holds:

g3(−ζ; q) =
1

(q)∞

∑
n∈Z

(−1)nq
3n(n+1)

2

1 + ζqn
.
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Yet another q-hypergeometric series identity that we require is a beautiful bilateral
series summation of Mortenson. Before stating it, we first let

T (ζ; q) :=− iη(2τ)4

ζη(τ)2ϑ (2z; 2τ)
−

iη(2τ)10ϑ
(
2z + 1

2
; 2τ
)

2ζ2q
1
4η(τ)4η(4τ)4ϑ (2z; 2τ)ϑ

(
2z + τ + 1

2
; 2τ
)

− iη(2τ)4ϑ(z; τ)

2q
1
4 ζ2η(4τ)2ϑ

(
z + 1

2
; τ
)
ϑ
(
2z + τ + 1

2
; 2τ
) .

Then the identity of Mortenson is given as follows.

Lemma 2.6 ([18], Corollary 5.2). The following identity holds:

g2(ζ; q) +
1

2

∑
n≥0

qn (ζ−1q)n (ζ)n
(−q)n

= −iζ
1
2ϑ(z; τ)

2q
1
24η(2τ)

g3(−ζ; q) + T (ζ; q).

Remark. In simplifying Mortenson’s formula for T (ζ; q) in Corollary 5.2 of [18], we
have used the identity

ϑ(τ ; 2τ) = −iq−
1
4
η(τ)2

η(2τ)
. (2.2)

We return to a closer study of Lemma 2.6 in Section 4 after analyzing the poles of
the hypergeometric series defining g2.

3. Poles and roots of g2(ζ
a
b q

A; qB)

In order to explicitly find the modular forms to cancel the poles of g2(ζab qA; qB), we
first need to know where they lie. That is, we need to determine the set

Pa,b,A,B :=

{
h

k
∈ Q : g2

(
ζab q

A; qB
)
has a pole as q → ζhk

}
.

The first step is to find the zeros and poles of the hypergeometric series defining
g2(ζ

a
b q

A; qB), which we begin in the next subsection. We remark that although the
results of the next subsection determine the poles arising from the denominator,
convergence at other roots of unity is a subtle question which requires careful analysis.

3.1. Zeros in the denominator of g2. The first obvious situation potentially lead-
ing to a pole of g2(ζab qA; qB) is when the relevant specialization of (1.3) has a pole com-
ing from a zero in the denominator. Note that g2(ζ; q) has a pole in some term in (1.3)
exactly if (ζ)∞(ζ−1q)∞ = 0, which is equivalent to z ∈ Zτ +Z. We now specialize the
parameters to ζ = ζab ζ

hA
k and q = ζhBk . Then the n-th term in (1.3) has a pole exactly if
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(ζab ζ
hA
k ; ζhBk )n+1(ζ

−a
b ζ

h(B−A)
k ; ζhBk )n+1 = 0 for some n ∈ N0. By an elementary calcula-

tion, we have the following characterization, where bxc is the floor of x, k′ := k/(k,B),
and αn denotes the order of the zero in (ζab ζ

hA
k ; ζhBk )n+1(ζ

−a
b ζ

h(B−A)
k ; ζhBk )n+1.

Lemma 3.1. We have that (ζab ζ
hA
k ; ζhBk )∞(ζ−ab ζ

h(B−A)
k ; ζhBk )∞ = 0 if and only if b|k

and (B, k)|(ak
b

+ hA). Moreover, if this is the case, then for any n ∈ N0, we have
αn ≥

⌊
2n+2
k′

⌋
.

Although we have determined exactly when the denominator has a zero, there are
two points which must be addressed. Firstly, there could be zeros in the numerator
canceling out a pole. We show that this cannot happen in the next subsection by
explicitly analyzing the zeros in the numerator. Secondly, one could also imagine that
the poles above could somehow cancel each other out. This case, however, is easy to
exclude as the orders of the zeros in the denominator are increasing.

3.2. Zeros in the numerator of g2. In order to finish our analysis of the poles
arising from the denominator of g2(ζab qA; qB), we need to know more about the location
of zeros in the numerator since these could potentially cancel out the zeros in the
denominator. The analysis in this section shows that this never happens. That is,
below we prove the following lemma, where

Qa,b,A,B :=

{
h

k
: b|k, (B, k)

∣∣∣ (ak
b

+ hA

)}
.

Proposition 3.2. Assuming the notation above, the poles in g2(ζ
a
b q

A; qB) arising
from zeros in the denominator are exactly at the cusps h

k
∈ Qa,b,A,B.

To show Proposition 3.2, we study of the zeros in the numerator of g2(ζab qA; qB). Af-
ter specializing (1.3), we find that the numerator of the n-th term of the series defining
g2(ζ

a
b ζ

hA
k ; ζhBk ) is equal (up to a power of q) to (−ζhBk ; ζhBk )n. Another straightforward

calculation yields the following lemma, where ord2(m) is the 2-order of m and βn
denotes the order of the zero in (−ζhBk ; ζhBk )n.
Lemma 3.3. We have (−ζhBk ; ζhBk )∞ = 0 if and only if ord2(k) > ord2(B). Moreover,
if (−ζhBk ; ζhBk )∞ = 0, then βn =

⌊
2n
k′

⌋
−
⌊
n
k′

⌋
.

We now prove the main result of this subsection.

Proof of Proposition 3.2. Assuming the notation of Lemma 3.1 and Lemma 3.3, it is
enough to show that αn−βn > 0 for n� 0. In fact, from Lemma 3.1 and Lemma 3.3,
we have that αn − βn ≥ b2n+2

k′
c − b2n

k′
c+ b n

k′
c ≥ b n

k′
c, which is clearly sufficient. �
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4. Preliminary analysis of Mortenson’s formula

We now take a closer look at the formula of Mortenson in Lemma 2.6, analyzing
the individual terms for later use. In particular, consider

L(ζ; q) :=
1

2

∑
n≥0

qn (ζ−1q, ζ)n
(−q)n

, M(ζ; q) :=
−iζ 1

2ϑ(z; τ)

2q
1
24η(2τ)

g3(−ζ; q),

where (a, b; q)n := (a, b)n := (a)n(b)n. The following results shows that if h
k
∈ Qa,b,A,B,

then L becomes a finite sum.

Lemma 4.1. If h
k
∈ Qa,b,A,B, then L(ζab ζ

hA
k ; ζhBk ) is a finite, terminating sum. In

particular,

L
(
ζab ζ

hA
k ; ζhBk

)
=

1

2

k′−1∑
n=0

ζhBnk

(
ζab ζ

hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
n(

−ζhBk ; ζhBk
)
n

.

Proof. To show that L terminates at the claimed point, it clearly suffices to show that
αn−1−βn ≥ 0 for all n ∈ N and that αn−1−βn > 0 for all n ≥ k′. Indeed, by Lemma
3.1 and Lemma 3.3, we have αn−1 − βn ≥ b nk′ c, which completes the proof. �

We also need to determine the limiting behavior of M at cusps in Qa,b,A,B. In
particular, we show that, at these cusps, M tends to zero.

Lemma 4.2. If h
k
∈ Qa,b,A,B, then limq→ζhk

M(ζab q
A; qB) = 0.

Before proving Lemma 4.2, we require a bound on the Appell-Lerch sum

A(ζ; q) :=
∑
n∈Z

(−1)nq
3n(n+1)

2

1 + ζqn
.

Lemma 4.3. For any h
k
∈ Q, we have A(ζab ζ

hA
k e−

At
B ; ζhBk e−t)� t−

3
2 as t→ 0+.
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Proof. We begin by estimating∣∣∣A(ζab ζhAk e−
At
B ; ζhBk e−t

)∣∣∣ ≤∑
n∈Z

e−
3tn(n+1)

2∣∣∣1 + ζab ζ
h(A+Bn)
k e−

A
B
t−nt
∣∣∣

≤ 1∣∣∣1− e−AtB ∣∣∣ +
∑
n≥1

e−
3tn(n+1)

2∣∣∣1− e−AB t−nt∣∣∣ +
∑
n≥1

e−
3tn(n−1)

2∣∣∣1− e−AB t+nt∣∣∣
� 1

t
+
∑
n≥1

e−
3tn(n+1)

2

1− e−tn
+ e

At
B

∑
n≥1

e−
3tn2

2

1− eAtB −tn
� 1

t
+

e
At
B

1− eAtB −t
∑
n≥1

e−
3n2t
2

� 1

t
+

1

t

∑
n≥1

e−
3n2t
2 .

By comparing with a Gaussian integral, we easily find that the last sum is � t−
1
2 , as

desired.
�

We are now in a position to prove Lemma 4.2.

Proof of Lemma 4.2. We begin by using Lemma 2.5 to write

M(ζ; q) = − i
2
ζ

1
2 q−

1
8

ϑ(z; τ)

(q)∞ (q2; q2)∞
A(ζ; q). (4.1)

Using Lemma 4.3, it suffices to show that

W (t) :=
ϑ
(
a
b

+ Ah
k

+ Ait; hB
k

+Bit
)

η
(
hB
k

+Bit
)
η
(
2hB
k

+ 2Bit
)

decays exponentially as t→ 0+. For convenience, we will denote the reduced fraction
2hB
k

=: H
K
. The growth of W may be determined using the modularity properties

of ϑ and η. Specifically, for any (h, k) = 1, we have the well-known transformation
formula (see Chapter 9 of [20])

η

(
h

k
+ it

)
=

√
i

kt
χ (h, [−h]k, k) η

(
[−h]k
k

+
i

t

)
,
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where χ is a certain multiplier and [h]k is any multiplicative inverse of h modulo k,
as well as the transformation [22]

ϑ

(
z;
h

k
+ it

)
=

√
i

kt
χ (h, [−h]k, k)3 e−

πz2

t ϑ

(
iz

kt
;
[−h]k
k

+
i

t

)
.

Hence, we find

W (t) = (−2iKBt)
1
2 χ (hB′, [−hB′]k′ , k′)2 χ (H, [−H]K , K)−1 e−

π
Bt(

a
b
+Ah

k
+Ait)

2

×
ϑ
(

i
k′Bt

(
a
b

+ Ah
k

+ Ait
)

;
[−hB′]k′

k′
+ i

Bt

)
η
(

[−hB′]k′
k′

+ i
Bt

)
η
(

[−H]K
K

+ i
2Bt

) ,
(4.2)

where B′ := B
(k,B)

. Using the product expansions of η and ϑ, we approximate

η

(
[−hB′]k′

k′
+

i

Bt

)
∼ e

πi
12k′ [−hB

′]k′−
π

12Bt � e−
π

12Bt , (4.3)

η

(
[−H]K
K

+
i

2Bt

)
� e−

π
24Bt , (4.4)

and

ϑ

(
i
(
a
b

+ Ah
k

+ Ait
)

k′Bt
;
[−hB′]k′

k′
+

i

Bt

)
∼ −ie

πi
4

(
[−hB′]k′

k′ + i
Bt

)
e−πi(

i
k′Bt(

a
b
+Ah

k
+Ait))

� e
π
Bt(−

1
4
+ 1
k′ (

a
b
+Ah

k )).
(4.5)

Hence, using (4.2),(4.3), (4.4), and (4.5), we easily find that

W (t)� t
1
2 e

π
Bt

(
− 1

8
−(ab+

Ah
k )

2
+ 1
k′ (

a
b
+Ah

k )
)
.

Thus, it is enough to show that (a
b

+ Ah
k

)((a
b

+ Ah
k

)− 1
k′

) ≥ 0. As h
k
, a
b
, k, and A are

non-negative, this inequality holds if ak′
b

+ Ah
(k,B)

≥ 0. Hence, the proof is complete once
we show that ak′

b
+ Ah

(k,B)
∈ N0, which is clearly implied by the condition h

k
∈ Qa,b,A,B.

�
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5. Proof and explicit statement of Theorem 1.1

We are now ready to give the proof of Theorem 1.1, which is split into several
propositions. In the first case, we suppose that g2(ζab qA; qB) has a root in the denom-
inator. By Proposition 3.2, this occurs exactly if h

k
∈ Qa,b,A,B. In this case, we obtain

the following result.

Proposition 5.1. If h
k
∈ Qa,b,A,B, then

lim
q→ζhk

(
g2
(
ζab q

A; qB
)
− T

(
ζab q

A; qB
))

= −1

2

k′−1∑
n=0

ζhBnk

(
ζab ζ

hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
n

(−ζhBk ; ζhBk )n
.

Proof. Using Lemma 2.6 with ζ = ζab q
A and q 7→ qB, we obtain

g2
(
ζab q

A; qB
)

+ L
(
ζab q

A; qB
)

= M
(
ζab q

A; qB
)

+ T
(
ζab q

A; qB
)
.

By Lemma 4.2, M(ζab q
A; qB) → 0 as q → ζhk , and by Lemma 4.1, L(ζab q

A; qB) tends
to the negative of the right-hand side of the proposition as q → ζhk . This completes
the proof. �

We next suppose that g2(ζab qA; qB) does not have a root in the denominator. The
situation is particularly simple if ord2(k) > ord2(B), in which case g2(ζab qA; qB) be-
comes a finite sum as q → ζhk .

Proposition 5.2. If h
k
6∈ Qa,b,A,B and ord2(k) > ord2(B), then

lim
q→ζhk

g2
(
ζab q

A; qB
)

=

k′
2
−1∑

n=0

ζ
hBn(n+1)

2
k

(
−ζhBk ; ζhBk

)
n(

ζab ζ
hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
n+1

.

Proof. Using again Lemma 3.2, we see that g2(ζab qA; qB) does not have any roots in the
denominator as q → ζhk . By Abel’s Lemma, the limit of g2(ζab qA; qB) as q → ζhk equals
g2(ζ

a
b ζ

hA; ζhBk ), assuming this value exists. We claim that this specialization converges
as a terminating series. To see this, note that the n-th term in the numerator of
g2(ζ

a
b q

A; qB) equals ζhBn(n+1)/2
k (−ζhBk ; ζhBk )n, which is zero for n ≥ k′

2
by Lemma 3.3.

This gives the claim. �
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Finally, we consider the case that ord2(k) ≤ ord2(B). In this case, we obtain the
following result, where

t(ζ; q) := K(z; τ)− iK
(
z +

1

4
; τ +

1

2

)
+ iq−

1
4 Θ

(
2z, τ,

1

2
; 2τ

)
,

m(ζ; q) := t
(
ζab q

A; qB
)

+ iT
(
iζab q

A;−qB
)
,

and

Q′a,b,A,B :=

{
h

k
∈ Q : b|2k, 2|k, (B, k)

∣∣∣ (2Ah+
2ak

b
+
k

2

)}
.

Proposition 5.3. Suppose that ord2(k) ≤ ord2(B). Then the following are true,
where k2 is the denominator of h

k
+ 1

2B
, and k′2 := k2/(k2, B):

(i) If h
k
∈ Q′a,b,A,B, then

lim
q→ζhk

(
g2
(
ζab q

A; qB
)
−m

(
ζab q

A; qB
))

= − i
2

k′2−1∑
n=0

(
−ζhBk

)n (
iζab ζ

hA
k , iζ−ab ζ

h(B−A)
k ;−ζhBk

)
n

(ζhBk ;−ζhBk )n
.

(ii) If h
k
6∈ Q′a,b,A,B, then

lim
q→ζhk

(
g2
(
ζab q

A; qB
)
− t
(
ζab q

A; qB
))

= i

k′2
2
−1∑

n=0

(−1)
n(n+1)

2 ζ
hBn(n+1)

2
k

(
ζhBk ;−ζhBk

)
n(

iζab ζ
hA
k , iζ−ab ζ

h(B−A)
k ;−ζhBk

)
n+1

.

Proof. We begin by explaining the idea of the proof. As q → ζhk , the Pochhammer
symbol in the numerator of g2(ζab qA; qB) becomes (−ζhBk ; ζhBk )n. By the assumption
ord2(k) ≤ ord2(B), ζhBk is an odd order root of unity. If instead it were an even order
root of unity, then the numerator of g2 would have a zero, so that g2(ζab qA; qB) would
either be a terminating sum, as in Proposition 5.2, or have a root in the denominator
as in Proposition 5.1. Therefore, if we shift hB

k
by 1

2
, we obtain the even order root

of unity −ζhBk in the second component of g2, which reduces us to a case we have
already solved.

To see how to obtain an appropriate shift, we recall Lemma 2.4 and shift the
arguments of g2 to find that

g2(iζ;−q) = K

(
z +

1

4
; τ +

1

2

)
− q−

1
4µ

(
2z +

1

2
, τ +

1

2
; 2τ

)
, (5.1)



16 KATHRIN BRINGMANN AND LARRY ROLEN

where we used that µ(u, v; τ +1) = ζ−18 µ(u, v; τ). Combining Lemma 2.2, Lemma 2.4,
and (5.1) gives

g2(ζ; q) = t(ζ; q) + ig2(iζ;−q). (5.2)

We next consider g2(iζab qA;−qB), which corresponds to shifting the arguments τ →
τ + 1

2B
, a
b
→ a

b
+ 1

4
− A

2B
in g2(ζab qA; qB). We now determine when g2(iζab qA;−qB) has a

zero in the denominator as q → ζhk . An elementary calculation shows that whenever
k′ is odd, g2(iζab ζhAk ;−ζhBk ) has a zero in the denominator precisely if h

k
∈ Q′a,b,A,B.

We now finish the proof, distinguishing the two cases corresponding to (i) and (ii).
(i) By assumption, k′ is odd and h

k
∈ Q′a,b,A,B, and hence g2(iζab ζhAk ;−ζhBk ) has

a root in the denominator. Thus, using (5.2) and applying Proposition 5.1 to the
shifted arguments h

k
→ h

k
+ 1

2B
and a

b
→ a

b
+ 1

4
− A

2B
directly gives the desired formula.

(ii) As h
k
6∈ Q′a,b,A,B, g2(iζab qA;−qB) does not have a root in the denominator at

q = ζhk . Hence, using (5.2) and applying Proposition 5.2 with the shifted arguments
h
k
→ h

k
+ 1

2B
and a

b
→ a

b
+ 1

4
− A

2B
, gives the right-hand side of (ii).

�

6. Examples and concluding remarks

6.1. Examples. We now illustrate Theorem 1.1 with an illuminating example. Con-
sider the second order mock theta function B(q) given in (5.1) of [13]

B(q) :=
∑
n≥0

qn (−q; q2)n
(q; q2)n+1

. (6.1)

By a mock theta conjecture (see (5.2) of [13]), we have that B(q) = g2(q; q
2). We

now consider the different cases of Theorem 1.1 for this specialization, which gives
the following result, where

N(q) := 2q−
1
2
η(4τ)5

η(2τ)4
.

Lemma 6.1. Assuming the notation above, the following are true:
(i) If k is odd, then

lim
q→ζhk

(B(q)−N(q)) = −1

2

k−1
2∑

n=0

ζ2hnk

(
ζhk ; ζ2hk

)2
n(

−ζ2hk ; ζ2hk
)
n

.
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(ii) If 4|k, then

lim
q→ζhk

B(q) =

k
4
−1∑

n=0

ζ
hn(n+1)
k

(
−ζ2hk ; ζ2hk

)
n(

ζhk ; ζ2hk
)2
n+1

.

(iii) If k ≡ 2 (mod 4), then

lim
q→ζkh

B(q) = i

k
2
−1∑

n=0

(−1)
n(n+1)

2 ζ
hn(n+1)
k

(
ζ2hk ;−ζ2hk

)
n(

iζhk ;−ζ2hk
)2
n+1

.

Remark. The formula in (i) a simplification of Corollary 5.3 of [18] (note that there
is a typo in the third term of his formula).

Proof. (i) Note that Q0,1,1,2 = {h
k

: k ≡ 1 (mod 2)}, so that g2(ζab qA; qB) has a zero in
the denominator at ζhk . Using Proposition 5.1 directly gives the result, where we use
(2.2) together with the identities

ϑ(z + τ) = −e−πiτ−2πizϑ(z), ϑ

(
1

2

)
= −2

η(2τ)2

η(τ)
, ϑ

(
τ +

1

2
; 2τ

)
= −q−

1
4

η(2τ)5

η(τ)2η(4τ)2

(6.2)
to write

T (q; q2) =
1

2
N(q) + q−

1
2

(
η(4τ)17

4η(2τ)8η(8τ)8
− η(4τ)7η(τ)4

4η(2τ)6η(8τ)4

)
.

Using the standard fact that the order of vanishing of η(nτ) at the cusp−d
c
is 1

24n
(n, c)2

(see Proposition 2.1 of [16]), we see that for k odd,

lim
q→ζhk

η(4τ)7η(τ)4

4η(2τ)6η(8τ)4
= 0.

Additionally, using the explicit formulas for expansions at cusps of eta functions in
Proposition 2.1 of [16], we may check that at the same cusps, η(4τ)

5

η(2τ)4
+4η(8τ)

8

η(4τ)7
is cuspidal,

and hence

lim
q→ζhk

(
q−

1
2

η(4τ)17

4η(2τ)8η(8τ)8

)
=

1

2
lim
q→ζhk

N(q).

This yields that
lim
q→ζhk

T
(
q; q2

)
= lim

q→ζhk
N(q).
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The formula in (i) now follows directly from Proposition 5.1, noting that although
Proposition 5.1 only states that the sum in (i) terminates after n = k−1, in this case
it is easily checked that the sum vanishes after the term n = k−1

2
.

(ii) Since ord2(B) = 1, we have ord2(k) > ord2(B), and thus Proposition 5.2 gives
the desired formula.

(iii) Note that Q′0,1,1,2 = {h
k
∈ Q : 4|k}. Before applying Proposition 5.3 in this

case, we first analyze the term t(q; q2). We compute, using (2.2), that

K(τ) := K(τ ; 2τ) :=
η(4τ)5

q
1
2η(2τ)4

.

Note that the piece K(τ + 1
4
; 2τ + 1

2
) in t(q; q2) is just K(τ + 1

4
). By computing the

order of vanishing of the eta quotient at cusps, we find that K(τ) is cuspidal at h
k
if

4|k and is unbounded otherwise. Thus, if k ≡ 2 (mod 4), then limτ→h
k
K(τ) does not

exist, but limτ→h
k
K(τ + 1

4
) = 0.

We next analyze the last piece in t(q; q2). By (2.2), (6.2), and the identity ϑ′(0; τ) =
−2πη(τ)3 we can simplify

Θ

(
2τ, 2τ,

1

2
; 4τ

)
= −4i

η(8τ)8

η(4τ)7
.

Using this, we compute that Θ
(
2τ, 2τ, 1

2
; 4τ
)
has a pole at h

k
if 8 - k.

We finally claim that t(q; q2) vanishes at h
k
if k ≡ 2 (mod 4). From the fact that

limτ→h
k
K(τ + 1

4
) = 0, it suffices to show that for k ≡ 2 (mod 4)

lim
τ→h

k

(
η(4τ)5

η(2τ)4
+ 4

η(8τ)8

η(4τ)7

)
= 0,

which is easily verified. Thus, by applying Proposition 5.3 (ii), we find the desired
formula. �

We note that in analyzing B, we also could use Proposition 5.3 to analyze the
situation if k is odd. In fact, in this case, one can check that

lim
q→ζhk

t
(
q; q2

)
= 2 lim

q→ζhk
N(q),

which, by comparison with Lemma 6.1 (i), implies that t(q; q2) ∼ T (q; q2). Hence, by
applying Proposition 5.3 and Lemma 6.1 (i), we find, for any odd k, the identity
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−1

2

k−1
2∑

n=0

ζ2hnk

(
ζhk ; ζ2hk

)2
n(

−ζ2hk ; ζ2hk
)
n

= i

k−1∑
n=0

(−1)
n(n+1)

2 ζ
hn(n+1)
k

(
ζ2hk ;−ζ2hk

)
n(

iζhk ;−ζ2hk
)2
n+1

. (6.3)

Moreover, although it is not immediately obvious that t(q; q2) vanishes at cusps h
k
with

k ≡ 2 (mod 4), we conclude by giving an alternate explanation of this phenomenon.
This is provided by a special q-series identity, namely, the mock theta conjecture
given in (6.1). Specifically, directly plugging in q = ζhk yields

lim
q→ζhk

B(q) =

k−2
4∑

n=0

ζhnk
(
−ζhk ; ζ2hk

)
n(

ζhk ; ζ2hk
)
n+1

.

By comparing with Lemma 6.1 (iii), we find the curious identity
k−2
4∑

n=0

ζhnk
(
−ζhk ; ζ2hk

)
n(

ζhk ; ζ2hk
)
n+1

= i

k
2
−1∑

n=0

(−1)
n(n+1)

2 ζ
hn(n+1)
k

(
ζ2hk ;−ζ2hk

)
n(

iζhk ;−ζ2hk
)2
n+1

. (6.4)

We challenge the reader to prove either (6.3) or (6.4) directly.

6.2. Concluding remarks and questions. We conclude with a few comments and
questions for future work. Firstly, we note that although the simplification for T (q; q2)
in the last subsection may seem like a coincidence, a close inspection of the asymp-
totics in Proposition 5.1 shows that if we assume h

k
∈ Qa,b,A,B and further that k′ is

odd, then we generally find that T (ζab q
A; qB) ∼ αh,kK(ζab q

A; qB) as q → ζhk for some
constant αh,k depending on h

k
. Although the resulting formula involves less terms, we

chose to express Proposition 5.1 as is for two reasons. Firstly, the constants depend
on the choice of the root of unity q approaches, and hence one doesn’t obtain a finite
number of modular forms in Theorem 1.1, as Propositions 5.1, 5.2, and 5.3 provide,
and as conjectured by Rhoades. Secondly, this requires a further assumption that
k′ is odd. Although this is not a serious problem due to the fact that the case of
k′ even is covered in Proposition 5.2, we prefer to express Proposition 5.1 in a more
general form. Due to the simple nature of the resulting function in Proposition 5.1,
and considering the second remark on page 4, we are led to our first problem, which
we leave for the interested reader.

Question. Can one use Proposition 5.1 and (5.2) of [13] to reprove Theorem 1.2 of
[11]?
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Furthermore, similarly to the proof of Theorem 1.2 of [11], it may be possible to
give another derivation of the modular forms in Theorem 1.1.

Question. Can one find suitable modular forms in Theorem 1.1 directly from studying
specializations of the µ function using asymptotic expansions?

Finally, we note that for general mock theta functions, there is another possible
method to obtain the constants in Theorem 1.1 directly from the knowledge of the
shadow of g2 without using hypergeometric formulas. This follows by work of Choi,
Lim, and Rhoades relating these constants to values of certain quantum modular
forms. Moreover, related work of the authors [5] shows that the resulting values may
be expressed in terms of L-values of the shadow, which may in turn be written as
simple, finite sums. However, this approach does not shed light on the nature of the
modular forms in Theorem 1.1, so we chose a direct, q-hypergeometric approach here.
In order to generalize to more general weight mock theta functions or mock modular
forms, we believe that the following question is a fundamental problem meriting
further study.

Question. Is it possible to find the modular forms Theorem 1.1 directly from the
shadow of the associated mock theta function? If so, may this approach be extended
to other weights when we do not generically have q-hypergeometric expressions for
mock theta functions?
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