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Abstract. In this paper, we construct an infinite family of quantum modular forms from
combinatorial rank “moment” generating functions for strongly unimodal sequences. The
first member of this family is Kontsevich’s “strange” function studied by Zagier. These
results rely upon the theory of mock Jacobi forms. As a corollary, we exploit the quantum
and mock modular properties of these combinatorial functions in order to obtain asymptotic
expansions.

1. Introduction and Statement of Results

A sequence of integers {aj}sj=1 is called a strongly unimodal sequence of size n if there exists
an integer k such that

0 < a1 < a2 < · · · < ak > ak+1 > · · · > as > 0(1.1)

and a1 + · · · + as = n. A number of familiar sequences are strongly unimodal, for example,
the sequence of binomial coefficients {

(
n
j−1

)
}n+1
j=1 with n even. Attached to strongly unimodal

sequences is a notion of rank, analogous to the well known notion of the rank of an inte-
ger partition. For more on partition ranks, see for example original works by Atkin and
Swinnerton-Dyer [9], Dyson [19], and Ramanujan [27], and the more recent joint work of the
first author and Ono [15] related to mock modular forms. The rank of a strongly unimodal
sequence is equal to s−2k+1, the number of terms after the maximal term minus the number
of terms that precede it. For example, there are six strongly unimodal sequences of size 5:
{5}, {1, 4}, {4, 1}, {1, 3, 1}, {2, 3}, {3, 2}. Their respective ranks are 0,−1, 1, 0,−1, 1. By
letting w (resp. w−1) keep track of the terms after (resp. before) a maximal term, we have
that u(m,n), the number of size n and rank m sequences, satisfies

(1.2) U(w; q) :=
∞∑
n=1

∞∑
m=−∞

u(m,n)(−w)mqn =
∞∑
n=0

(wq; q)n(w−1q; q)nq
n+1,

where for n ∈ N0, (w; q)n :=
∏n−1

j=0 (1− wqj).
Recently, Bryson, Ono, Pitman, and the third author [16] studied this function in the

special case w = 1, namely 1

U(1; q) =
∞∑
n=1

∞∑
m=−∞

(−1)mu(m,n)qn =
∞∑
n=1

(ue(n)− uo(n)) qn,

1Note. The function U(w; q), given in (1.2), is equal to the function U(−w; q) as defined in [16].
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where ue(n) (resp. uo(n)) denotes the number of unimodal sequences of size n with even
(resp. odd) rank. They showed that for every root of unity ζ,

U(1; ζ) = F
(
ζ−1
)
,

where Kontsevich’s “strange” function is defined by

F (q) :=
∞∑
n=0

(q; q)n.

Prior, Zagier [31] proved that this function satisfies the “identity”

(1.3) F (q) = −1

2

∞∑
n=1

n

(
12

n

)
q
n2−1
24 ,

where
( ·
·

)
is the Kronecker symbol. Neither side of the identity (1.3) makes sense simulta-

neously. Indeed, the right hand side of (1.3) converges in the unit disk |q| < 1, but nowhere
on the unit circle. The identity (1.3) means that at roots of unity ζ, F (ζ) (which is clearly
a finite sum) agrees with the limit as q approaches ζ radially within the unit disk of the
function on the right hand side of (1.3). Moreover, Zagier proved that for x ∈ Q \ {0}

(1.4) φ(x) + (−ix)−
3
2φ

(
−1

x

)
=

√
3i

2π

∫ i∞

0

(w + x)−
3
2η(w)dw,

where φ(x) := e−
πix
12 F (e−2πix) and η(w) := e

πiw
12

∏∞
n=1(1−e2πinw) is the Dedekind eta-function.

Note that the constant
√

3i/2π in (1.4) is given explicitly in [16]. There, the authors also gave
a new proof of (1.4), using the fact that U(1; q) is a (weak) mixed mock modular form for
|q| < 1. Here, we slightly modify the definition of “mixed mock modular form” given in [18]
to mean functions that lie in the tensor product of the general spaces of mock modular forms
and weakly holomorphic modular forms (up to possible rational multiples of q powers). In
particular, we do not require (as in [18]) these functions to be holomorphic at the cusps. Weak
mixed mock modular forms in this sense occur in a variety of areas including combinatorics
[3], algebraic geometry [29], Lie theory [23], Joyce invariants [25], and quantum black holes
[18, 24].

The similarity between (1.4) and the usual modular transformation formula of a modular
form in part motivated Zagier [32] to introduce the notion of a quantum modular form. A
weight k ∈ 1

2
Z quantum modular form is a complex-valued function f on Q, such that for all

γ = ( a bc d ) ∈ SL2(Z), the function hγ : Q \ γ−1(∞)→ C defined by

hγ(x) := f(x)− ε(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
(1.5)

satisfies a “suitable” property of continuity or analyticity. The ε(γ) in (1.5) are suitable
complex numbers, such as those in the theory of half-integral weight modular forms when
k ∈ 1

2
Z \ Z.

This paper gives an infinite family of quantum modular forms from the “moments” of the
unimodal rank statistic. In general, such moment functions are of both number theoretic
and combinatorial interest. For example, in their celebrated work [8], Atkin and Garvan
discovered a partial differential equation relating the bivariate generating functions for the
partition statistics rank and crank, leading to exact linear relations between rank and crank
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moments. In [4], Andrews provided a beautiful combinatorial interpretation of partition rank
moments in terms of “k-marked Durfee symbols”. Andrews also discovered a relationship
between partition rank moments and the “smallest parts” partition statistic in [5], which has
led to further work by Garvan [22], for example. In addition to intrinsic combinatorial inter-
est, moment functions have been shown to satisfy modular properties. For example, works
including [2, 12, 13] exhibit relationships to weak Maass forms and mock theta functions.

To state our results, we define for r ∈ N0 the following “weighted” moment functions,
where throughout q := e2πiτ

φr(τ) := (πi)2r+1

∞∑
n=1

∑
m∈Z

(−1)mu(m,n)Qr

(
m2, n− 1

24

)
qn−

1
24 ,(1.6)

and Qr(X, Y ) ∈ Q[X, Y ] is the polynomial

Qr(X, Y ) :=
∑

0≤µ≤r
0≤`≤r−µ

cr(µ, `)X
`Y µ ∈ Q[X, Y ],(1.7)

with rational coefficients cr(µ, `) defined in (1.9). For example, the first few polynomials
(normalized, with Y → Y − 1

24
) are given by

Q0

(
X, Y − 1

24

)
= −2,

Q1

(
X, Y − 1

24

)
= −4(X + 2Y ),

Q2

(
X, Y − 1

24

)
= − 4

105

(
10X + 35X2 + 6Y + 180XY + 108Y 2

)
,

Q3

(
X, Y − 1

24

)
= − 4

3465

(
7X + 140X2 + 154X3 + 2Y + 420XY

+ 1260X2Y + 120Y 2 + 2520XY 2 + 720Y 3
)
.

Note that in particular the first member of the family φr(τ) is (up to a constant) the
“strange” function studied by Zagier and Kontsevich discussed above. That is, φ0(τ) =

−2πiq−
1
24U(1; q) = −2πiφ(τ). It is not difficult to see that the functions φr(τ) may also be

written in terms of the “twisted” unimodal moment functions ur, defined for integers r ≥ 0
by

ur(q) :=
∞∑
n=1

∑
m∈Z

(−1)mu(m,n)mrqn.

The moments
∑

m u(m,n)mr of the unimodal rank statistic are analogous with the rank
and crank partition moments, functions which have drawn wide combinatorial interest since
Atkin and Garvan famously introduced them [8]. There is a vast literature on such ob-
jects, including asymptotic questions and congruence properties. While the unimodal rank
moments are exponentially large for even r [14], it is surprising that the twisted moments∑

m(−1)mu(m,n)mr, as a consequence of our results, are only polynomially large in n. We
have chosen to handle the more complicated expressions

∑
m(−1)mu(m,n)Qr(m

2, n− 1/24)
because the generating functions for these numbers have a fixed weight as modular objects
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as seen in Theorem 1.1, while the generating function for the twisted moments will have a
mixed weight. To relate these generating functions φr(τ) to the twisted unimodal moments
ur(τ), by symmetry, we note that u2r+1(q) = 0 for integers r ≥ 0. In particular, using (1.6),
we find that

φr(τ) = (πi)2r+1
∑

0≤µ≤r
0≤`≤r−µ

cr (µ, `)

(2πi)µ
· ∂

µ

∂τµ

(
u2`(q)q

− 1
24

)
,(1.8)

where we define

cr(µ, `) :=
−22`+16µΓ

(
1
2

+ 2r − µ
)

Γ
(
1
2

+ 2r
)
µ!(2`)!(2r − 2µ− 2`+ 1)!

∈ Q.(1.9)

The coefficients cr(µ, `) are indeed in Q, as it is well known for integers k ∈ N0, that
Γ
(
1
2

+ k
)
∈
√
π · Q. The twisted moment functions also naturally extend the unimodal

function U(1; q) discussed above; namely, u0(q) = U(1; q) = −q 1
24 (2πi)−1φ0(τ).

To state our first result, we define another polynomial

Pr (X, Y ) :=
∑

0≤N≤r
0≤M≤3r

br (N,M)X2N+1Y M ,(1.10)

where the coefficients br(N,M) are given explicitly in (3.14). Our first theorem establishes
that the unimodal moment functions φr are quantum modular forms on Q\{0}, and that
their transformation law also extends to H. The function Hr below is defined in (3.15).

Theorem 1.1. Let r ∈ N0. If τ ∈ H ∪Q\{0}, we have that

φr(τ)− (−iτ)−
3
2
−2rφr

(
−1

τ

)
=

∫
R
Pr
(
w, (−iτ)−1

)
e
πiτw2

3
sinh

(
2πw
3

)
cosh(πw)

dw +Hr(τ),(1.11)

where Hr(τ) = 0 for τ ∈ Q\{0}. In particular, the functions φr are quantum modular forms.

Remarks.
1) The transformation law given in (1.11) in the case τ ∈ H essentially establishes the mock
modular properties of the unimodal rank moment functions φr(τ).

2) In the course of proving (1.11) in the case τ ∈ Q \ {0}, we show that for each integer
r ≥ 0, the function φr is defined for τ ∈ Q. Moreover, in Theorem 5.1 of §5, we pay special
attention to the case r = 1, and establish an explicit finite value for φ1

(
h
k

)
(h, k ∈ Z) as the

value of a polynomial in the root of unity e2πih/k.

3) Our functions naturally arise from mock Jacobi forms. It would be interesting to investigate
whether a theory of quantum Jacobi forms could be developed that contains functions arising
in this paper as special cases.

Our next theorem exploits the automorphic properties given in Theorem 1.1, and estab-
lishes the asymptotic behavior of the moment functions ur. While such properties are of
independent interest, we also point out that these functions are related to the quantum mo-
ment functions φr by (1.8). To describe their asymptotic behavior, we use the Bernoulli
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polynomials Bk(x) and Euler polynomials Ek(x), defined by the generating functions

zexz

ez − 1
=
∞∑
k=0

Bk(x)
zk

k!
,(1.12)

2exz

ez + 1
=
∞∑
k=0

Ek(x)
zk

k!
,(1.13)

respectively.

Theorem 1.2. For non-negative integers r, as t→ 0+, we have that

e
πt
12u2r

(
e−2πt

)
=

32r+1

(2r + 1)

∞∑
k=0

(3πt)k

k!

∑
0≤n≤r

(
2r + 1

2n

)
3−2nB2n

(
1

2

)
E2r+1+2k−2n

(
5

6

)
,

In particular, we have that

e
πt
12u2r

(
e−2πt

)
∼ 2 · 62r

2r + 1

(
B2r+1

(
2

3

)
+B2r+1

(
5

6

))
.

The paper is organized as follows. In Section 2 we provide relevant background information
on modular forms, Jacobi forms, and mock Jacobi forms, as well as Bernoulli and Euler
polynomials. In Section 3 we prove Theorem 1.1, and in Section 4 we establish Theorem 1.2.
In Section 5 we pay special consideration to the moment function φ1.
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2. Preliminaries

Here, we provide preliminary information on automorphic forms in §2.1, and Bernoulli and
Euler polynomials in §2.2.

2.1. Automorphic forms. In this section, we recall some fundamental properties of certain
modular and (mock) Jacobi forms. We start with the well known transformation law for the
Dedekind η-function.

Lemma 2.1. For γ = ( a bc d ) ∈ SL2(Z), we have that

η (γτ) = χ (γ) (cτ + d)
1
2η(τ),(2.1)

where χ (γ) is a 24th root of unity, which can be given explicitly in terms of Dedekind sums
[26]. In particular, we have that

η

(
−1

τ

)
=
√
−iτη(τ).
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Here and throughout the square root is defined by the principal branch of the logarithm.
Moreover, we require the usual Jacobi theta function, defined for z ∈ C and τ ∈ H, by

ϑ(z; τ) :=
∑
ν∈ 1

2
+Z

eπiν
2τ+2πiν(z+ 1

2).(2.2)

This function is well known to satisfy the following transformation law [26, (80.31) and (80.8)].

Lemma 2.2. For λ, µ ∈ Z and γ = ( a bc d ) ∈ SL2(Z), we have that

ϑ(z + λτ + µ; τ) = (−1)λ+µq−
λ2

2 e−2πiλzϑ(z; τ),

ϑ

(
z

cτ + d
; γτ

)
= χ3 (γ) (cτ + d)

1
2 e

πicz2

cτ+d ϑ(z; τ).

In particular, we have that

ϑ

(
z

τ
;−1

τ

)
= −i

√
−iτe

πiz2

τ ϑ (z; τ) .

The Jacobi theta function also satisfies the well known triple product identity (w = e2πiz)

ϑ(z; τ) = −iq
1
8w−

1
2

∞∏
n=1

(1− qn)
(
1− wqn−1

) (
1− w−1qn

)
.

Additionally, we require the following classical Taylor expansion (see for example [30]):

ϑ(z; τ) = −2πz · η3(τ) exp

(
−2

∞∑
k=1

G2k(τ)
(2πiz)2k

(2k)!

)
.(2.3)

Here for even integers k ≥ 2, the Eisenstein series are defined by

Gk(τ) := −Bk

2k
+
∞∑
n=1

σk−1(n)qn,

where σ`(n) :=
∑

d|n d
` and Bk denotes the kth Bernoulli number.

We also make use of Zwegers’s functions A`(z1, z2; τ) [34] (see also [7] and [10]), defined for
` ∈ N, τ ∈ H, z2 ∈ C, and z1 ∈ C \ (Zτ + Z), by

(2.4) A`(z1, z2; τ) := e`πiz1
∑
n∈Z

(−1)`nq
`n(n+1)

2 e2πinz2

1− qne2πiz1
.

These functions may be “completed” into non-holomorphic Jacobi forms by setting

Â`(z1, z2; τ) := A`(z1, z2; τ) +R`(z1, z2; τ).

The non-holomorphic completions of these higher level Appell functions are defined by

R`(z1, z2; τ) :=
i

2

`−1∑
k=0

e(kz1)ϑ

(
z2 + kτ +

`− 1

2
; `τ

)
R

(
`z1 − z2 − kτ −

`− 1

2
; `τ

)
,

where e(x) := e2πix and where (τ = u+ iv)

R(z; τ) :=
∑

n∈ 1
2
+Z

(
sgn(n)− E

((
n+

Im(z)

v

)√
2v

))
(−1)n−

1
2 q−

n2

2 e−2πinz,
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with E(z) := 2
∫ z
0
e−πt

2
dt. Proposition 2.3 below shows that the so-called “error to modular-

ity” of the function R(z; τ) is the Mordell integral, defined for z ∈ C and τ ∈ H by

(2.5) h(z; τ) :=

∫
R

eπiτw
2−2πzw

cosh(πw)
dw.

Proposition 2.3 (Zwegers, [33]). For z ∈ C and τ ∈ H, we have that

R(z + 1; τ) = −R(z; τ),

R

(
z

τ
;−1

τ

)
=
√
−iτe−

πiz2

τ (−R(z; τ) + h(z; τ)) .

Moreover, the completed higher level Appell functions A`(z1, z2; τ) transform as follows.

Proposition 2.4 (Zwegers, [34]). For n1, n2,m1,m2 ∈ Z and γ = ( a bc d ) ∈ SL2(Z), we have

Â`(z1 + n1τ +m1, z2 + n2τ +m2; τ) = (−1)`(n1+m1)e(z1(`n1 − n2)− n1z2)q
`n21
2
−n1n2Â`(z1, z2; τ),

Â`

(
z1

cτ + d
,

z2
cτ + d

; γτ

)
= (cτ + d)e

(
c(−`z21 + 2z1z2)

2(cτ + d)

)
Â`(z1, z2; τ).

We further require “dissection properties” of the functions ϑ and R (see [11, 28, 34]).

Lemma 2.5. With notation as above, we have for n ∈ N

ϑ
(
z;
τ

n

)
=

n−1∑
`=0

q
(`−n−1

2 )
2

2n e2πi(`−
n−1
2 )(z+ 1

2)ϑ

(
nz +

(
`− n− 1

2

)
τ +

n− 1

2
;nτ

)
,

R
(
z;
τ

n

)
=

n−1∑
`=0

q−
(`−n−1

2 )
2

2n e−2πi(`−
n−1
2 )(z+ 1

2)R

(
nz +

(
`− n− 1

2

)
τ +

n− 1

2
;nτ

)
.

2.2. Bernoulli and Euler polynomials. In this section, we recall certain properties of
the Bernoulli polynomials Bk(x) and Euler polynomials Ek(x), defined in (1.12) and (1.13),
respectively, as well as their special values

Bk := Bk(0), Ek := 2kEk

(
1

2

)
.

One property we make use of is a “dissection” property of the Bernoulli polynomials. Namely,
for m ∈ 2N0 + 1, it is well known that (see Chapter 23 of [1])

Bk(mx) = mk−1
m−1∑
a=0

Bk

(
x+

a

m

)
.(2.6)

Another “splitting” property that we use is the following:

2kBk

(
x+ y

2

)
=

k∑
j=0

(
k

j

)
Bj(x)Ek−j(y),(2.7)

which follows easily from the definition of the Euler and Bernoulli polynomials, using the fact
that

2z · e(x+y)z

e2z − 1
=

zexz

ez − 1
· 2eyz

ez + 1
.
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Here and throughout, we let ζN := e2πi/N for N ∈ N. The next lemma expresses derivatives
of secant in terms of Euler polynomials.

Lemma 2.6. With notation as above, we have that for c ∈ N0

sec(2c+1)
(π

3

)
= (−1)c

√
3 · 62c+1E2c+1

(
5

6

)
.

Proof. This follows quickly from Theorem 2 of [17]. Namely, using the facts that E2c−1
(
1
6

)
=

−E2c−1
(
5
6

)
, and E2c−1

(
1
2

)
= 0, gives the claim. �

A fourth property that we use expresses the Euler numbers as integrals. Namely, it is
known (see (18) on p.42 of [21] for example) that for k ∈ N0,∫

R

w2k

cosh(πw)
dw = (2i)−2kE2k.(2.8)

Note that E2k−1 = 0 for k ∈ N.

3. Proof of Theorem 1.1

Here, we ultimately conclude Theorem 1.1 from Proposition 3.6, Proposition 3.7, and
Proposition 3.8 below. In §3.1, we establish properties of mock Jacobi forms related to the
unimodal rank generating function, and in §3.2, we construct mock modular forms from its
Taylor coefficients. In §3.3, we establish quantum modularity and prove Theorem 1.1. Until
otherwise indicated, throughout this section, we take τ ∈ H.

3.1. Mock Jacobi forms and unimodal ranks. Here we establish properties of mock
Jacobi forms associated to the unimodal rank generating function. We begin by writing
U(w; q) in terms of the Appell functions A`(u, v; τ) defined in (2.4). Throughout, for w1, w2 ∈
C, we let

U(w1;w2) := U(e(w1); e(w2)).

Lemma 3.1. Let w = e(z). With notation as above, we have that

U(z; τ) =
1(

w
1
2 − w− 1

2

)
(q; q)∞

(
A1(z,−z; τ)− w−1A3(z,−τ ; τ)

)
.

Proof. Entry 3.4.7 of “Ramanujan’s lost notebook” (see p.67 of [6]) gives with a = −w, b =
−w−1 that U(z; τ) equals

−1

(1− w) (1− w−1)

∞∑
n=0

qn
2

(wq; q)n (w−1q; q)n
+

1

(1− w−1)(q; q)∞

∑
n∈Z

(−1)nq
n(n+1)

2 w−n

1− wqn
.(3.1)

We note that second sum on the right hand side of (3.1) is easily seen to be equal to

1(
w

1
2 − w− 1

2

)
(q; q)∞

A1(z,−z; τ).

Using these facts, the result follows after applying the identity [9]

−1

(1− w−1) (1− w)

∞∑
n=0

qn
2

(wq; q)n(w−1q; q)n
=

−1(
w

1
2 − w− 1

2

) 1

(q; q)∞
A3(z,−τ ; τ). �
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Next we define a normalization of the function U(z; τ)

Y +(z; τ) := −
(
w

1
2 − w−

1
2

)
q−

1
24 · U(z; τ) = η−1(τ)

(
w−1A3(z,−τ ; τ)− A1(z,−z; τ)

)
,(3.2)

where the second equality follows from Lemma 3.1. Using Proposition 3.3, we now establish
a transformation law for Y +, which is a key step in showing quantum modularity of the
functions φr. To state this, we define

H (z; τ) :=
i

2

ϑ(z; τ)

η(τ)
h (2z; τ)− g(z; τ),

where h(z; τ) is given in (2.5), and

g(z; τ) :=
i√
3

∫
R
e
πiτw2

3
−2πwz sinh

(
2πw
3

)
cosh (πw)

dw.

Proposition 3.2. With notation as above, we have that

−ie
3πiz2

τ Y +

(
z

τ
;−1

τ

)
1√
−iτ
− Y + (z; τ) = H (z; τ) .

To prove Proposition 3.2 we rather work with a second normalization of the function
U(z; τ), namely

X+(z; τ) := −e−
3πz2

2v

(
w

1
2 − w−

1
2

)
(q; q)∞U(z; τ) =

(
w−1A3(z,−τ ; τ)− A1(z,−z; τ)

)
e−

3πz2

2v .

Moreover we need the completed function

X̂(z; τ) :=
(
w−1Â3(z,−τ ; τ)− Â1(z,−z; τ)

)
e−

3πz2

2v =
(
Â3(z, 0; τ)− Â1(z,−z; τ)

)
e−

3πz2

2v ,

(3.3)

where the second equality in (3.3) follows from the first transformation in Proposition 2.4.

Using Proposition 2.4, it is not difficult to establish the following modularity result for X̂(z; τ).

Proposition 3.3. With notation as above, for γ = ( a bc d ) ∈ SL2(Z), we have that

X̂

(
z

cτ + d
; γτ

)
= (cτ + d)X̂(z; τ).

From Proposition 3.3, we can establish the following transformation property of X+(z; τ).

Proposition 3.4. With notation as above, we have that

X+

(
z

τ
;−1

τ

)
τ−1−X+(z; τ)=

(
i

2
ϑ (z; τ)h (2z; τ) +

i

2
√

3
η (τ)

∑
±

±h
(
z ± 1

3
;
τ

3

))
e−

3πz2

2v .

Proof. Using Proposition 3.3 we obtain that(
X+

(
z

τ
;−1

τ

)
τ−1 −X+ (z; τ)

)
2i = f1 (z; τ) + f2 (z; τ) ,
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with

f1 (z; τ) :=ϑ

(
−1

τ
;−3

τ

)
e−

3πz2τ
2vτ τ−1

∑
±

±e±
2πiz
τ R

(
3z

τ
± 1

τ
;−3

τ

)
− ϑ (τ ; 3τ) e−

3πz2

2v

∑
±

±e±2πizR (3z ∓ τ ; 3τ) ,

f2 (z; τ) :=ϑ

(
z

τ
;−1

τ

)
R

(
2z

τ
;−1

τ

)
e−

3πz2τ
2vτ τ−1 − ϑ (z; τ)R (2z; τ) e−

3πz2

2v .

We next simplify f1 and f2. Firstly, using Lemma 2.2 and Proposition 2.3, we obtain that

f2 (z; τ) = −ϑ (z; τ)h (2z; τ) e−
3πz2

2v .(3.4)

Next Lemma 2.2 and Proposition 2.3 yield that

ϑ

(
−1

τ
;−3

τ

)
e−

3πz2τ
2vτ τ−1

∑
±

±e±
2πiz
τ R

(
3z

τ
± 1

τ
;−3

τ

)
= −1

3
e−

3πz2

2v ϑ

(
−1

3
;
τ

3

)∑
±

±
(
−R

(
z ± 1

3
;
τ

3

)
+ h

(
z ± 1

3
;
τ

3

))
.

Now Lemma 2.5, the fact that ϑ(0; τ) = 0, and Proposition 2.3, give that

ϑ

(
−1

3
;
τ

3

)
= 2i sin

(π
3

)
q

1
6ϑ (τ ; 3τ) ,

R

(
z ± 1

3
;
τ

3

)
= −q−

1
6 e2πi(z±

1
3)R (3z − τ ; 3τ) +R (3z; 3τ)− q−

1
6 e−2πi(z±

1
3)R (3z + τ ; 3τ) .

Thus ∑
±

∓R
(
z ± 1

3
;
τ

3

)
= 2i sin

(
2π

3

)
q−

1
6

∑
±

±e±2πizR (3z ∓ τ ; 3τ) ,

and hence

f1 (z; τ) = − i√
3
q

1
6ϑ (τ ; 3τ)

∑
±

±h
(
z ± 1

3
;
τ

3

)
e−

3πz2

2v .(3.5)

Combining (3.4), (3.5), and the fact that ϑ(τ ; 3τ) = −iq− 1
6η(τ) gives the claim. �

Proof of Proposition 3.2. First note that∑
±

±h
(
z ± 1

3
;
τ

3

)
= 2i
√

3 · g(z; τ).

The result now follows immediately from Proposition 3.4 and Lemma 2.1, using the fact that

Y + (z; τ) =
e

3πz2

2v

η(τ)
X+ (z; τ) .

�
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3.2. Taylor coefficients and unimodal ranks. Next, using the results from §3.1, we con-
struct mock modular forms from the Taylor coefficients of the unimodal rank generating
function. The fuctions H(z; τ) and Y +(z; τ) are holomorphic in z, and it is not difficult to
see that they are both odd functions in z, so we may write

Y + (z; τ) =
∞∑
r=0

a2r(τ)z2r+1,(3.6)

H (z; τ) =
∞∑
r=0

h2r(τ)z2r+1.(3.7)

The next lemma describes the modularity properties of the Taylor coefficients a2r(τ) of
Y +(z; τ).

Lemma 3.5. With notation as above, we have that

a2r

(
−1

τ

)
(−iτ)−

3
2
−2r =

∑
0≤j≤r

(3π)r−j

(r − j)!
(−1)j+1(−iτ)j−r (a2j(τ) + h2j(τ)) .

Proof. Proposition 3.2 directly yields

Y +

(
z

τ
;−1

τ

)
= ie−

3πiz2

τ

√
−iτ

(
Y + (z; τ) +H (z; τ)

)
.

Inserting the Taylor expansions (3.6) and (3.7), and Taylor expanding the exponential func-
tion, gives that

∞∑
r=0

a2r

(
−1

τ

)(z
τ

)2r+1

= i
√
−iτ

∞∑
`=0

(
−3πiz2

τ

)`
`!

∞∑
j=0

(a2j(τ) + h2j(τ)) z2j+1

= i
√
−iτ

∞∑
r=0

z2r+1
∑

0≤j≤r

(3π)r−j

(r − j)!
(−1)r+j(−iτ)j−r (a2j(τ) + h2j(τ)) .

Equating the coefficients of z2r+1 gives the claim. �

To prove the transformation law for the functions φr, we define for r ∈ N0

b2r(τ) :=
∑

0≤µ≤r

(3πi)µΓ
(
1
2

+ 2r − µ
)

Γ(1
2

+ 2r)µ!
a
(µ)
2r−2µ(τ).(3.8)

We will later show that φr(τ) = b2r(τ). The functions b2r(τ) transform as described in the
following proposition, a fact which follows as in [20], using Lemma 3.5.

Proposition 3.6. With notation as above, for r ∈ N0, we have that

b2r

(
−1

τ

)
(−iτ)−

3
2
−2r − b2r(τ) = −(−iτ)−

3
2
−2r

∑
0≤µ≤r

(3πi)µΓ
(
1
2

+ 2r − µ
)

Γ(1
2

+ 2r)µ!

×
∑

0≤j≤r−µ

(3π)r−µ−j(−1)j

(r − µ− j)!
∂µ

∂τµ

(
(−iτ)j+r−µ+

3
2h2j(τ)

)
.
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Our next proposition shows that the “errors to modularity” h2r are C∞, a fact we use
in the course of establishing the quantum modularity of the unimodal rank functions φr in
Theorem 1.1. In doing so, we split the Taylor expansion of H(z; τ) into two pieces

(3.9) H(z; τ) = H1(z; τ) +H2(z; τ),

with

H1(z; τ) =
∞∑
r=0

h1,2r(τ)z2r+1 :=
i

2

ϑ(z; τ)

η(τ)
h(2z; τ),

H2(z; τ) =
∞∑
r=0

h2,2r(τ)z2r+1 := −g(z; τ).

Proposition 3.7. The functions h2r are C∞ on R. To be more precise, h1,2r(τ) vanishes to
infinite order for τ ∈ Q, and we extend this function to equal 0 on all of R. Moreover, for
τ ∈ H ∪Q, the function h2,2r satisfies

h2,2r(τ) =
i√
3

(2π)2r+1

(2r + 1)!

∫
R
e
πiτw2

3 w2r+1 sinh
(
2πw
3

)
sinh(πw)

dw.

Proof. Firstly, we have that

H1 (z; τ) =
i

2η(τ)

∞∑
r=0

∂r

∂zr
[ϑ (z; τ)h (2z; τ)]z=0

zr

r!

=
i

2η(τ)

∞∑
r=0

z2r+1

(2r + 1)!

r∑
`=0

(
2r + 1

2`+ 1

)
∂2`+1

∂z2`+1
[ϑ (z; τ)]z=0

∂2r−2`

∂z2r−2`
[h (2z; τ)]z=0 ,

so that

h1,2r(τ) =
i

2η(τ)

r∑
`=0

1

(2`+ 1)!(2r − 2`)!

∂2`+1

∂z2`+1
[ϑ (z; τ)]z=0

∂2r−2`

∂z2r−2`
[h (2z; τ)]z=0 .

It is not hard to see that h(2z; τ) is C∞ as a function of τ near z = 0. Moreover by (2.3), we
see that

i

2η(τ)

∂2`+1

∂z2`+1
[ϑ (z; τ)]z=0

gives a linear combination of Eisenstein series multiplied by η2(τ). It is well known that the
Eisenstein series satisfy

Gk

(
−1

τ

)
= τ kGk(τ) (k > 2 even), G2

(
−1

τ

)
= τ 2G2(τ) +

iτ

4π
.

This implies that the function h2r(τ) and its derivatives vanish exponentially for τ ∈ Q. The
second claim follows directly by inserting the Taylor expansion of e−2πzx. �
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3.3. Quantum unimodal ranks. Building from the results in §3.1 and §3.2, here we prove
Theorem 1.1.

Proof of Theorem 1.1. We first relate the Taylor coefficients of Y +(z; τ) to the unimodal
moments u2r. Using the definition of u2r, it is not difficult to verify that

U (z; τ) =
∞∑
r=0

u2r(q)
(2πiz)2r

(2r)!
.(3.10)

Using the Taylor expansion of sin(πz) we find that

Y + (z; τ) = −2iq−
1
24 sin(πz)U (z; τ) = −(2πiz)

∞∑
r=0

(2πiz)2r
∑
0≤`≤r

u2`(q)q
− 1

24 22`−2r

(2`)!(2r − 2`+ 1)!
,

yielding

a2r(τ)

(2πi)2r+1
= −

∑
0≤`≤r

u2`(q)q
− 1

24 22`−2r

(2`)!(2r − 2`+ 1)!
.(3.11)

Using (3.11), the definition of φr(τ) in (1.6), or its equivalent formulation given in (1.8),
as well as the definition of b2r(τ) in (3.8), it is not difficult to see that for each r ∈ N0,
b2r(τ) = φr(τ). Combining this with the fact that h2j(τ) = h1,2j(τ) + h2,2j(τ), Proposition
3.6 yields

(3.12) φr

(
−1

τ

)
(−iτ)−

3
2
−2r − φr(τ)

= −(−iτ)−
3
2
−2r

∑
0≤µ≤r

0≤j≤r−µ

(3π)r−j(−1)jiµΓ
(
1
2

+ 2r − µ
)

Γ
(
1
2

+ 2r
)
µ!(r − µ− j)!

∂µ

∂τµ

(
(−iτ)j+r−µ+

3
2 (h1,2j(τ) + h2,2j(τ))

)
.

By continuation, (3.12) and what follows hold on H ∪Q \ {0}.
We first consider the first summand. We have by Proposition 3.7

∂µ

∂τµ

(
(−iτ)j+r−µ+

3
2h2,2j(τ)

)
=

i√
3

(2π)2j+1

(2j + 1)!

∫
R

µ∑
`=0

(
µ

`

)
∂`

∂τ `

(
(−iτ)j+r−µ+

3
2

) ∂µ−`

∂τµ−`

(
e
πiw2τ

3

)
w2j+1 sinh

(
2πw
3

)
cosh(πw)

dw

=

µ∑
`=0

(−1)`iµ+1π2j+1+µ−`22j+13`−µ−
1
2

(
µ

`

)
Γ
(
j + r − µ+ 5

2

)
(2j + 1)!Γ

(
j + r − µ+ 5

2
− `
)

(3.13)

× (−iτ)j+r+
3
2
−µ−`

∫
R
w2j+2µ−2`+1e

πiw2τ
3

sinh
(
2πw
3

)
cosh(πw)

dw.

We now define the numbers

br(µ, j, `) :=
i(−1)j+`+µ22j+1πr+j+µ+1−`3r+`−µ−j−

1
2 Γ
(
1
2

+ 2r − µ
)

Γ
(
j + r − µ+ 5

2

)
(2j + 1)!`!(µ− `)!(r − µ− j)!Γ

(
1
2

+ 2r
)

Γ
(
j + r − µ+ 5

2
− `
) ,
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and let

(3.14) br(N,M) :=
∑

0≤µ≤r

∑
0≤j≤r−µ
0≤`≤µ

N=j+µ−`
M=µ+`+r−j

br(µ, j, `).

Moreover, we define

Hr(τ) := (−iτ)−
3
2
−2r

∑
0≤µ≤r

0≤j≤r−µ

(3π)r−j(−1)jiµΓ
(
1
2

+ 2r − µ
)

Γ
(
1
2

+ 2r
)
µ!(r − µ− j)!

∂µ

∂τµ

(
(−iτ)j+r−µ+

3
2h1,2j(τ)

)
.

(3.15)

Note that Hr(τ) = 0 for τ ∈ Q \ {0}. We have thus shown for τ ∈ H ∪Q \ {0},

(−iτ)−
3
2
−2rφr

(
−1

τ

)
− φr(τ) = −

∫
R
Pr
(
w, (−iτ)−1

)
e
πiτw2

3
sinh

(
2πw
3

)
cosh(πw)

dw −Hr(τ),

as claimed in (1.11).
Finally, under translation τ → τ + 1, it is clear using the definition of φr(τ) in (1.6) that

φr(τ + 1) = e−
πi
12φr(τ). With the proof of Proposition 3.8 below, using (1.8), Theorem 1.1

now follows. �

We are left to show existence of the moment function and their derivatives.

Proposition 3.8. For r, n ∈ N0, the moment functions

∂n

∂τn

[
q−

1
24u2r(q)

]
are defined for every root of unity q = ζ and lie in Z[ζ].

Proof. For ease of notation, we let

Dα := α
∂

∂α
,

Jm(w; q) := (wq; q)m(w−1q; q)m.

To finish the proof it is enough to show that for m sufficiently large, and every n, r ∈ N0, the
function

(3.16) Dn
q (Dr

w [Jm(w; q)]w=1)

vanishes for q = ζ.
It is not difficult to see that for m ∈ N

Dw (Jm(w; q))

Jm(w; q)
= −

m∑
k=1

wqk

1− wqk
+

m∑
k=1

w−1qk

1− w−1qk
=: Rm(w; q).(3.17)
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We further relax notation and let J := Jm(w; q), R := Rm(w; q), and R(r) := Dr
wR for r ∈ N0.

Using (3.17), we find that

DwJ = JR,

D2
wJ = J

(
R2 +R(1)

)
,

D3
wJ = J

(
R3 + 3RR(1) +R(2)

)
,

D4
wJ = J

(
R4 + 4RR(2) + 3(R(1))2 + 6R2R(1) +R(3)

)
...

Note that each Dr
wJ can be expressed as J multiplied by a sum over the partitions or r. That

is, given a partition π = `1(π) · 1 + `2(π) · 2 + · · · + `r−1(π) · (r − 1) + `r(π) · r of r (where
each `j(π) ∈ N0) we may assign the product∏

1≤j≤r

(
Dj−1
w R

)`j(π) .
Conversely, every such product appearing as a summand as above for Dr

wJ corresponds to a
partition of r. In general, we have that

Dr
w [Jm(w; q)]w=1 = (q; q)2m

∑
π`r

c(π)
∏

1≤j≤r

(
Dj−1
w [Rm(w; q)]w=1

)`j(π) ,
where we sum over all partitions π of r. The exponents `j(π) correspond to the number of
parts of the partition π of r, and the constants c(π) = cr(π) also depend on the partition π
of r. Now using the definition of Rm(w; q) in (3.17), we may write∑

π`r

c(π)
∏

1≤j≤r

(
Dj−1
w [Rm(w; q)]w=1

)`j(π) =
∑

~k=(k1,...,kc)

P~k,r(q)∏c
j=1 (1− qkj)r

=: Rm,r(q),(3.18)

where c = cr ∈ N depends only on r, and P~k,r ∈ Z[q]. Next we apply the operator Dn
q to

(q; q)2m multiplied by Rm,r(q) in (3.18) above. Using the product rule, we have that (3.16)
equals ∑

0≤j≤n

(
n

j

)
Dj
q

(
(q; q)2m

)
Dn−j
q (Rm,r(q)) .

It is not difficult to see that

Dq ((q; q)2m)

(q; q)2m
= −2

m∑
k=1

kqk

1− qk
=: Tm(q),

and for l ∈ N, that

D`−1
q (Tm(q)) =

m∑
k=1

Qk,l(q)

(1− qk)`
,

with Qk,l(q) ∈ Z[q]. Therefore, we may conclude that (3.16) has the shape

(q; q)2m
∑

~k=(k1,...,kd)

P~k,r,n(q)∏d
j=1 (1− qkj)r+n

,
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where d = dr,n ∈ N depends only on r and n, and P~k,r,n ∈ Z[q]. Now if ζ = ζm then (q; q)2M
(M ∈ N) vanishes at q = ζ of order ≥ 2bm

M
c. On the other hand each term

P~k,r,n(q)∏d
j=1 (1− qkj)r+n

vanishes at q = ζ of order at most d(r+n), which is a constant independent of m. Thus, the
claim follows.

�

4. Proof of Theorem 1.2

To prove Theorem 1.2, we recall (3.2). It is not difficult to see from Proposition 3.2 that

Y +(z; it) = −H(z; it) +
∑
r≥0

βr(t)z
r

with

βr(t)�r e
−N
t

for some N > 0. To find the asymptotic expansion of H(z; it), we split as in (3.9) and bound
using (2.3)

h1,2r(it)� e−
M
t

for some M > 0. Thus we are left to determine the asymptotic expansion of H2(z; it). For
this, we write

H2(z; it) = − i√
3

∫
R
e−

πtw2

3
−2πwz sinh

(
2πw
3

)
cosh (πw)

dw

= − i√
3

∞∑
r=0

(−2πz)2r+1

(2r + 1)!

∞∑
k=0

(
−πt

3

)k
k!

∫
R

w2r+2k+1 sinh
(
2πw
3

)
cosh (πw)

dw,(4.1)

where the identity in (4.1) refers to an asymptotic expansion. Thus, to determine the asymp-
totic expansion of H2(z; it), we are left to evaluate explicitly for a ∈ N0

Ca :=

∫
R

w2a+1 sinh
(
2πw
3

)
cosh(πw)

dw =
1

2

∫
R

w2a+1
(
e

2πw
3 − e− 2πw

3

)
cosh(πw)

dw =
∞∑
r=1

(
2π
3

)2r−1
(2r − 1)!

∫
R

w2a+2r

cosh(πw)
dw.

From (2.8), we have that the integral above equals (2i)−2a−2rE2a+2r, yielding

Ca = (−2i)−2a−1
∞∑
r=1

(
πi
3

)2r−1
(2r − 1)!

E2a+2r = (−2i)−2a−1
∞∑
r=0

(
πi
3

)r
r!

E2a+r+1.

The second equality above holds due to the fact that Ej = 0 for j odd.
We are thus left to understand

∑∞
r=0

vr

r!
Er+b for positive integers b and v = πi

3
. Set

f(v) :=
∞∑
r=0

Er
r!
vr = sech(v),
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where the second equality above is simply the definition of the Euler numbers. Then

f (b)(v) =
∞∑
r=0

Er+b
r!

vr.

Thus

(4.2) Ca = (−2i)−2a−1 sech(2a+1)

(
πi

3

)
= 2−2a−1 sec(2a+1)

(π
3

)
.

Next we deduce from (1.12) that

i

2

1

sin (πz)
= −

∞∑
n=0

B2n

(
1
2

)
(2n)!

(2πiz)2n−1 .

Combining the above, we have established that the asymptotic expansion of U(z; it)e
πt
12 as

t→ 0+ is given by

1√
3

∞∑
r=0

(2πiz)2r (−1)r
∑

0≤n≤r

B2n

(
1
2

)
(2n)!

(−1)n

(2r − 2n+ 1)!

∞∑
k=0

(
−πt

3

)k
k!

Cr−n+k.

Thus, using (4.2), we have the asymptotic expansion as t→ 0+

(4.3) e
πt
12u2r

(
e−2πt

)
=

(2r)!(−1)r2−2r−1√
3

∞∑
k=0

tk

k!

(
−π

3

)k
2−2k

×
∑

0≤n≤r

(−1)nB2n

(
1
2

)
22n

(2n)!(2r − 2n+ 1)!
sec(2r−2n+2k+1)

(π
3

)
.

Using Lemma 2.6 together with (4.3), we have that

e
πt
12u2r

(
e−2πt

)
=

32r+1

2r + 1

∞∑
k=0

(3πt)k

k!

∑
0≤n≤r

(
2r + 1

2n

)
3−2nB2n

(
1

2

)
E2r+2k+1−2n

(
5

6

)
,(4.4)

which concludes the proof of the first statement of Theorem 1.2.
Next we prove the claimed asymptotic for the main term. Since B2n+1

(
1
2

)
= 0, we may

rewrite the k = 0 summand of (4.4) as

(4.5)
32r+1

2r + 1

∑
0≤n≤2r+1

(
2r + 1

n

)
3−nBn

(
1

2

)
E2r+1−n

(
5

6

)
.

Now we use (2.6), which yields that

Bn

(
1

2

)
= 3n−1

2∑
a=0

Bn

(
1

6
+
a

3

)
.

Thus, (4.5) equals

32r

2r + 1

2∑
a=0

∑
0≤n≤2r+1

(
2r + 1

n

)
Bn

(
1

6
+
a

3

)
E2r+1−n

(
5

6

)
.(4.6)
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Using (2.7), (4.6) reduces to

2 · 62r

2r + 1

2∑
a=0

B2r+1

(
1

2
+
a

6

)
.

Noting again that B2r+1

(
1
2

)
= 0, we find that as claimed, as t→ 0+,

e
πt
12u2r

(
e−2πt

)
∼ 2 · 62r

2r + 1

(
B2r+1

(
2

3

)
+B2r+1

(
5

6

))
.

5. An Example: the moment function φ1(τ)

In this section, we give an exact value for the quantum moment function

φ1(τ) = 4π3iq−
1
24

∞∑
n=1

∑
m∈Z

(−1)mu(m,n)
(
m2 + 2n

)
qn = 4π3iq−

1
24

(
u2(q)− iπ−1

∂

∂τ
u0(q)

)
.

(5.1)

To describe this, we define for positive integers n the polynomials

dn(q) := n(q; q)2n−1q
n − 2qn+2(q; q)n

n∑
j=1

jqj−1
n∏
k=1
k 6=j

(
1− qk

)
∈ Z[q],(5.2)

bn(q) := qn+1

n∑
j=1

qj
n∏
k=1
k 6=j

(
1− qk

)2 ∈ Z[q].(5.3)

Theorem 5.1. If h, k ∈ N, with gcd(h, k) = 1, we have that

φ1

(
h

k

)
= 8π3iζ−h24k

(
k∑

n=1

dn
(
ζhk
)
−

2k−1∑
n=1

bn
(
ζhk
))

.

Remark. Theorem 5.1, together with (1.11) in the case τ ∈ Q \ {0} of Theorem 1.1, gives an
exact value for the integral∫

R
P1

(
w, (−iτ)−1

)
e
πiτw2

3
sinh

(
2πw
3

)
cosh(πw)

dw.

To prove Theorem 5.1, we first establish Proposition 5.2 and Proposition 5.3 below. These
propositions give alternate expressions for the functions defining φ1(τ) (see (5.1)), which we
subsequently evaluate for q = ζ, where ζ is any root of unity.

Proposition 5.2. With notation as above, we have that

∂

∂τ
u0(q) = 2πi

∑
n≥1

dn(q).

Moreover, if gcd(h, k) = 1 we have that

∂

∂τ
[u0(q)]q=ζhk

= 2πi
k∑

n=1

dn
(
ζhk
)
.
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Proof. The first statement follows by straightforward differentiation, using that u0(q) =
U(0; τ), definition (1.2), and the fact that 1

2πi
∂
∂τ

= q d
dq

. To prove the second statement,

we observe that dn(q) is of the form dn(q) = (q; q)n−1d̃n(q), where d̃n(ζhk ) < ∞. The state-
ment now follows, observing that for n ≥ k + 1, the factor (q; q)n−1 of dn(q) vanishes when
q = ζhk . �

Proposition 5.3. With notation as above, we have that

(2πi)2u2(q) =
∂2

∂z2
[U(z; τ)]z=0 = −2(2πi)2

∑
n≥1

bn(q).

Moreover, if h, k ∈ N, with gcd(h, k) = 1, we have that

(2πi)2u2(ζ
h
k ) = −2(2πi)2

2k−1∑
n=1

bn
(
ζhk
)
.

Proof of Proposition 5.3. The first statement follows by straightforward differentiation, using
definition (1.2), and the fact that 1

2πi
∂
∂z

= w d
dw

for w = e2πiz. To prove the second statement,
using the first statement, we see for n ≥ 2k, the jth summand defining bn(q) (for any j ≥ 1)
contains either the factor (1−qk) or (1−q2k) (or both), both of which vanish when q = ζhk . �

Proof of Theorem 5.1. Theorem 5.1 now follows from the definition of φ1(τ) (see (5.1)),
Proposition 5.2, and Proposition 5.3. �
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