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ON THE NUMBER OF IRREDUCIBLE REPRESENTATIONS OF

su(3)

WALTER BRIDGES, KATHRIN BRINGMANN, AND JOHANN FRANKE

Abstract. In this note, we use a variant of the hyperbola method to prove an
asymptotic expansion for the summatory function of the number of irreducible su(3)-
representations of dimension n. This is a natural companion result to work of
Romik, who proved an asymptotic formula for the number of unrestricted su(3)-
representations of dimension n.

1. Introduction and statement of results

The irreducible representations of the Lie algebra su(3) are a family of representa-

tions Wj,k of dimension jk(j+k)
2

for j, k ∈ N0 (see [6, Theorem 6.27]). Let r(n) denote
the number of n-dimensional representations of su(3). Then

∑

n≥0

r(n)qn =
∏

j,k≥1

1

1− q
jk(j+k)

2

. (1.1)

Romik recently proved the following asymptotic formula for r(n) by studying (a
renormalization of) the Witten zeta function for SU(3); that is, the meromorphic
continuation of the series

ζsu(3)(s) :=
∑

j,k≥1

(

jk(j + k)

2

)−s
(

Re(s) > 2
3

)

.

Theorem 1.1 ([9], Theorem 1.1). As n → ∞ , we have, for certain constants

A1, A2, A3, A4, K > 0

r(n) ∼ K

n
3
5

exp
(

A1n
2
5 −A2n

3
10 − A3n

1
5 − A4n

1
10

)

.
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Romik stated that Theorem 1.1 is an analogue of the Hardy–Ramanujan asymptotic
formula for p(n), the number of integer partitions of n, because the corresponding
generating function for su(2)-representations coincides with

∑

n≥0

p(n)qn =
∏

n≥1

1

1− qn
. (1.2)

The doubly indexed product (1.1) has much more complicated analytic behavior
compared to the modular infinite product (1.2). Two of the authors [5] subsequently
obtained an asymptotic series for r(n) which was then generalized by the authors
and Brindle to more general product generating functions [4], including for example
representations of so(5).
In the present paper, we turn our attention to the number of irreducible su(3)-

representations of dimension n, i.e.,

̺(n) =
∑

j,k≥1
jk(j+k)

2
=n

1.

Of course, this is a highly oscillatory function and is often 0, but we may still study
the average,

∑

1≤n≤x ̺(n), as x → ∞. Note the similarity of ̺(n) to the divisor
function,

d(n) :=
∑

j,k≥1
jk=n

1.

Dirichlet’s hyperbola method yields the first two terms in the expansion of the average,
∑

1≤n≤x

d(n) = x log(x) + (2γ − 1)x+O
(√

x
)

,

where γ is the Euler–Mascheroni constant (see for example [1, Theorem 3.3]). The
still open Dirichlet divisor problem concerns improving the error term from O(

√
x)

to the conjectured O(x
1
4 ); for an overview, see [2].

We show here that a variant of the hyperbola method yields the following asymp-
totic expansion for the summatory function of ̺(n).

Theorem 1.2. We have, as x → ∞,

∑

1≤n≤x

̺(n) =
2

2
3

√
3Γ
(

1
3

)3

4π
x

2
3 + 2

3
2 ζ

(

1

2

)√
x+O

(

x
1
3

)

.
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We prove Theorem 1.2 in Section 2, and we conclude this section with the following
questions.

(1) Can one improve the error term in Theorem 1.2, perhaps by a deeper study of
the Witten zeta function, ζsu(3)(s)? It would be reasonable to consider deeper
techniques that have been brought to bear on the Dirichlet divisor problem (the
Selberg–Delange method [10], Voronoi summation [7], to name a few).

(2) Can this variant of the hyperbola method (or any other technique) be used to
yield asymptotic series for generic sums

∑

m,n≥1
p(m,n)≤x

1,

where p(x, y) is a homogeneous polynomial in Q[x, y] taking integer values? For

example, the case p(m,n) = mn(m+n)(m+2n)
6

corresponds to representations of
so(5).
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2. Proof of Theorem 1.2

In this section we prove Theorem 1.2.

Proof of Theorem 1.2. We note that the asymptotic main term in Theorem 1.2 may be
obtained by analytic properties of ζsu(3)(s) along with a standard Tauberian theorem.
In particular, Theorem 1.2 (3) of [9] implies1 that

Ress= 2
3
ζsu(3)(s) = Ress= 2

3
2sω(s) =

2
2
3Γ
(

1
3

)3

2π
√
3

.

1Romik defined ω(s) := 2−sζ
su(3)(s).
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By the same theorem, ζsu(3) has a meromorphic continuation to C \ (2
3
∪ (1

2
−N0)). It

follows from the Ikehara–Wiener Tauberian theorem (see, e.g. [8, Ch. 3, ex. 3.3.6])

∑

1≤n≤x

̺(n) ∼ 3

2
Ress= 2

3
ζsu(3)(s)x

2
3 =

2
2
3

√
3Γ
(

1
3

)3

4π
x

2
3 , x → ∞. (2.1)

For the next term in the asymptotic expansion, we first write

∑

1≤n≤x

̺(n) =
∑

1≤N≤x

∑

m,n≥1
mn(m+n)

2
=N

1 =
∑

m,n≥1
mn(m+n)≤2x

mn(m+n)≡0 (mod 2)

1.

Now mn(m + n) ≡ 0 (mod 2) is automatically satisfied, and we see that the above
sum counts lattice points in the (m,n)-plane between m = 1, n = 1 and the curve

n = −m2+
√
m4+8mx

2m
(the positive solution to the quadratic equation mn(m+n) = 2x).

In usual hyperbola-method fashion, we add up the lattice points for each 1 ≤ m ≤ x
1
3

along the vertical lines from n = 1, . . . , ⌊−m2+
√
m4+8mx

2m
⌋. Then we do the same for

1 ≤ n ≤ x
1
3 along the horizontal lines from m = 1, . . . , ⌊−n2+

√
n4+8nx

2n
⌋. By symmetry

these are the same. Then we subtract the points counted twice, namely those in the
square with side length x

1
3 . The result is

∑

1≤n≤x

̺(n) = 2
∑

1≤n≤x
1
3

∑

1≤m≤−n2+
√

n4+8nx

2n

1−
⌊

x
1
3

⌋2

= 2
∑

1≤n≤x
1
3

⌊

−n2 +
√
n4 + 8nx

2n

⌋

− x
2
3 +O

(

x
1
3

)

=
∑

1≤n≤x
1
3

(

−n +

√

n2 +
8x

n

)

− x
2
3 +O

(

x
1
3

)

= −3

2
x

2
3 +

∑

1≤n≤x
1
3

√

n2 +
8x

n
+O

(

x
1
3

)

. (2.2)
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Thus, we only need to approximate the remaining sum. Let {t} := t − ⌊t⌋. Abel
partial summation [10, Theorem 0.3, p. 4] gives

∑

1≤n≤x
1
3

√

n2 +
8x

n
=
⌊

x
1
3

⌋

√

x
2
3 + 8x

2
3 − 1

2

∫ x
1
3

1

2t− 8x
t2

√

t2 + 8x
t

⌊t⌋dt

= 3x
2
3 −

∫ x
1
3

1

t− 4x
t2

√

t2 + 8x
t

(t− {t})dt+O
(

x
1
3

)

= 3x
2
3 −

∫ x
1
3

1

t2 − 4x
t

√

t2 + 8x
t

dt+

∫ x
1
3

1

t− 4x
t2

√

t2 + 8x
t

{t}dt+O
(

x
1
3

)

.

Making the change of variables t 7→ 2x
1
3 t, the first integral is

∫ x
1
3

1

t2 − 4x
t

√

t2 + 8x
t

dt = 2x
2
3

∫ 1
2

1

2x
1
3

2t
5
2 − t−

1
2

√
1 + t3

dt =: 2x
2
3F

(

1

2x
1
3

)

,

where

F (y) :=

∫ 1
2

y

2t
5
2 − t−

1
2

√
1 + t3

dt.

Noting that 1√
1+t3

= 1 + O(t3) gives the expansion

F (y) = F (0) + 2
√
y +O

(

y
7
2

)

, (y → 0).

Hence,

∑

1≤n≤x
1
3

√

n2 + 8x
n
= 3x

2
3 − 2x

2
3

(

F (0) +
√
2x− 1

6 +O
(

x− 7
6

))

+

∫ x
1
3

1

t− 4x
t2√

t2+ 8x
t

{t}dt+O
(

x
1
3

)

= (3− 2F (0))x
2
3 − 2

√
2x+

∫ x
1
3

1

t− 4x
t2√

t2+ 8x
t

{t}dt+O
(

x
1
3

)

. (2.3)
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The integral with the fractional part is

∫ x
1
3

1

t− 4x
t2

√

t2 + 8x
t

{t}dt =
∫ x

1
3

1

(

t
3
2{t}√
t3 + 8x

− 4x{t}
t
3
2

√
t3 + 8x

)

dt. (2.4)

Now, the function t 7→ t
3
2√

t3+8x
is increasing for t > 0, so

∫ x
1
3

1

t
3
2{t}√
t3 + 8x

dt ≤
∫ x

1
3

1

t
3
2

√
t3 + 8x

dt ≤ x
1
3 max
1≤t≤x

1
3

t
3
2

√
t3 + 8x

= O
(

x
1
3

)

.

The second integral in (2.4) is

−4x

∫ x
1
3

1

{t}
t
3
2

√
t3 + 8x

dt = −
√
2x

∫ x
1
3

1

{t}
t
3
2

√

1 + t3

8x

dt.

Now, we have2 (1 + y)−
1
2 = 1 +O≤0.5(y) for 0 ≤ y ≤ 1

8
. Thus,

∫ x
1
3

1

{t}
t
3
2

√

1 + t3

8x

dt =

∫ x
1
3

1

{t}
t
3
2

dt+

∫ x
1
3

1

{t}
t
3
2

O≤0.5

(

t3

8x

)

dt

=

∫ ∞

1

{t}
t
3
2

dt+O
(

x− 1
6

)

.

Now, by [10, p. 232] we have

ζ

(

1

2

)

= −1 − 1

2

∫ ∞

1

{t}
t
3
2

dt,

so
∫ x

1
3

1

{t}
t
3
2

√

1 + t3

8x

dt = −2− 2ζ

(

1

2

)

+O
(

x− 1
6

)

.

Thus,

−4x

∫ x
1
3

1

{t}
t
3
2

√
t3 + 8x

dt = 2
√
2

(

1 + ζ

(

1

2

))√
x+O

(

x
1
3

)

.

2We write f(y) = O≤c(g(y)) for |f(y)| ≤ c|g(y)|.
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Plugging into (2.3), we get

∑

1≤n≤x
1
3

√

n2 +
8x

n
= (3− 2F (0))x

2
3 + 2

3
2 ζ

(

1

2

)√
x+O

(

x
1
3

)

,

which if added to (2.2) yields

∑

1≤n≤x

̺(n) =

(

3

2
− 2F (0)

)

x
2
3 + 2

3
2 ζ

(

1

2

)√
x+O

(

x
1
3

)

.

Comparing with (2.1), we conclude Theorem 1.2. �

Remark. The proof of Theorem 1.2 implies the identity

∫ 1
2

0

2t
5
2 − t−

1
2

√
1 + t3

dt =
3

4
− 2

2
3

√
3Γ
(

1
3

)3

8π
.

We did not find a direct proof, but we note that the factor
Γ( 1

3)
3

π
appears in evaluations

of the complete elliptic integral of the first kind [3, Table 9.1].
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