
Math. Res. Lett. 14 (2007), no. 1, 137–156 c© International Press 2007

MAASS-JACOBI FORMS OVER
COMPLEX QUADRATIC FIELDS

Kathrin Bringmann, Charles H. Conley, and Olav K. Richter

Abstract. We use methods from representation theory and invariant theory to compute
differential operators invariant under the action of the Jacobi group over a complex

quadratic field. This allows us to introduce Maass-Jacobi forms over complex quadratic

fields, which are Jacobi forms that are also eigenfunctions of an invariant differential
operator. We present explicit examples via Jacobi-Eisenstein series.

1. Introduction

In 1949, Maass [15] systematically investigated non-analytic automorphic forms
which are eigenfunctions of the non-Euclidean Laplace operator. This lead to the
theory of Maass waveforms, which has since grown enormously and is intimately
linked to the spectral theory of automorphic forms. For a good overview (including
many references) of Maass waveforms, see for example Hejhal [9] and [10], Terras [23],
Bump [2], Iwaniec [13], and Iwaniec and Kowalski [14].

Several generalization of Maass waveforms have been considered: Siegel-Maass
forms (for example, see Maass [16]), Maass forms over complex quadratic fields (for
example, see Elstrodt, Grunewald, and Mennicke [4]), and Maass-Jacobi forms over
the rationals (see Berndt and Schmidt [1] and Yang [24]).

Skogman [21] and Richter and Skogman [19] use Jacobi theta functions to construct
Jacobi forms over complex quadratic fields and arbitrary number fields, respectively.
The classical Jacobi forms in Eichler and Zagier [3] are holomorphic functions and
more generally, the Maass-Jacobi forms over the rationals in [1] and [24] are eigen-
functions of a differential operator invariant under the real Jacobi group. However,
in the case of a complex quadratic field, it had not been known whether the Jacobi
theta functions in [21] and [19] satisfy an analgous differential equation. In this work
we give such a condition.

Our paper divides naturally into two parts: the first three sections concern number
theory and the last two concern representation theory. In the first part we initiate
a theory of Maass-Jacobi forms over complex quadratic fields. We use differential
operators invariant under the slash actions of the Jacobi group considered in [21] and
[19] to define Maass-Jacobi forms over complex quadratic fields. These forms are
Jacobi forms over complex quadratic fields (as in [21] and [19]) which in addition are
eigenfunctions of one of the invariant differential operators. This last condition is the
analog of the eigenfunction condition for the Maass-Jacobi forms alluded to above.
We present explicit non-trivial examples of such forms via Jacobi-Eisenstein series.
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The second part of the paper is dedicated to the computation of the invariant
operators needed in the first. In Section 4 we review the general framework within
which one computes differential operators invariant under a Lie group action. This
material is well-known “folklore” in representation theory, but we do not know of any
reference in which it is all drawn together. Some of it is given in Helgason [11] from
a different point of view.

In Section 5 we define the complex Jacobi group G, a central extension of the
complex version of the Jacobi group used in the number-theoretic part of the paper.
(The central extension is necessary in the complex setting in order to make the slash
actions into group actions.) We begin with two presentations of G, analogous to those
in [3] and [1]. Then in Section 5.1 we give an efficient conceptual derivation of the
formula for the action of G on the space underlying the slash actions. In Section 5.2
we use invariant theory to obtain a complete description of the graded algebras of the
algebras of slash-invariant differential operators.

In Section 5.3 we compute the required invariant differential operators, a very long
and intricate calculation. We begin by verifying that our slash actions really are
group actions, already a non-trivial computation, which to our knowledge is not yet
in print. We conclude in Section 5.4 with some remarks and directions for further
research. We also give the invariant operators in two alternate coordinate systems,
complex S-coordinates (see [1]) and quaternionic coordinates.

2. Notation and terminology

Let K be the complex quadratic field with discriminant dK . The algebraic conju-
gate of an algebraic number α is identical with its complex conjugate and is denoted
by α. Let dK be the different of K, let OK be the ring of integers of K, and set
Γ := SL2(OK). The Jacobi group of K is ΓJ(K) := Γ � O2

K .
The full ring of quaternions Q and the quaternionic upper half space HQ are defined

by

Q := {u + vk |u, v ∈ C, k2 = −1, ak = ka, ∀ a ∈ C},

HQ := {x + yk ∈ Q |x ∈ C, y ∈ R+}.

Recall the well-known action
(

α β
γ δ

)
◦ τ := (ατ + β)(γτ + δ)−1 of Γ on HQ. It

extends to the following action of ΓJ(K) on HQ ×Q:

(1)
[(

α β
γ δ

)
, (λ, μ)

]
◦ (τ, z) :=

((
α β
γ δ

)
◦ τ, (τγ + δ)−1 (z + τλ + μ)

)
.

For z = u + vk ∈ Q, define z := u− vk, z̃ := u + vk, and N (z) := zz = |u|2 + |v|2,
the usual quaternion norm. We also define TR[z] := ‖z‖

C
+‖z‖

C
, where ‖u + vk‖

C
:=

u + iv and ‖u + vk‖
C

:= u + i v.
Henceforth fix k ∈ C, l ∈ N, and m ∈ Cl such that tmm ∈ OK . Define a slash

action |k,m of ΓJ(K) on functions f : HQ ×Q → C by(
f

∣∣∣
k,m

[(
α β
γ δ

)
, (λ, μ)

])
(τ, z) := f

([(
α β
γ δ

)
, (λ, μ)

]
◦ (τ, z)

)
×N (γτ + δ)−k exp

{
2πi TR

[
tm

(
−z̃∗(γτ + δ)−1γ z∗ + λτλ + 2λz

)
m

]}
,

(2)
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where z∗ = (z + τλ + μ). (In fact this action depends only on tmm and tmm, but it
will be convenient to define it in terms of m.)

As indicated above, we use the coordinates (x, y, u, v) on HQ×Q defined by (τ, z) =
(x + yk, u + vk), where x, u, v ∈ C and y ∈ R+. In Section 5 we will see that the
following two differential operators are a basis for the space of second order operators
on HQ ×Q invariant with respect to the (k,m)-slash action of SL2(C) � C2:

Dz
k,m := y(∂u∂u + ∂v∂v) + 8πiRe( tmm v∂u) − 8π tmm Re(v∂v)

+ 16π2
(
( tmm)2 − | tmm|2

)
vv/y,

(3)

Dτ
k,m := 4y2∂x∂x + y2∂2

y + (2k − 1)y∂y

+8y Re(v∂x∂u) + 4y∂y Re(v∂v)

+ 4vv(∂u∂u + ∂v∂v) − 4 Im2(v∂v) + 4(k − 1) Re(v∂v)

+ 16πiRe( tmm v2∂x) − 8π tmm vv∂y

+16πi(vv/y) Re( tmm v∂u) − 16π tmm (vv/y)Re(v∂v)

+ 16π2
(
( tmm)2 − | tmm|2

)
(vv/y)2 − 4(2k − 1)π tmm vv/y.

(4)

As in [21] and [19], we will construct functions f : HQ ×Q → C which are (k,m)-
slash invariant and, in addition, are eigenfunctions of the invariant operator Dz

k,m.
(Note that our notation differs slightly from the notation in [21] and [19].) The fol-
lowing definition is analogous to Definition 4.1.7 in Berndt and Schmidt [1]:

DEFINITION 2.1. A C∞-function f : HQ ×Q → C is a (k, m)-Maass-Jacobi form
over K if

(i)
(
f |k,mA

)
(τ, z) = f(τ, z) for all A ∈ ΓJ(K).

(ii) There exists λ ∈ C such that Dz
k,m f = λf .

(iii) fy−k is bounded in domains of type y ≥ y0, y0 > 0.

Remark: The theta functions in [21] and [19] are explicit examples of (k, m)-Maass-
Jacobi forms (on a subgroup of ΓJ(K)) whenever the index vector m is either real or
pure imaginary. Such theta functions are, in addition, (k, m)-slash invariant eigen-
functions of the invariant operator Dτ

k,m if (and only if) k = 1/2. In particular, the
theta function Θ(τ, z) in Section 3.3 is a simultaneous (1/2,1)-slash invariant eigen-
function of the two invariant operators Dz

1/2,1 and Dτ
1/2,1, where 1 denotes a vector

such t11 = 1. Note that by Lemma 5.5, y−k+1/2 Θ(τ, z) is a simultaneous (k,1)-slash
invariant eigenfunction of the two invariant operators Dz

k,1 and Dτ
k,1. However, it

is not clear if there are any further examples of simultaneous (k,m)-slash invariant
eigenfunctions of the two invariant operators Dz

k,m and Dτ
k,m.
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3. Eisenstein series

We now discuss Jacobi-Eisenstein series, which are explicit examples of (k,m)-
Maass-Jacobi forms (and which are not eigenfunctions of the invariant operator Dτ

k,m).
Throughout this section we assume k ∈ Z, m ∈ Rl, and tmm ∈ N. In this setting the
term tmm factors out of the argument of the TR in the definition of the (k,m)-slash
action, and so the theory depends only on the scalar tmm. For example, the formula
for Dz

k,m reduces to

Dz
k,m = y(∂u∂u + ∂v∂v) + 8πi tmm Re(v∂u) − 8π tmm Re(v∂v),

and the formula for Dτ
k,m simplifies similarly.

For s ∈ C, formally define the Jacobi-Eisenstein series

(5) Ek,m,s(τ, z) :=
∑

A∈ΓJ∞(K)\ΓJ (K)

(
ys−k+ 1

2
∣∣
k,m

A
)
(τ, z),

where ΓJ
∞(K) =

{[(
1 η
0 1

)
, (0, n)

]
| η, n ∈ OK

}
. It is easy to see that a set of represen-

tatives of ΓJ
∞(K)\ΓJ(K) is given by

{[(
α β
γ δ

)
, (λα, λβ)

]}
, where (γ, δ) runs through

all elements of OK ×OK with (γ, δ) = 1, i.e., the ideal generated by γ and δ is equal
to OK , α and β are chosen such that

(
α β
γ δ

)
∈ Γ, and λ ∈ OK . A straightforward

computation shows that

Ek,m,s(τ, z)

= ys−k+ 1
2

∑
γ,δ∈OK

(γ, δ)=1

∑
λ∈OK

N (γτ + δ)−s− 1
2 exp

{
2πi tmm TR

[
− z̃(γτ + δ)−1γz

+ 2z̃(γτ + δ)−1λ + λ(ατ + β)(γτ + δ)−1λ
]}

,

(6)

where α and β are chosen so that
(

α β
γ δ

)
∈ Γ. In Section 3.1 we will show that

Ek,m,s is absolutely convergent for Re (s) > 7/2. If in addition, k is even, then
the expression in (6) yields that lim

y→∞Ek,m,k−1/2(yk, 0) = 1 (see also Section 2 of

Ziegler [25]). In particular, the Jacobi-Eisenstein series Ek,m,s(τ, z) does non vanish
identically. In the domain of absolute convergence Ek,m,s(τ, z) is invariant under (2),
and it is annihilated by Dz

k,m. In Section 3.2 we will give the Fourier expansion of
the Eisenstein series and in Section 3.3 we will demonstrate (in the special case that
K = Q(i) and tmm = 1) that Ek,m,s(τ, z) has a meromorphic continuation to the
entire s-plane.

3.1. Convergence. We will regard Ek,m,s as a subseries of the Jacobi-Eisenstein
series of higher degree defined in Section 2 of [25], and show that it converges abso-
lutely if Re (s) > 7/2. Let {ω1, ω2} be an integral basis of OK and set Ω :=

( ω1 ω2
ω1 ω2

)
.

Note that Ω−1 =
(

ν1 ν1
ν2 ν2

)
, where {ν1, ν2} is an integral basis for d−1

K . Furthermore,

for τ = x + yk ∈ HQ, let Z∗ :=
(

x iy
iy x

)
and Z := tΩZ∗Ω. It is not difficult

to see that Z ∈ H2, the Siegel upper half space of degree 2 (see [18]). If η ∈ C,

then let diag(η) =
(

η 0
0 η

)
. For

(
α β
γ δ

)
∈ Γ, set

(
A∗ B∗
C∗ D∗

)
=

( diag(α) diag(β)

diag(γ) diag(δ)

)
and
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( A B
C D ) =

(
tΩA∗ tΩ−1 tΩB∗Ω

Ω−1C∗ tΩ−1 Ω−1D∗Ω

)
. As in [18],

τ �→
(

α β
γ δ

)
◦ τ ∈ HQ corresponds to Z �→ (AZ + B)(CZ + D)−1 ∈ H2,

and if
(

α β
γ δ

)
∈ Γ0 (dK) :=

{(
α β
γ δ

)
∈ Γ

∣∣ γ ∈ dK

}
, then ( A B

C D ) ∈ Sp4(Z), the sym-
plectic group over the integers. Moreover, we find that

N (γτ + δ) = det(CZ + D),(7)

TR
[
z̃(γτ + δ)−1γz

]
= W (CZ + D)−1C tW,(8)

TR
[
z̃(γτ + δ)−1λ

]
= W (CZ + D)−1 tΛ,(9)

TR
[
λ(ατ + β)(γτ + δ)−1λ

]
= Λ(AZ + B)(CZ + D)−1 tΛ,(10)

where tW = tΩ
( ||z||C

||z ||
C

)
∈ C2 and tΛ = Ω−1

(
λ

λ

)
∈ Z2.

Note that Γ0 (dK) has finite index in Γ and hence (7), (8), (9), and (10) imply
that Ek,m,k−1/2 can be regarded as a finite sum of subseries of the Jacobi-Eisenstein
series E

(2)
k, tmm(Z,W ) in [25]. Theorem 2.1 in [25] yields that Ek,m,k−1/2 converges

absolutely if k > 4. Hence Ek,m,s converges absolutely if Re (s) > 7/2.

3.2. Fourier expansion. The following proposition gives the Fourier expansion of
the above Eisenstein series.

Proposition 3.1. The function Ek,m,s has a Fourier expansion of the form

y−s+k− 1
2 Ek,m,s(τ, z) =

∑
n′,r′∈d−1

K

an′,r′,m(y, v) exp {2πi TR [n′x + r′u]} .

The Fourier coefficients an′,r′,m(y, v) are given by

(11) an′,r′,m(y, v) = δn′,r′,m · |O∗
K |+ 1

dK

∑
γ∈OK

N (γ)−s− 1
2 ·Hm,γ(n′, r′) ·K(m,n′, r′).

Here we define δn′,r′,m to be exp
{
2πi TR

[
n′vk +

√
r′r̄′yk

]}
if there exists λ ∈ OK

such that n′ = 2λ tmm, r′ = tmmλ2, and 0 otherwise. We also define

Hm,γ(n′, r′) :=
∑

δ∈(OK /γOK )∗
λ∈(OK /γOK )

exp
{
2πi TR

[
γ−1( tmmδ−1λ2 + δn′ − λr′)

]}
,

where δ−1 denotes the inverse of δ modulo γ and

K(m,n′, r′) :=
∫

C×C

N (τ)−s− 1
2 exp

{
−2πi TR[n′x + r′u + tmmz̃τ−1z]

}
dxdu.

Proof: We use the expression in (6) and distinguish between the cases γ = 0 and
γ 
= 0. The contribution from γ = 0 is

ys−k+ 1
2 · |O∗

K |
∑

λ∈OK

exp
{
2πi tmm TR[2z̃λ + λτλ]

}
,
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which yields the first summand in (11). To compute the contribution from γ 
= 0, we
use the identity

TR
[
−z̃(γτ + δ)−1γz + 2z̃(γτ + δ)−1λ + λ(ατ + β)(γτ + δ)−1λ

]
= TR

[
−

(
z̃ − λγ−1

)
(γτ + δ)−1γ

(
z − λγ−1

)
+ αγ−1λ2

]
,

which can be easily verified. Replacing λ by λ + γl and δ by δ + γd, where l, d ∈ OK ,
λ ∈ (OK/γOK), and δ ∈ (OK/γOK)∗, respectively, we find that the contribution
from γ 
= 0 is given by∑
γ∈OK

γ �=0

N (γ)−s− 1
2

∑
δ∈(OK /γOK )∗
λ∈(OK /γOK )

exp
{
2πi tmmTR

[
αγ−1λ2

]} ∑
d,l∈OK

N
(
τ + δγ−1 + d

)−s− 1
2

× exp
{
2πi tmmTR

[
−

(
z̃ − l − λγ−1

)(
τ + δγ−1 + d

)−1(
z − l − λγ−1

)]}
.

To complete the proof, it will suffice to compute the Fourier expansion of

F(τ, z) :=
∑

d,l∈OK

N (τ + d)−s− 1
2 exp

{
2πi tmm TR

[
− (z̃ − l) (τ + d)−1 (z − l)

]}
.

This function is periodic with respect to OK ×OK , so it has a Fourier expansion

F(τ, z) =
∑

n′,r′∈d−1
K

an′,r′(y, v) exp
{
2πi TR[n′x + r′u]

}
, where

an′,r′(y, v) =
1

dK

∫
C×C

N (τ)−s− 1
2 exp

{
−2πi TR[n′x + r′u + tmmz̃τ−1z]

}
dxdu.

�

3.3. Meromorphic continuation. According to general theory, Eisenstein series
have a meromorphic continuation and satisfy a certain matrix functional equation.
However, one cannot apply the Langlands theory directly, since the Jacobi group of
K is not reductive. In the special case that K = Q(i) and tmm = 1, we will sketch
a very elementary proof that Ek,m,s has a meromorphic continuation to the entire
s-plane. Bernhard Heim kindly informed the authors that he has used a similar idea
in a different setting; for more details see [8]. For the remainder of this section let
K = Q(i) and let 1 denote a vector such t11 = 1. Consider the Jacobi theta function

(12) Θ(τ, z) :=
∑

λ∈OK

exp
{
2πi TR[λτλ + 2λz]

}
.

If [M, (λ, μ)] ∈ Γ0(4 dK) � O2
K , then (see Theorem 3 in [19])

(13)
(
Θ

∣∣
1
2 ,1

[
M, (λ, μ)

])
(τ, z) = χ(M)Θ(τ, z),

where χ(M) is an eighth root of unity. In Section 4 of [18], χ(M) is determined
explicity in some important special cases. In particular, if M = ( ∗ ∗

γ δ ), where N (δ) = p
is an odd rational prime, then the results in [18] together with Proposition 4.6 of [12]
imply that

(14) χ (( ∗ ∗
γ δ )) =

(
γ
δ

)
,
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where
( ·

δ

)
is the quadratic symbol over OK . Note that (13) holds for all quadratic

fields, but the formula for the root of unity in (14) is more complicated for an arbi-
trary complex quadratic field. Furthermore, if η ∈ OK , then Θ(τ + η, z) = Θ(τ, z)
and hence χ (( ∗ ∗

γ δ )) = χ (( ∗ ∗
γ γη+δ )). By Dirichlet’s primes in progression theorem

for number fields (see Hecke [7]) the arithmetic progression {γη + δ}η∈OK
contains

infinitely many first degree primes, which yields that (14) holds for all M ∈ Γ0(4 dK),
i.e, for

[(
α β
γ δ

)
, (λ, μ)

]
∈ Γ0(4 dK) � O2

K we have

(15)
(
Θ

∣∣∣
1
2 ,1

[(
α β
γ δ

)
, (λ, μ)

])
(τ, z) =

(γ

δ

)
Θ(τ, z).

It is easy to check that (6) can be rewritten as

(16) Ek,1,s(τ, z) = ys−k+ 1
2

∑
γ,δ∈OK
(γ, δ)=1

N (γτ + δ)−s
(
Θ

∣∣
1
2 ,1

[
M, (0, 0)

])
(τ, z).

Let Mj =
( ∗ ∗

γj δj

)
be a (finite) set of representatives of right cosets of Γ modulo

Γ0(4 dK), i.e., Γ = ∪Γ0(4 dK)Mj . We apply (15) in (16) and write (τj , zj) :=[
(Mj , (0, 0)

]
◦ (τ, z) to find that

(17) Ek,1,s(τ, z) = ys−k+ 1
2

∑
j

N (γjτ + δj)
−s (

Θ
∣∣
1
2 ,1

[
Mj , (0, 0)

])
(τ, z) E(s, τj),

where

(18) E(s, τ) :=
∑

γ∈4 dK

δ∈OK

(γ, δ)=1

(γ

δ

)
N (γτ + δ)−s.

Now one can proceed exactly as in Shimura [20] to show that the Eisenstein series
in (18) has a meromorphic continuation to the entire s-plane. This is accomplished
by determining the Fourier expansion of E(s, τ). The integrals that occur are well
known (see for example [4]) and lead to K-Bessel functions which have a meromor-
phic continuation and which are of exponential decay. In addition, the proof of the
meromorphic continuation of E(s, τ) relies on exact formulas of Gauss sums over Q(i)
and on the continuation of certain L-functions. We omit the details.

The sum in (17) is finite and we conclude that the Eisenstein series Ek,1,s(τ, z) has
a meromorphic continuation to the entire s-plane.

4. Invariant differential operators

The remainder of the paper is devoted to the representation theory and invariant
theory necessary to deduce the differential operators Dz

k,m and Dτ
k,m given in (3)

and (4). In this section we establish the general framework in which invariant dif-
ferential operators are computed. This material is known to representation theorists,
but to our knowledge there is no one reference in which one can find all of it together.

Fix a real Lie group G, a closed subgroup K, and a representation σ of K on a
complex finite dimensional vector space V . We will usually write simply kv for σ(k)v.
The complex G-vector bundle G ×K V over the homogeneous space G/K is defined
to be the set of equivalence classes in G × V of the relation (gk, v) ∼ (g, kv) for all
k ∈ K. We will write [g, v] for the equivalence class of (g, v). The projection to G/K
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is of course [g, v] �→ gK, and the G-structure is given by left multiplication in the first
coordinate: g′[g, v] = [g′g, v].

Write C∞(G/K : G ×K V ) for the space of smooth sections of G ×K V . Suppose
that W is another complex finite dimensional representation of K. The smooth W -
valued differential operators on G×KV , i.e., the differential operators from C∞(G/K :
G ×K V ) to C∞(G/K : G ×K W ), may themselves be regarded as sections of a G-
vector bundle over G/K. In order to define this bundle, let us use the standard
notation g0 for the real Lie algebra of G and g for its complexification:

g0 := LieR(G), g := g0 ⊗ C.

Write U(g) for the universal enveloping algebra of g and Ur(g) for its degree filtration.
As usual, define

U(g) ⊗k V :=
(
U(g) ⊗ V

)/
SpanC

{
ZY ⊗ v − Z ⊗ Y v : Z ∈ U(g), Y ∈ k, v ∈ V

}
.

This space is a g-module under left multiplication, which does not preserve the finite
dimensional filtration Ur(g)⊗k V . However, the restriction of this action to k is equal
to the ad⊗σ action, which does preserve the filtration and so lifts to a K-action.

Proposition 4.1. For any two complex finite dimensional representations V and
W of K, there is a G-covariant linear isomorphism from the space of sections

C∞(
G/K : G ×K

[
W ⊗ (U(g) ⊗k V ∗)

])
to the space of smooth W -valued differential operators on G ×K V . It carries the
degree filtration of U to the order filtration of the differential operators, and it respects
composition up to symbol.

Proof: The space of sections C∞(G/K : G ×K V ) may be regarded as the space
C∞(G : V )K of smooth functions f : G → V such that f(gk−1) = kf(g) for all g ∈ G
and k ∈ K. Given an element

[
g, w⊗(Z⊗k λ)

]
of G×K

(
W ⊗(U(g)⊗k V ∗)

)
, we define

a differential operator D
[
g, w⊗ (Z ⊗k λ)

]
supported at gK from C∞(G/K : G×K V )

to W by

D
[
g, w ⊗ (Z ⊗k λ)

]
f := wλ

(
f(gZ)

)
,

where f(gZ) denotes
(
ρ(Z)f

)
(g), ρ being the right regular action. It is easy to check

that D defines a linear isomorphism with the required properties. �

Let us write D(G/K, V,W ) for the space of smooth G-covariant differential opera-
tors from smooth sections of G ×K V to smooth sections of G ×K W . For any group
H and any representation M of H, we will always write MH for the H-fixed vectors
of M . The following corollary of Proposition 4.1 is immediate from the well-known
fact that C∞(G/K : G ×K V )G is in canonical bijection with V K .

Corollary 4.2. There is a linear isomorphism from
(
W ⊗ (U(g) ⊗k V ∗)

)K to
D(G/K, V,W ). It carries the degree filtration of U to the order filtration of D and
respects composition up to symbol.
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4.1. The k-split case. Henceforth we restrict to the setting of [11]: we assume
that there exists a K-splitting k ⊕ m of g. In this case the Poincaré-Birkhoff-Witt
theorem shows that U(g) is K-equivalent to S(m) ⊗ U(k), where S(m) denotes the
symmetric algebra of m. It follows that U(g) ⊗k V is K-equivalent to S(m) ⊗ V for
any representation V of K, so Corollary 4.2 reduces to:

Corollary 4.3. Suppose that g = k ⊕ m is a K-splitting. Then there is a linear
isomorphism from (S(m) ⊗ W ⊗ V ∗)K to D(G/K, V,W ) which carries the degree
filtration of S to the order filtration of D and respects composition up to symbol.

4.2. Line bundles. Let χ be a 1-dimensional character of K, i.e., a smooth homo-
morphism from K to C×. Write Cχ for the associated 1-dimensional representation
of K on C. In this paper we will be interested in invariant differential operators from
C∞(G/K : G ×K Cχ) to itself. Here Corollary 4.3 reduces to:

Corollary 4.4. Suppose that g = k⊕m is a K-splitting and χ is a 1-dimensional
character of K. Then there is a linear isomorphism from S(m)K to D(G/K, Cχ, Cχ)
which carries the degree filtration of S to the order filtration of D and is an algebra
isomorphism up to symbol.

4.3. The topologically trivial case. We will be concerned with topologically triv-
ial G-line bundles over G/K. The space of sections of such a bundle may be identified
with C∞(G/K), and under any such identification the natural action of G on the sec-
tions goes over to an action on functions given by a cocycle (see Lemma 4.6 below).
We will need the following elementary definitions and lemmas from group cohomol-
ogy; their proofs are easy exercises and are omitted.

DEFINITION 4.1. A smooth function α : G × G/K → C× is a scalar 1-cocycle of
G on G/K if

α(gg′, x) = α(g, g′x)α(g′, x)
for all g, g′ ∈ G and x ∈ G/K. We write Z1(G, K) for the set of all such cocycles.
Note that it forms a group under multiplication.

Given any smooth function b : G/K → C×, its coboundary is the function ∂b :
G × G/K → C× defined by

∂b(g, x) := b(x)/b(gx).

We write B1(G, K) for the set of all such coboundaries. Note that it is a subgroup of
Z1(G, K).

The quotient group Z1/B1 is called H1(G, K), the scalar 1-cohomology group of
G on G/K. Given α ∈ Z1, we write [α] for its cohomology class, i.e., the coset αB1.
Two cocycles α and β are said to be cohomologous if [α] = [β].

Lemma 4.5. Associated to any α ∈ Z1(G, K) is a representation λα of G on
C∞(G/K), defined by (

λα(g)f
)
(x) := α(g−1, x)f(g−1x).

The equivalence classes of these representations are in bijection with H1: given
two 1-cocycles α and β, the representations λα and λβ are equivalent if and only
if [α] = [β]. More precisely, suppose that [α] = [β]. Then the quotient β/α is a
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coboundary ∂b for some smooth function b : G/K → C×, and the endomorphism of
C∞(G/K) defined by multiplication by b is an intertwining map from λα to λβ.

Lemma 4.6. Associated to any α ∈ Z1(G, K) is a character χα of K, defined
by χα(k) := α(k, eK). Two 1-cocycles α and β are cohomologous if and only if
χα = χβ. More precisely, if [α] = [β] then β/α = ∂b, where b is defined by b(gK) =
α(g,K)/β(g,K) (the right hand side depends only on the coset gK).

For each 1-cocycle α, the bundle G ×K Cχα
is topologically trivial and the natural

representation of G on the space of sections C∞(G/K : G ×K Cχα) is equivalent to
the representation λα on C∞(G/K).

We remark that when G/K is simply connected, the map [α] �→ χα from H1(G, K)
to characters is a bijection: given any character χ of K there exists a unique coho-
mology class [α] such that χα = χ. To construct a representative α of this class, let
A : G → C× be any extension of χ such that A(gk) = χ(k)A(g) for all g ∈ G and
k ∈ K, and set α(g, hK) := A(h)/A(gh).

4.4. λα-invariant operators. Fix a scalar 1-cocycle α in Z1(G, K). The α-slash
action |α of G on C∞(G/K) is defined to be the right action associated to λα. For
f ∈ C∞(G/K), g ∈ G, and x ∈ G/K, it is written

(19) f |α[g](x) :=
(
λα(g−1)f

)
(x) = α(g, x)f(gx).

A differential operator D : C∞(G/K) → C∞(G/K) is said to be λα-invariant, or
α-slash invariant, if D ◦ λα(g) = λα(g) ◦ D for all g ∈ G. We denote the algebra of
all such operators by Dα(G/K). In light of Lemma 4.6, here Corollary 4.4 becomes:

Corollary 4.7. Suppose that g = k ⊕ m is a K-splitting and α is an element of
Z1(G, K). Then there exists a linear isomorphism

IDOα : S(m)K → Dα(G/K)

which carries the degree filtration of S to the order filtration of Dα. IDOα is an algebra
isomorphism at the symbol level: given Ω1 and Ω2 in S(m)K ,

Symbol
(
IDOα(Ω1Ω2)

)
= Symbol

(
IDOα(Ω1)

)
Symbol

(
IDOα(Ω2)

)
.

The isomorphism IDOα is not unique; Proposition 4.8 gives the particular choice
of IDOα that we shall use. In the case that α is trivial, our proposition is equivalent
to Theorem 2.8 of Helgason [11].

We will need the symmetrizer map Sym : S(g) → U(g), which is defined by

Sym(X1 · · ·Xk) :=
1
k!

∑
σ∈Sk

Xσ(1) · · ·Xσ(k).

It is g-covariant, so its restriction to S(m) is an injective K-covariant map.

Proposition 4.8. One choice of the isomorphism IDOα : S(m)K → Dα(G/K) in
Corollary 4.7 is the map defined by

(20)
(
IDOα(Ω)f

)
(gK) :=

(
λα(g)λα

(
Sym(Ω)

)
λα(g−1)f

)
(gK).
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Proof: First one must check that IDOα is well-defined, i.e., that the right hand
side of (20) is independent of the choice of representative of the coset gK. Let us
write simply λα(gΩg−1) as an abbreviation for λα(g)λα(Sym(Ω))λα(g−1). If g is
replaced by gk for some k ∈ K, then λα(gΩg−1) is replaced by λα(gkΩk−1g−1) =
λα(g Adk(Ω)g−1). Since Ω is K-invariant, there is no change.

To verify that IDOα(Ω) is G-invariant, note that
(
λα(h) IDOα(Ω)f

)
(gK) may be

rewritten as
α(h−1, gK)

(
IDOα(Ω)f

)
(h−1gK)

= α(h−1, gK)
(
λα(h−1gΩg−1h)f

)
(h−1gK)

= α(h−1, gK)α(h, h−1gK)
(
λα(gΩg−1h)f

)
(gK).

Applying the cocycle property, one sees that this is
(
IDOα(Ω)λα(h)f

)
(gK).

We leave the reader to check that IDOα(Ω) is indeed a differential operator of
order equal to the degree of Ω, and that IDOα defines an algebra isomorphism of
symbols. �

In practice we will use the following somewhat more explicit form of (20):

(21)
(
IDOα(Ω)f

)
(gK) = α−1(g,K)λα

(
Sym(Ω)

)∣∣
x=K

(
α(g, x)f(gx)

)
.

Here the subscript x = K on the right signifies that the operator λα

(
Sym(Ω)

)
differen-

tiates with respect the coset x and then evaluates at the identity coset K, regarding g
as a constant.

5. The complex Jacobi group

In this section we derive the formulas for the invariant differential operators Dτ
k,m

and Dz
k,m given in Section 2, and prove that they span the space of all second order

differential operators invariant with respect to the (k, m)-slash action. We also prove
that the algebra all (k,m)-slash invariant differential operators is generated by these
two second order and two third order operators, but we will not give explicit formulas
for the third order generators.

We begin with the definition of the complex Jacobi group G and a short conceptual
proof that (2) is an action. We give two presentations of G, the complexifications of the
two presentations of the real Jacobi group given in Theorem 1.4 of [3] and Section 1.1
of [1], respectively.

The complex Heisenberg group C2×̃C is the central extension of C2 by C defined
as follows: writing elements of C2 as row vectors X and elements of C as scalars κ,

(X, κ)(X ′, κ′) := (X + X ′,det
(

X
X′

)
+ κ + κ′),

where det
(

X
X′

)
denotes the determinant of the matrix

(
X
X′

)
.

The complex Jacobi group G is the semidirect product SL2 C � (C2×̃C) associated
to the right action (X, κ)M := (XM, κ) of SL2 C on C2×̃C. Thus its group law is

(M,X, κ)(M ′, X ′, κ′) := (MM ′, XM ′ + X ′,det
(
XM ′

X′
)

+ κ + κ′).

Note that the center of G is

Z(G) :=
{
(I, 0, κ) : κ ∈ C

}
.
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In order to give the second presentation of G, recall that the complex symplectic
group Sp2n C is the group of invertible complex 2n×2n matrices g whose n×n blocks
are A, B, C, and D and whose inverse is given by the natural extension of the formula
for the inverse of an element of SL2 C:

g =
(

A B
C D

)
, g−1 =

(
tD − tB

− tC tA

)
.

One checks that there is an injective homomorphism π4 : G → Sp4 C defined by

π4(M,X, κ) :=

⎛
⎜⎜⎝

M11 0 M12 X2

X1 1 X2 κ
M21 0 M22 −X1

0 0 0 1

⎞
⎟⎟⎠

(this is easier to see after conjugating Sp4 C by the permutation matrix which ex-
changes the second and third coordinates). The image π4(G) realizes G as the sub-
group of Sp4 C consisting of all those elements whose bottom row is (0, 0, 0, 1).

5.1. The action of G on HQ × Q. Recall the action (1) of ΓJ(K) on HQ × Q,
where Q is the quaternion skew field and HQ is the upper half space of quaternions
with positive real k part. In fact (1) defines a group action of G/Z(G) = SL2 C � C2

and hence also of G on HQ × Q. Verifying this directly is somewhat tedious, so we
now give a conceptual proof which explains the origin of the action.

Clearly there is a homomorphism π3 : G → SL3 C with kernel Z(G), defined by

π3(M,X, κ) :=

⎛
⎝M11 M12 0

M21 M22 0
X1 X2 1

⎞
⎠ .

This homomorphism may be used to define a left action L3 of G on the space of row
vectors Q3 by

L3(M,X, κ)
(
τ1, τ2, τ3

)
:=

(
τ1, τ2, τ3

)
tπ3(M,X, κ

)
=

(
τ1M11 + τ2M12, τ1M21 + τ2M22, τ1X1 + τ2X2 + τ3

)
.

This action commutes with the left scalar action of Q, so it descends to an action on
the projective space of quaternionic lines of the form

[τ1, τ2, τ3] :=
{
(wτ1, wτ2, wτ3) : w ∈ Q

}
.

One checks that this quotient action preserves the set of lines such that τ−1
2 τ1 is in

HQ, which may be identified with HQ ×Q via

[τ1, τ2, τ3] �→ (τ−1
2 τ1, τ

−1
2 τ3).

Carrying it over to an action of G on HQ ×Q yields (M,X, κ) ◦ (τ, z) :=

(22)
(
(τM21 + M22)−1(τM11 + M12), (τM21 + M22)−1(τX1 + X2 + z)

)
.

Since det(M) is real, one finds that

(τM21 + M22)−1(τM11 + M12) = (M11τ + M12)(M21τ + M22)−1.

Therefore (1) and (22) define the same action. We have proven most of the following
lemma; we leave the rest to the reader.



MAASS-JACOBI FORMS OVER COMPLEX QUADRATIC FIELDS 149

Lemma 5.1. The equation (22) defines a transitive action of the group G on HQ×
Q. The stabilizer of the element (k, 0) of HQ ×Q is the subgroup K := SU2 ×Z(G).
Hence gK �→ g ◦ (k, 0) defines a diffeomorphism from G/K to HQ ×Q.

5.2. The space S(m)K . By Corollary 4.7, whenever k ⊆ g is K-split the graded
algebra of Dα(G/K) is S(m)K , independent of the cocycle α. This turns out to be
the case in our setting. Henceforth let us write Sn(m) for the space of homogeneous
elements of S(m) of degree n. For Section 2 we need only apply the map IDOα of
Proposition 4.8 to S2(m)K , the quadratic invariants. For the sake of completeness, in
this section we will describe the entire algebra S(m)K .

Since Section 4 applies only to real Lie groups, we must forget that the complex
Jacobi group G has a holomorphic structure and regard it as a 12 dimensional real
group (indeed, it does not act holomorphically on HQ × Q). As such, g0 is its real
Lie algebra and g is the complexification of g0. We find

g0 =
{
(M,X, κ) : M ∈ sl2C, X ∈ C2, κ ∈ C

}
,

with Lie bracket[
(M,X, κ), (M ′, X ′, κ′)

]
=

(
[M,M ′], XM ′ − X ′M, 2 det

(
X
X′

))
and exponential map

exp(M,X, κ) = (eM , X
(

eM−I
M

)
, κ).

The standard complex basis of sl2C is

H :=
(

1 0
0 −1

)
, E :=

(
0 1
0 0

)
, F :=

(
0 0
1 0

)
.

Define e, f , and Z in g0 by

Z :=
(
0, (0, 0), 1

)
, e :=

(
0, (0, 1), 0

)
, f :=

(
0, (1, 0), 0

)
.

Regarding sl2C as a subalgebra of g0, we see that

(23)
{
H, iH, E, iE, F, iF, Z, iZ, e, ie, f, if

}
is a basis of the complexification g. Since i denotes

√
−1 in the complex structure of

g0, which we are required to forget, we will write j for
√
−1 in the complex structure

of g. To emphasize this we write

Ci := {a + bi : a, b ∈ R}, Cj := {a + bj : a, b ∈ R}.
The complexified Lie algebra k of the stabilizer K of (k, 0) has a K-invariant

complement m (which is not a Lie algebra). These two spaces are

k = SpanCj

{
iH, F − E, i(F + E), Z, iZ

}
,

m := SpanCj

{
H, i(F − E), F + E, e, ie, f, if

}
.

Since the center Z(K) = Z(G) acts trivially on m, the K-invariants of S(m) are the
same as its SU2-invariants. At this point we state some results from the representation
theory of SU2; see any book on Lie theory, for example [6]. Up to equivalence, SU2

has a unique irreducible n + 1-dimensional complex representation Ln for all n ≥ 0.
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One realization of Ln is as Sn(C2), where SU2 acts in the standard manner on C2.
The following formulas are classical:

(24)
Sn(L1) ∼= Ln, Sn(L2) ∼= L2n ⊕ L2n−4 ⊕ · · · ⊕ L2 Res2(n),

Ln ⊗ Lm
∼= Ln+m ⊕ Ln+m−2 ⊕ · · · ⊕ L|n−m|,

where ∼= denotes equivalence and Res2 denotes the residue modulo 2.
As a representation of K, the space m decomposes as a direct sum m2 ⊕m+

1 ⊕m−
1

of irreducible subrepresentations such that m2
∼= L2 and m±

1
∼= L1. They are

m2 = SpanCj

{
H, i(F − E), F + E

}
, m±

1 = SpanCj

{
e ± jie, f ± jif

}
.

The next lemma follows easily from (24), except for the relation, which can be
deduced from a (not too difficult) calculation in S(L2 ⊕ L1 ⊕ L1) using the weight
bases of the Ln regarded as holomorphic representations of sl2C. We omit the proof.

Lemma 5.2. There are unique (up to a scalar) non-zero invariants

Qτ ∈ S2(m2)K , Qz ∈ (m+
1 ⊗ m−

1 )K ,

C± ∈
(
m2 ⊗ S2(m±

1 )
)K

, C0 ∈ (m2 ⊗ m+
1 ⊗ m−

1 )K .

These five invariants are a basis of S2(m)K ⊕ S3(m)K .
We may (and do) normalize the quadratic invariants so that

Qτ = H2 + (iF − iE)2 + (F + E)2, Qz = e2 + (ie)2 + f2 + (if)2.

We may (and do) normalize the cubic invariants so that

(25) C2
0 − C+C− − QτQ2

z = 0.

Of course, S(m) is Cj-linear but not Ci-linear, so for example (ie)2 is not −e2. It is
not hard to compute formulas for the cubic invariants, but they are not illuminating
and we will not need them. We remark that Ci-conjugation induces a Cj-linear
involution on m which preserves m2 and exchanges m±

1 . The cubic invariants may
be chosen so that this involution acts on S(m)K so as to fix Qτ , Qz, and C0 and
exchange C±.

We conclude this section with a theorem giving a complete description of S(m)K .
Recall that the Hilbert series of S(m)K is defined to be

H(t) :=
∞∑

n=0

dimension
(
Sn(m)K

)
tn.

Theorem 5.3. The algebra S(m)K is generated by Qτ , Qz, C+, C−, and C0. The
ideal of relations between these generators is generated by C2

0 −C+C− −QτQ2
z. Thus

S(m)K ∼= C[qτ , qz, c+, c−, c0]
/
〈c2

0 − c+c− − qτq2
z〉,

where qτ , qz, c+, c−, and c0 are algebraically independent indeterminates.
The Hilbert series of S(m)K is

H(t) =
1 + t3

(1 − t2)2(1 − t3)2
=

1 − t6

(1 − t2)2(1 − t3)3
.
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Proof: We give very brief outlines of two proofs. In the first one begins by using
the weight bases of the Ln regarded as holomorphic representations of sl2C to compute
explicit formulas for the five invariants in Lemma 5.2. An elementary (but slightly
tricky) direct calculation then shows that these invariants generate the entire algebra
of invariants, and a simpler calculation shows that any relation between them must
be a multiple of 25. The formula for the Hilbert series is a corollary of these results.

In the second proof, one begins by proving the formula for H(t). This requires a
long calculation using (24) and the fact that

Sn
( r⊕

i=1

Vi

)
=

⊕
n1+···+nr=n

r⊗
i=1

Sni(Vi)

for any vector spaces Vi. Then one proves that the relation ideal is generated by the
cubic relation just as in the first proof. It follows by standard methods from invariant
theory (see for example [6] or [22]) that S(m)K has two quadratic generators, three
cubic generators, and one relation of degree six in m. (In fact, the formula for the
Hilbert series alone probably already implies this.) Lemma 5.2 now completes the
proof. �

5.3. The second order |k,m-invariant operators. Corollary 4.7 gives the follow-
ing corollary of Theorem 5.3 (see Proposition 5.8 for a sharper result).

Corollary 5.4. For any cocycle α ∈ Z1(G, K), the algebra of invariant differ-
ential operators Dα(G/K) is generated by the two second order and three third order
operators obtained by applying IDOα to Qτ , Qz, C+, C−, and C0.

In this section we define the cocycles αk,m associated to the slash action defined
in (2) and compute the operators (3) and (4). Throughout the calculation we will use
Lemma 5.1 to regard G/K as HQ ×Q.

Recall from Section 2 the following definitions for z = u + vk ∈ Q:

z̃ := u + vk, TR[z] := 2Re(u) + 2iRe(v), N (z) := zz = |u|2 + |v|2.
In order to define αk,m, let a : G × (HQ ×Q) → C be

a
(
(M,X, κ), (τ, z)

)
:= κ + X1X2 + 2X1z + X1τX1

−(z̃ + X1τ + X2)(M21τ + M22)−1M21(z + τX1 + X2).

For any k ∈ C and m ∈ Cl, define αk,m : G × (HQ ×Q) → C× by

αk,m

(
(M,X, κ), (τ, z)

)
:= N−k(M21τ + M22) exp

{
2πiTR

[
tma

(
(M,X, κ), (τ, z)

)
m

]}
.

Lemma 5.5. The function αk,m is a 1-cocycle. Moreover, αk,0 is the coboundary
∂y−k, where τ = x + yk. Hence αk,m = ∂y−k · α0,m, and multiplication by y−k′

is
an intertwining map from λαk,m

to λαk+k′,m and thus also from |αk,m
to |αk+k′,m (see

Sections 4.3 and 4.4). In particular, for any Ω ∈ S(m)K we have

IDOαk+k′,m(Ω) = y−k′ ◦ IDOαk,m
(Ω) ◦ yk′

.

Proof: To prove that α0,m is a cocycle we must prove that
tm

[
a
(
g1g2, (τ, z)

)
− a

(
g1, g2 ◦ (τ, z)

)
− a

(
g2, (τ, z)

)]
m
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is annihilated by TR for all g1, g2 ∈ G and (τ, z) ∈ HQ ×Q. Since λα is a representa-
tion, it suffices to check this for each of the gi in either SL2 C or the Heisenberg group
C2×̃C. Two of these calculations are easy, but the two with g2 ∈ SL2 C are rather
long. It helps to note that w �→ w̃ is an antiautomorphism of Q which is the identity
on both C and HQ, and that TR

[
tm(w− w̃)m

]
= 0 for all w ∈ Q. (It would be inter-

esting to have a more conceptual proof that α0,m is a cocycle, one which explained
its origin.) The remainder of the lemma follows from Lemma 4.5. �

We remark that from a purely representation-theoretic point of view, the param-
eter k is uninteresting because it adds only a coboundary; it is included here for
its number-theoretic interest. In addition, the only datum in m of representation-
theoretic interest is the complex scalar tmm. To explain, write the function a as
a1 + akk with a1 and ak complex. Then

α0,m = exp{2πiTR[ tmm a1]} exp{2πiTR[ tmm ak]},
and the second factor can be shown to be the coboundary of 4π tmm vv/y.

We come now to the results needed in the number-theoretic part of the paper:
Lemma 5.6 links the cocycle αk,m to the slash action |k,m of Section 2, and Proposi-
tion 5.7 is the required result on the differential operators (3) and (4).

Recall the complex quadratic field K and the group ΓJ(K) from Section 2. Define
G(K) to be the subgroup Γ � (O2

K×̃OK) of G, a central extension of ΓJ(K). Check
that for tmm ∈ OK , the terms κ + X1X2 in a(g, (τ, z)) do not contribute to αk,m for
g ∈ G(K). Therefore the slash action |αk,m

is trivial on the center OK of G(K) and
hence descends to an action of ΓJ(K). The following lemma is easy to verify:

Lemma 5.6. For tmm ∈ Ok, |αk,m
and |k,m coincide on ΓJ(K).

Proposition 5.7. The operators Dτ
k,m and Dz

k,m of Section 2 span the space of
second order |k,m-invariant differential operators. They satisfy

Dτ
k,m = IDOαk,m

(Qτ/4), Dz
k,m = IDOαk,m

(Qz/4) + 4π tmm.

Proof: We need only prove the formulas; the spanning statement then follows
from Corollary 5.4 and Lemma 5.6. By Lemma 5.5, the (k, m) operators are given by
conjugating the (0,m) operators by y−k, so it suffices to consider the case k = 0. We
must apply (21) to the elements Qτ and Qz of S2(m)K given in Lemma 5.2. First we
apply the symmetrizer map. Since Qτ and Qz are sums of squares of elements of g,
Sym(Qτ ) and Sym(Qz) are given by the same formulas, now viewed as elements of
U(g)K . We will abuse notation and write Qτ and Qz for them. Let us also write λ
for λ1, the untwisted left action of G on HQ×Q, and λm and αm for λα0,m

and α0,m,
respectively.

Next we need λm(Qτ )|(k,0) and λm(Qz)|(k,0). Given any cocycle α and any X ∈ g,
let α(X) denote the function on HQ×Q defined by (τ, z) �→ D|t=0α

(
etX , (τ, z)

)
. The

definitions of λα (see Lemma 4.5) and αm give

λα(X) = λ(X) − α(X), αm(X) = 2πiTR
[

tma(X)m
]
.

Recall the basis of g from (23). The following formulas for a(X) are easily verified:
for any s ∈ C,

a(sE) = a(sH) = a(se) = 0, a(sF ) = −z̃sz, a(sf) = 2sz.
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Some calculation using these formulas and the definition of the action of G on HQ×Q
yields the following formulas for all s ∈ C:

λm(sE) = −2 Re
(
s∂x

)
,

λm(sH) = −2 Re
(
s(2x∂x + y∂y + u∂u + v∂v)

)
,

λm(sF ) = 2 Re
(
(sx2 − sy2)∂x + sxy∂y + (sxu − syv)∂u

+ (sxv + syu)∂v

)
+ 2πiTR

[
tmz̃szm

]
,

λm(se) = −2 Re
(
s∂u

)
,

λm(sf) = −2 Re
(
sx∂u + sy∂v

)
− 8πiRe( tmmsu) + 8π tmm Re(sv).

From these formulas we deduce

λm(Qτ )|(k,0) = 4(4∂x∂x + ∂2
y − ∂y)|(k,0),

λm(Qz)|(k,0) = 4(∂u∂u + ∂v∂v)|(k,0) − 16π tmm.

In order to apply (21), fix (τ0, z0) := (x0 +y0k, u0 +v0k) in HQ×Q. Define g0 ∈ G
by

g0 := (M0, X0, 0), M0 := y
−1/2
0

(
y0 x0

0 1

)
, X0 := y

−1/2
0 (v0, u0).

Then

g0 ◦ (τ, z) = (x0 + y0τ, u0 + τv0 + y
1/2
0 z).

In particular, g0 ◦ (k, 0) = (τ0, z0). Therefore (21) becomes

(26)

(
IDOm(Q•)f

)
(τ0, z0)

= α−1
m

(
g0, (k, 0)

)
λm

(
Q•

)∣∣
(τ,z)=(k,0)

[
αm

(
g0, (τ, z)

)
f
(
g0 ◦ (τ, z)

)]
.

Recall that αm = exp 2πiTR[ tmam]. One computes

a
(
g0, (τ, z)

)
= v0(u0 + 2zy

1/2
0 + τv0)/y0.

The factors contributed by the summand v0u0/y0 in this formula to the two αm’s
in (26) cancel, as they are constant in (τ, z). Thus we arrive at(

IDOm(Q•)f
)
(τ0, z0) = exp

{
−4πi tmmv0v0/y0

}
×λm

(
Q•

)∣∣
(τ,z)=(k,0)

(
exp

{
2πiy−1

0 TR
[

tmv0(2zy
1/2
0 + τv0)m

]}
× f

(
x0 + y0τ, u0 + τv0 + y

1/2
0 z

))
.

From here a straightforward calculation finishes the proof. �
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5.4. Remarks. Berndt and Schmidt [1] and Yang [24] have carried out calculations
analogous to those of Section 5 for SL2 R � (R2×̃R), the real Jacobi group. Here the
algebra of invariant differential operators has two second order and two third order
generators, all of which are given explicitly in both references, in [1] for all k and m
and in [24] for k = m = 0. The analogous calculations for SL2 C are classical; see
for example [4]. There the algebra of invariants is generated by the Laplace-Beltrami
operator, which may be obtained from Dτ

0,0 by deleting all terms involving u or v.
We remark that in [1] the invariant operators are computed using an ingenious

trick: they are factored as products of first order covariant operators between two
different slash actions, whose k-values differ by 1 or 2. To our knowledge this trick
originated with Maass [17] for slash actions of SL2 R. It was also used by Friedberg
[5] to compute the invariant operators on the vector-valued slash actions of SL2 C.

The real analog of the formula for αk,m may be found in Eichler and Zagier [3], as
well as in [1]. As we have mentioned, in the complex case αk,0 is a coboundary. In
fact this is obvious without calculation, as SU2 has no non-trivial characters. In the
real case αk,0 is not a coboundary but k must be integral. The point is that there
S1 replaces SU2, and S1 has non-trivial characters indexed by Z. (A more down-to-
earth explanation of the reason that k must be integral in the real case is that there
(M21τ + M22)−k replaces N−k(M21τ + M22) in the formula for αk,m.)

It would be interesting to extend Friedberg’s computation of the invariant dif-
ferential operators on vector-valued slash actions of SL2 C to compute the invariant
differential operators on vector-valued slash actions of our group G. These slash ac-
tions arise from the higher dimensional irreducible representations of SU2 ×Z(G), and
so they have a genuine parameter k ∈ N. The trick of Maass mentioned above will
reduce the calculations considerably.

There are two alternate systems of coordinates in which the formulas of Proposi-
tion 5.7 are simpler. First, one can use the following “quaternionic derivatives”:

∂τ := ∂x − 1
2k∂y, ∂τ := ∂τ = ∂x + 1

2k∂y,

∂z := ∂u − k∂v, ∂z := ∂z = ∂u + ∂vk = ∂u + k∂v.

These operators do not have all the nice properties of the complex partials, but we
do get the following:

Dz
k,m = y∂z∂z + 4πiTR

[
tmv∂zm

]
− 16π2

(
( tmm)2 − | tmm|2

)
vv/y,

Dτ
k,m = 4y2∂τ∂τ + (2k − 1)y∂y + 8y Re(∂τv∂z)

+ 4vv∂z∂z − 4 Im2(v∂v) + 4(k − 1)Re(v∂v)

+ 8πiTR
[
m · v∂τvm

]
+ 8πivv

y TR
[
m · v∂zm

]
− 16π2

(
( tmm)2 − | tmm|2

)
(vv/y)2 − 4(2k − 1)πm · m (vv/y).

Second, we can use “complex S-coordinates”. The coordinates (x, y, u, v) which we
have been using are what would be called “complex EZ-coordinates” in [1]. Define
p, q ∈ C by the equation z := τp + q, so that p = v/y and q = u − xv/y. The
complex S-coordinates are (x, y, p, q). The formula for Dτ

k,m in S-coordinates is much
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simpler, essentially because they correspond to writing the semidirect product group
G with SL2 C on the right. We give only Dτ

0,m; the formula for Dτ
k,m may be obtained

from conjugation by y−k. Writing ∂S for the S-coordinate partial derivatives (and
continuing to use the quaternionic derivative ∂τ ), we find

Dτ
0,m = 4y2∂S

τ ∂S
τ − y∂S

y + 8πiTR
[
m · p∂S

τ pm
]

− 16π2
(
( tmm)2 − | tmm|2

)
(ypp)2 + 4πm · m ypp.

In particular, ∂S
p and ∂S

q appear only in Dz
k,m. The formula for this operator is

actually a little more complicated than before, so we omit it.
We conclude with a sharpening of Corollary 5.4, based on the observation that

Dα(G/K) is noncommutative. (It would be interesting to have an efficient method
to compute relations as well as generators for Dα(G/K). Computing the third order
generators using the method of this paper would be very tedious, and it appears that
computing the commutation relations between all the generators by hand would be
prohibitively difficult.)

Proposition 5.8. For any cocycle α ∈ Z1(G, K), the algebra Dα(G/K) is gener-
ated by two second order and two third order operators.

Proof: Let C be the commutator [IDOα(Qτ ), IDOα(Qz)]. It will suffice to prove
that C is a third order operator, as then it can be used to replace one of the three
third order operators in Corollary 5.4 (we do not know which one). For this, use (21)
to see that for Ω ∈ S(m)K , the symbol of IDOα(Ω) is independent of α. Therefore C
is third order if and only if [Dτ

k,m, Dz
k,m] is third order, which is easy to verify because

one need keep track only of the second order symbols of Dτ
k,m and Dz

k,m. �
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[4] Elstrodt, J., Grunewald, F., and Mennicke, J. Groups acting on hyperbolic space. Springer

Monographs in Mathematics. Springer, Berlin, 1998.

[5] Friedberg, S. Differential operators and theta series. Trans. Amer. Math. Soc. 287, no. 2
(1985), 569–589.

[6] Goodman, R., and Wallach, N. Representations and invariants of the classical groups. Cam-

bridge University Press, 1998.
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