DYSON’S RANK, OVERPARTITIONS, AND WEAK MAASS FORMS

KATHRIN BRINGMANN AND JEREMY LOVEJOY

ABSTRACT. In a series of papers the first author and Ono connected the rank, a partition statistic
introduced by Dyson, to weak Maass forms, a new class of functions which are related to modular forms.
Naturally it is of wide interest to find other explicit examples of Maass forms. Here we construct a
new infinite family of such forms, arising from overpartitions. As applications we obtain combinatorial
decompositions of Ramanujan-type congruences for overpartitions as well as the modularity of rank
differences in certain arithmetic progressions.

1. INTRODUCTION AND STATEMENT OF RESULTS

A partition of a positive integer n is any non-increasing sequence of positive integers whose sum is n.
Let p(n) denote the number of partitions of n (with the usual convention that p(0) := 1, and p(n) :=0
for n ¢ Np).

Ramanujan proved that for every positive integer n, we have:

p(bn+4) =0 (mod 5),
(1.1) p(Tn+5) =0 (mod 7),
p(1ln+6) =0 (mod 11).

In a celebrated paper Ono [27] treated these kinds of congruences systematically (also see [29]). Com-
bining Shimura’s theory of modular forms of half-integral weight with results of Serre on modular
forms modulo ¢ he showed that for any prime ¢ > 5 there exist infinitely many non-nested arithmetic
progressions of the form An 4+ B such that

p(An+ B)=0 (mod ¢).

In order to explain the congruences in (1.1) with moduli 5 and 7 combinatorially, Dyson [16] intro-
duced the rank of a partition. The rank of a partition is defined to be its largest part minus the number
of its parts. Dyson conjectured that the partitions of 5n + 4 (resp. Tn + 5) form 5 (resp. 7) groups of
equal size when sorted by their ranks modulo 5 (resp. 7). This conjecture was proven in 1954 by Atkin
and Swinnerton-Dyer [2]. In [9] and [6], Ono and the first author showed that Dyson’s rank partition
function also satisfies congruences of Ramanujan type. One of the main steps in their proof is to show
that generating functions related to the rank are the “holomorphic parts” of “weak Maass forms”, a
notion we will explain later. This new theory has many applications, such as congruences [9, 6] and
asymptotics [5] for ranks as well as modularity for rank differences [10].

Naturally it is of wide interest to find other explicit examples of weak Maass forms. After partitions,
the next place to look is overpartitions. Recall that an overpartition is a partition where the first
occurrence of a summand may be overlined (see [13]). For example, there are 14 overpartitions of 4:

4,4,3+1,3+1,3+1,3+1,2+2,2+ 2,
24+1+1,24+1+1,24+1+1,24+1+1,1+1+1+1,T+1+1+1.
Overpartitions have arisen in many areas where ordinary partitions play an important role, most notably

in g-series and combinatorics (e.g. [3, 11, 12, 13, 21, 30, 34]), but also in mathematical physics (e.g.
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[17, 18]), symmetric functions (e.g. [4, 15|, representation theory (e.g. [19]) and algebraic number
theory (e.g. [20, 24]). To give a few specific examples, the combinatorial theory of overpartitions leads
to natural and straightforward bijective proofs of g-series identities like Ramanujan’s 111 summation [12,
34]; in the theory of symmetric functions in superspace, overpartitions play the role that partitions play
in the classical theory of symmetric functions [17, 18]; and certain Dedekind zeta functions associated
to rings of integers of real quadratic fields can be regarded as generating functions for weighted counts
of overpartitions [20, 24].

Returning to Dyson’s rank, this statistic applies just as well to overpartitions. Indeed, this rank
and its generalizations have already proven fundamental in the combinatorial theory of overpartitions
[14, 22, 23]. The main result of the present paper will be the construction of an infinite family of weak
Maass forms whose holomorphic parts are related to the generating function for Dyson’s rank of an
overpartition. As applications, we discuss congruence properties of overpartitions and the modularity
of rank differences in arithmetic progressions.

For a positive integer n we denote by p(n) the number of overpartions of n. We have the generating
function [13]

_ 2
(1.2) P(q):=) pn)q" = 25(2 =1+2¢+4¢° +8¢° + 14¢* + - - -
n>0

Here n(z) := qi [1o°, (1 — ¢™) is Dedekind’s eta function and we write g := ™. Moreover we denote
by N(m,n) the number of overpartitions of n with rank m. It is shown in [22] that

o9 (_1)nq%n(n+1)

O(u;q) :=1+ Zﬁ(m,n)umq” = Z (g, a/a)n

n=1 n=0

i ) gy G0 O e
(9 1+2RZZ:1 (1 —ug®) (1 — u-1gn)

(1.3)

Here for a,b € C, n € NU {o0}, we employ the standard g-series notation:
n—1
(@n: = J[(1—aq),
r=0
n—1
(@,b)n: = JJ(1—ag")(1-bg),
r=0

(@)oo : = nlingo(a)n.

It turns out that the function O(u;q) for u a root of unity # 1 is the holomorphic part of a weak Maass
form.

To make this precise, we recall the notion of a weak Maass form of half-integral weight k € %Z \ Z.
If z = x 4 iy with z,y € R, then the weight k£ hyperbolic Laplacian is given by

92 02 o 9
1.4 Api=—12 ==+ — | +iky [ — +i— ).
(14 e <3x2 " 3y2> ok (311: HG@/)

If v is odd, then define ¢, by

(1.5) €, = {1 ifv=1 (mod 4),

i ifv=3 (mod 4).

A (harmonic) weak Maass form of weight k and Nebentypus x on a subgroup I' C T'g(4) is any smooth
function f: H — C satisfying the following:
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(1) Forall A= (2%) €T and all z € H, we have

CQk
) = (5) e+ £(o)

(2) We have that Ay f = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps of T

Suppose that 0 < a < ¢ are integers, and let (. := ¢%. Define the theta function of weight %

2
(1.6) O(a, B;7) = Z ne 5" ,
n=a (mod )
and let
0 (4a + ¢, 2¢; 4%:) if ¢ is odd,
Oue(T) =13 20 (2a+ 5, ¢;9) if2] ¢,
40 (a+ £,5;,2)  if 4e

Using these cuspidal theta functions, we define for ¢ # 2, the non-holomorphic integral
. 3

-t ma i (_ir) T2 .0, (-1

(1.7) J(g;z) = m an(c)/ ( iT)" 2 ,b( 7—) dr.
c e —z —i(T + 2)

Moreover define M (%, z) by

a a a
where O (%;¢q) := O (¢%q). If u=—1, we define

M(=1;2) := O(—1;2) — I(—1;2).

with

V2 [ (1)

T Jos (2n) - (i +2)2
The main result of this paper is the following theorem which establishes that those real analytic functions
are Maass forms.

I(—-1;z) := dr.

Theorem 1.1. The following statements are true:
(1) If 0 < a < ¢ with (a,c) =1 and ¢ # 2, then M (%;z) is a weak Maass form of weight % on
['1(16¢2). If 2|c and 4|c, then it is a weak Maass form on T'1(4c?) and T1(c?), respectively.
(2) The function M(—1;z) is a weak Maass form of weight 3 on To(16).

Five remarks.
1) If ¢ is odd, we actually obtain Maass forms for the larger group

{(3§)€SL2(Z)’0¢E551 (mod 4¢), 7y =0 (mod 16¢%)}

2) The proof of the second part of Theorem 1.1 is harder than the first since the generating function
has double poles. To overcome this problem, we introduce new functions O,(q) having an additional
parameter 7 but only simple poles such that one can obtain O(—1;z) by a process of differentiation.
This differentiation accounts for the augmentation of the weight by 1 in this case. It is worth mentioning
that for the case of the classical Dyson’s rank generating functions in [9], the weak Maass forms have
weight 1/2 for every root of unity # 1.

3) The authors [7] show that in the context of overpartition pairs, the analogous generating functions
associated to the appropriate generalization of Dyson’s rank are not weak Maass forms, but classical
modular forms.
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4) We should stress that the analysis of the transformation behavior of O(u;¢q) is much more involved
than in the case of the Dyson’s rank generating functions in [9]. One of the reasons is that the half-

integer weight modular form ((_qg)o:" that shows up in (1.3) is not mapped to itself as in the case of the

usual ranks. This prohibits “guessing” images under Mobius transformations as in [9]. There the first
author and Ono started with part of images of the generating function that they were able to guess.
Thus the idea of proof in [9] which builds on old results of Watson, cannot be employed here. Instead
we have to determine explicitly the images under all Mobius transformations with different techniques.

In view of Theorem 1.1 one can obtain results on overpartitions by arguing as in work of Ono and
the first author [5, 6, 8, 9, 10]. In this direction we exhibit congruences for N(r,¢;n), the number
of overpartitions of n whose rank is congruent to r (mod t), and provide a theoretical framework for
proving identities for rank differences in arithmetic progressions. Other possible applications, which we
do not address here, would be to asymptotics or inequalities for ranks, exact formulas or distribution
questions. We first consider congruences satisfied by N(r,¢;n). For ease of notation we restrict to the
case that ¢ is odd, the case ¢t even can be considered similarly.

Theorem 1.2. Let t be a positive odd integer, and let £ 16t be a prime. If j is a positive integer, then
there are infinitely many non-nested arithmetic progressions An + B such that for every 0 < r <t we
have

N(r,t;An+B)=0 (mod #).
Theorem 1.3. Suppose that £ > 5 is a prime, m,u, 3 € N with (%ﬁ) = —1. Then a positive proportion
of primes p = —1 (mod ¢) have the property that for every 0 < r < ™ —1
N (r, ﬂm;p‘gn) =0 (mod ¢¥)
for alln = (mod ¥) that are not divisible by p.
This directly implies.

Corollary 1.4. If ¢ > 5 is a prime, m,u € N, then there are infinitely many non-nested arithmetic
progressions An + B such that

N (r,";An+B)=0 (mod ¢*)
forall 0 <r <fm™—1.

Remark.
The congruences in Theorems 1.2 and 1.3 may be viewed as a combinatorial decomposition of the
overpartition function congruence

(1.9) P(An+ B)=0 (mod ¢*).

That (1.9) holds for infinitely many non-nested arithmetic progressions An + B was first observed by
Treneer [32].
We next put identities involving rank differences for overpartitions in the framework of weak Maass

forms (see also [10]). For this define for a prime ¢ and integers s; and sg the function

o

Ry, o (d) =Y (N(s1,4,tn+ d) — N(s, £, bn + d)) ¢

n=0
We provide a framework that could be used to show an infinite family of identities (see also [10] for
related results for usual ranks).

Theorem 1.5. If (%) = —(_71), then the function Rg, s,(d) is a weakly holomorphic modular form on
Iy (1604).
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Using Theorem 1.5, we could prove concrete identities using the valence formula. Since the compu-
tations are straightforward but lengthy (coming from the fact that I'y (16(4) has a lot of cusps), we
chose not to prove individual identities. Instead we just list some identities, and their truth follows
from work of the second author and Osburn [25].

The paper is organized as follows. In Section 2, we prove a transformation law for the rank generating
functions in the case ¢ # 2. In Section 3, we show the first part of Theorem 1.1. The main step is to
recognize the Mordell type integrals occurring the transformation law of the rank generating functions
as integrals of theta functions. In Section 4 we treat the case ¢ = 2 which is more complicated due to

double poles of the generating function. In Sections 5 and 6 we show congruences for N(r,t,n). Section
7 is dedicated the proof of Theorem 1.5.
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2. A TRANSFORMATION LAW

Here we consider modularity properties for O (%;q). For this we need some notation. Let ¢ > 2
and k be positive integers. Let k be either 0 or 1 depending on whether & is even or odd. Moreover
let k1 := ﬁ, c1 = ﬁ, and define the integer 0 < [ < ¢; by the congruence [ = ak; (mod ¢;). If
% € (0,1), then define the integers s(b, c) and ¢(b, ¢) (for % # 1) by

0 ifo<t<i
c — 4 . b 1
1 f0<? <3,
S(b,C) = 1 lfl<9§§ t(b,c) = 1 c 2
4 c 47 1 b
b 3 it 5 <2 <1.

In particular let s := s(l,¢1) and ¢ := t(l,¢1). Let b’ be defined by hh' = —1 (mod k). Moreover let
wp k be given by

(2.1) wnp=exp (i ((%)) <<hk“>> ,

u (mod k)

where



6 KATHRIN BRINGMANN AND JEREMY LOVEJOY

Define for ¢ = e?™* the following functions.

2, n
a a . (may 1(3) (144" g™ "2
U (*; ) = U (ﬂz) 1= sin (—) :
c 1 c c 772(2) Z 1 — 2¢™ cos (271'(1) +q on
z Tia S(b c) 2m+1)+ms(b C)
U(a,b,c;q) == Ula,bc;z) = n2(2)e (P -1-2s00) +2-t Z g% _ _
77(2) mezl—e c q"'z
V(CL b.c: q) = V(a b. c: Z) — n (%) e‘frza(élcb 1-2s(b, C)) .qs(b c)bJr2c ij q? Z(2mA4-1)+ms(b,c)
n*(z) Ll —e e
2 Tia t(b,c)b 7772 m(21’7’L—‘y—1)—‘,—M
O(a,b,c;q) == O(a,b,c;2) = ng(zie (2 -1-t(bo) g e o iz Z(_l)m q? 2
n%(z

27mia b
1— e 28 gme

meZ c g

m24m | (1 + e e quF%)

1
q* § 2mi 1
—2ma 4l
me

l—e""¢c -q

v(Z) = (%)

Moreover let

Then

Ha,c(_x) = Ha(:(x)y
Hoco(xz+2mi) = Hge(z).

Moreover define for an integer v the Mordell type integral

_ 2rwa? omiv  2rwx  kmi
Ia,c,k,l/(w) = / e k Ha,c ( - = _ ) dr.
R

For k even we have to take the principal part of the integral. We are now ready to show the transfor-
mation law of O (%, q).

Theorem 2.1. Assume the notation above. Moreover, let w € C with Re(w) > 0, q := e%(hﬂw), and
(R4 L)
QI =€ k ( w/

(1) If c|k and k is even, then we have

27ria2h,k h/ w2 h,
o (95(1) = (-)Mi-e” ¢ -tan (@> - cot (ml ) hk =30 (a;m)
Cc c c p

;02 2
4 - sin? (%) W g _2min/s?

(2) If clk and k is odd, then we have

2
a xih! _ 2mia®h’k Ta\ W ah’
O(*;Q)Z\@i-esl?_ c 1tan<>h’k-w_§-U<SQ1>
c c

C /7 Wahk
4\/§ sin w? i
") - i Cw? e T (W)
Wop i+ k
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(3) If ctk, 2|k, and ¢y # 2, then we have

_27r'ia2hlk1 LUQ l
o (9; q) = -2 @  tan (La) E = (—1yath) 0 (ah', e m)
c €1

¢/ Whi/2
4sin? (22) - w? wih/ v
4 (&) i w3 > (1) e 5 Iy o (w).
Whk/2 " K v (mod k)
(4) If ¢t k, 2|k, and c¢; = 2, then we have
miaZh'k U.)2 h’/
0 (50) = —e ™ ctan () 2Ly ()
c C 7/ Whi/2 ¢
4sin? (T2) . w? rin! 2
i ( c ) . h,k w% (_1)1/ 6727 . Ia,c,k,u(w)’
“hik/2 " v (mod k)
(5) If ctk, 21k, and ¢1 # 4, then we have
ﬂ-ih’727rihla2k w2 l
O (g;q> = —\/§€ 8k cey 3 - tan (W—a) ﬂw_% U (ah', *Cvc; Q1>
c C / Wank C1
4 2 - sl 2 Tay . 2 wih/
. V2 - sin ( Ck) Wh k -w% Z e—Th(2y2_u) . Ia,c,k,u(w)-
Wahk * v (mod k)
(6) Ifctk, 21k, and 1 = 4, then we have
ﬂ.ih/_QTrih,a2k w2 l
O(g,q) — _¢ 8k ccy 1 . tan (ﬂ-a>h’k.wé.v<ah/’c7c;q1>
c ¢/ V2w 1
4/2 - sin? (T2) . W2 wih!
. () whe 1 T
Wank k v (mod k)

Corollary 2.2. Assume that z € H, 0 < a < ¢ with ¢ # 2.
(1) If ¢ # 4, then we have

o <a; _1> = —V2tan (22) - (=i2)

N

C z C

’ U(O, a, ¢ Z) + 4\/5 -sin” (ﬂ) ) (_iz)ié ) Ia,c,l,O (»1) ‘
(2) If c =4, then we have

o (1) - o

Corollary 2.3. Assume that (3 5) € I'o(c) with ¢ odd, z € H, and let vy := (C’ny).

=

’ V(O) a, C; Z) + 4\/5 . Sin2 (ﬂ> . (—’LZ)_% . Ia,c,l,O <i> .

Cc

(1) If 2|, then the holomorphic part of O (a" O‘Z+ﬁ) is given by

c) yz+6
271ia?s 6 C()2 (5
i ™ tan (ﬂ—a) - cot <7ra> — 2T (—i(yz + 6))% -0 <a; z> .
c ¢ ) Wan/2 c

(2) If v is odd, then the holomorphic part of O <%, ?‘;ig) is given by

Tid 2mia?s w2 5
C

C W2a,y
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Proof of Theorem 2.1. We proceed similarly as in [1, 5]. First we rewrite (1.3) as

(2.2) @) (%;Q) = 4sin? (W—ca) m Z(—l)n emkhﬂw) - Hgc (27;Zn(h + zw))

nez
Now let
1
~/a n° (¢ (h 4 iw) a
(2.3) O (ﬂq) = mgk ) -0 (ﬂq) .
c 4sin? (Z2) - (£(h + iw)) c
Writing n = km 4+ v with 0 < v < k, m € Z gives that O (%, q) equals
k—1 .
2rih? 27TZhV 27Tw _ 27w v
(2.4) (=17 e T (=D Hyy <k == (km 1/)> ek (km)?
v=0 mEZL
Using Poisson summation and substituting x +— kx + v gives that the inner sum equals
27mhu 2rzw Ti (9 T () — 2T
n

Strictly speaking for c|k there may lie a pole at = 0. In this case we take the principal part of the
integral. Inserting (2.5) into (2.4) we see that the summation only depends on v (mod k). Moreover,

by changing v into —v, x into —z, and n into —(n + %), we see that the part of the sum over n with
n < —1 equals the part of the sum with n > 0. Thus (2.4) equals

v (mod k) neN

Next we introduce the function
Sa,c,k(x) =

sinh(ciz)
sinh (% + %) - sinh (% — M)

C

which is entire as a function of x. Here we need that ¢ # 2. We rewrite the integrand in (2.6) as

7ri(2n+%)(z—u) _ 27(11);1)2
k

(_1)h01V€

- Sa.ek (Txw — wihv)

4 sinh(mejzw)
From this we see that the only poles can lie in the points
m
Ty 1= —— (m e Z).
clw
If c|k, then ¢; = 1; thus poles can only lie in points of the form x,, = % One can easily compute that
each choice + leads at most for one v (mod k) to a non-zero residue, and that this v can be chosen as

vE = —h(m F aky).

m

If ¢ 1 k, then we can only have a nontrivial residue if m = +ak; (mod ¢;). We write ¢;m + [ instead
of m with m > 1(151). We see that to each choice + or — there corresponds exactly one v (mod k)
and we can choose v as

vE = —n (m +— (- ak:l))
C1
Now shift the path of integration through the points

(2n+7<?>z’

Wp 1=
4w
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Which points x,, (m > 0) we have to take into account when we use the Residue Theorem depends on
whether c|k or not and on whether k is even or odd. The cases that ¢; = 2,4 require special care.

If c|k and k is even, then we have to take those x,, into account for which 2m < n. The poles
on the path of integration are x¢ and wy,.

If |k and k is odd, then we have to take those x,, into account for which 2m < n. The point
xg is the only pole on the path of integration .

If ¢t k, k is even, and ¢; # 2, then there is no pole on the path of integration. Moreover in this
case we have to take those z,, into account for which n > 2m + %(1 +1).

If ¢t k, k is even, and ¢; = 2, then the only pole on the path of integartion lies in w,,. We have
to take those x,, into account for which n > 2m =+ 1.

If ¢t k, k is odd, and ¢; # 4, then there is no pole on the path of integration. Moreover we
have to take those xz,, into account for which n > 2m =+ s.

If ¢t k, k is odd, and ¢; = 4, then there lies a pole in w,, and we have to take those x,, into
account for which n > 2m + s+ (-1 +1).

In the following we denote the residues of the integrand by )\im. It is not hard to compute

. . ~ 2
S D CTO RS
mm 47w sin (2”“)

JFrom this one directly sees that

21
N = esp (5 (o =) ) N

Shifting the path of integration through w,, we obtain by the Residue Theorem

where

2

2

(i) -5

2 271'th OO+W” 27T2h1/ 277:[]“] 7'”'(2"4‘%)(39*”) 271'1211)
N ) — e % Tk dzx.
DS S [ (-

v (mod k:) neNY ~ootwn

For the definition of >, we have to distinguish several cases. We set ro := % and r,, := 1 for m € N.
If c|k and k is even, then

4 € 27rih(ufn)2 )\6
Z - ﬂ P (— 1)V e R 2m+Lm + AQmm .
et 1—exp ( (xm — VS ))
ee{x}

An easy calculation shows that this equals

(2.7)

: 2rwh'a
27T'ih,a2k1 S < c )

(—1)k1ie_ = Z (_1)nQIL i

w - sin (2”“) = 1—2qf cos (2”“" )+ @"
If c|k and 2 { k, then
471 € 2”}1(”5'1)2 gmm
(2.8) = — Tm(—=1)"m e™ & ~ .
2% & o (7 (= 5)
ec{x}

We assume without loss of generality that k' is even. Then we can show that (2.8) equals

(2.9)

wh'a n’+g
15111( c ) _MZ 1+4d)an
— =€ c

w - sin (2”“) =, 1—2qj cos (27rah ) + q%”'
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If ¢t k, 2|k, and ¢; # 2, then

€
S TSy e Cmdteym
k = 1—exp ( (L — VS ))
ec{x}
It can be calculated that this equals
e 12 1 L “ ﬂ(2m+1)+@
LR (e e g
wsin (272) _omian! Mt
mezZ 1—e¢ e q 1

If ¢t k, 2|k, and ¢; = 2, then

4mi A 2min(h)? A3, 1
Z = % Z(—l) " e k ( ;::;JF(Z’m +)) + 2A§rm+1,m>
1

0 1 —exp (T Tm — Um

— 2mih(vpy)® 2m, 1.
+ Z(_l)V ek (1 — exp (2mmm —)) + 2)\2m—1,m>

m>1 7(£Cm—1/m

One can show that this equals.

2 _27rih/a m-{-l
o i 2 A m <1 +e e q 2>

(2'10) 2 - 2ma e ¢ 2miah!  mA+i

wsm( ) meZ l—e" ¢ -q °
If ¢t k, k is odd, and ¢; # 4, then

: +
S =T (a2 M
1 k m>0 1 — exp (3 (xm —vm))

—  2mih(vp)? 2m—s,m
+ (=)™ e & - —
mZZ:l 1—exp(2 Z(:Um—l/m))

Without loss of generality we may assume that h' is even. With this assumption we can compute that
>, equals

. 2 m
1 %—i—Q i rib'a (ﬂ—ﬂ—28—1> q12 (2m—+1)+ms
_ 5 q]_ 1 .e ¢ cq cq .
w sin ( m) ZZ _2mian! MG
mezZ ] —e c -y

If ¢t k, k is odd, and ¢; = 4, then

dri [ & L 2min(uh)? Admtsil, 1
Z = e (Z(_l)l'm e~ &k <1 e (7271”8( m +)) + §A2m+87m

1 m=0 Im = Vm
(o] —
— QWih(V;L>2 )\Qm s,m 1
+ —1)"m e & + = Aom—s— .
= (et e
One can show that this equals
m(2m+1)+m5 27'r7,ah m+
sl_ 121 q 14+e c q
1 o "2 ae mibla (4 _aky 1 < 1
Gay LT e () v l
2w sin (ﬂ) omiah! AL
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We next turn to the computation of ) . If there is a pole in w;,, we take the principal part of the integral.
With the same argument as before we can change the sum over N into a sum over Z. Moreover we
make the translation z — = + w, and write n = 2p 4+ § with p € Z and ¢ € {0, —1}. This gives

Z:% S -1y 2 T o (254 Ry — g (4p+25+F)?
2

v (mod k) ?EZ )
de{0,—-1

> 2wihvy  2mwz  2mwa?
/OOHa,c( k - 7]43 —%(4p+2(5+k)> k dx.

Next we change v into —h/(v + p) and distinguish whether & is even or odd.
If k is even, then we have, since A’ is odd,

1 it/ (ap+28)%
Z _ - Z (—1)" e (524 4v(5-v)) Z(_l)p g ©
2 v (mod k) PEL
0e{0,—1}
o0 271_21/ 27Tw$ 7T7/(5 2wz
H <__> e g
/_OO Nk k k
Now the integral is independent of p. Moreover the sum over p vanishes for § = —1 since the pth and

the (—p + 1)th term cancel. For § = 0 the sum over p equals

2 (1 / 7
2.12 TG )
o T CE)

Thus

(5 (W +3)) R w
(2.13) 22: e rE g;dk)( 1) Lo, o (w).

If k is odd, then we may without loss of generality assume that i’ is even. In this case we obtain

_ ]- 77”']1, 7th 21/2+l/ 26+1 w
Sole# Y ey,
2 v (mod k) PEZL
0e{0,—1}
o0 27TZV 27wa 7T'L(2(5 + 1)> 27rw12
H, < — — -e” k dax.
/_OO Nk k 2k
Making the substitutions p — —p,  — —x, and v — —v, one can easily see that the contribution for
0 = 0 and for § = —1 coincide. Moreover the sum over p equals

(2.14) > L o0 y)

= n(sp (W+5))
Thus
> (L4 D)) (e
(2.15) =" e . ek T Ty ek (w).
LT ),

To finish the proof of Theorem 2.1, we require the well-known transformation law of Dedekind’s 7-
function.

1 , 1 i
(2.16) o (3 i) =0 it wmh g (3 (04 1)),
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This implies that for k£ even, we have

2 : iy, -1 2 (7 1
(2.17) n(k(h+zw)> = ) ol o '”(k (h+w>>’
where hh = —1 (mod k/2). Moreover if k is odd, (2.16) implies that
2 : Ti (2h—(2h)') | 1 1 ;o
(2.18) n %(h +iw) | = el w% g (Rw)"z - z (2h) + 55,

Combining (2.7), (2.9), (2.10), (2.11), (2.13), (2.15), (2.16), (2.17), and (2.18) gives (after a lengthy but
straightforward calculation) the theorem. g

3. CONSTRUCTION OF THE WEAK MAASS FORMS

In this section we prove the first part of Theorem 1.1. First we interpret the Mordell type integral
occurring in Corollary 2.2 as an integral of theta functions. For this let

4 2 in? e miz? 2 )
(3.1) I, = M / 6_27 H,. < X 7rz> .
(—iz) R 2

Lemma 3.1. We have

: :Wtan(%) © Og (iu) o

- 4e 0 +/—i(iu+ z)

Proof. We modify a proof of [9, 35]. By analytic continuation it is enough to show the claim for z = it

with ¢ > 0. Making the change of variables = +— %, we find that

(3.2) Iiy = 4v/2 sin? (H) / e 2t -H,, <27Tx + 5 > dzx.
¢/ Jr

We next rewrite H, . (2773: + %Z) using the Mittag-Leffler theory of partial fraction decomposition. This
easily gives that

[ 1 1
63 e (o ) - mwwz(x—i(m—z—i)‘x—z(m—4>)'

meZ

We plug (3.3) back into (3.2) and interchange summation and integration. For this we introduce the
extra summands T j and i L ) which enforce absolute convergence and cancel when we

a_ 1

c 4

a_ 1

c 4
integrate. This gives

A_Y'tan% —2mta? 1 . 1
Izt Z/ (x—z(m—i_i) x_z(m_}_z_}l))dx

meZ

Next use that for all s € R\ {0}, we have the identity

_ 2 _ 2
00 e mtx ) 0 e~ Tus
dxr = mis —_—

du
oo T — 1S 0o Vvu-+t

(this follows since both sides are solutions of (—% +7s?) f(t) = & f (t) and have the same limit 0 as

t — oo and hence are equal). Again interchanging summation and 1ntegration and making the change
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of variables u — § gives

7 ¢ (ﬂa)/"o 1

= —mtan [ —

u C 0 \/U—l—t

S (=@ -2 et (@) e gy,
c 4 c 4

MmeZ

From this the claim can be easily deduced. O

Lemma 3.2. For z € H, we have

(Bae1) = 9(%9)

1 J (a' 1) - I+ i tan (%a) o0 Og,c(T)
= \e) = e T L e
Proof. We only show the lemma in the case that ¢ is odd, the case ¢ even is shown similarly. The first
claim follows from the fact that ©q . (—2) is invariant under 7 — 7 + 1. Indeed Shimura’s work [31]
implies that

(34)  (—ider) ™} O, <—i> — it Y

k  (mod 2c)

dr.

<2m’k¢(4a +c)
exp | ———+

o0 > - O(k, 2¢; 4eT).

To prove the second transformation law we directly compute

L (ﬂ>__mwu?jfw«wr?@wt¢>d
vV—iz "\ z)  de-/—iz 1 —i(r—1) T

1

Making the change of variable 7 +— —— now easily gives the claim. 0

Proof of Theorem 1.1 (1). Again we assume that ¢ is odd. By [31] Proposition 2.1, the functions
O(k,2c;7) are cusp forms for T'(4c). Thus the functions ©(k,2c;4cr) are cusp forms for I'y(16¢2).
Using Theorem 2.1 one can conclude that also M (%, z) transforms correctly under I';(16¢?). That it

is an eigenfunction under A1 follows as in [9] page 21. O
2
4. THE CASE u = —1
Here we consider the case u = —1. We assume the same notation as in Section 2. Equation (1.3)
gives
2
(—9) qrtm
O(-1;q) =4 ()" .
(@)oo % (1+q7)?

This function is more complicated than O (%, q) with ¢ # 2 since double poles occur. To overcome this
problem, we first prove a transformation law for the function

(Do =, (1+e?mirgn)’

2

This function is related to O(—1;¢q) by
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To state the transformation law for O,(¢) we additionally need the functions

l
o 77 g2(m+m)
UT(Q) = " Z 6271'17‘ m’
meZ
modd
_2%1}1;3:
e )
Ir (w) = / dz.
k,l/,?”( ) R 1 + e:t 27r11/$7mk 4 2mir— 27r’iuﬂc
Theorem 4.1. Assume that r € R with |r| sufficiently small.
(1) If k is odd, then
1 2 ih! | 2rk 1
O():—2\/>’Lw 576819—"_ w Z/[W(qf)
Wah, k v
w2
Whk 1 2mih’ (24 v o4
R C et D DN N (D}
2h.k (mod k)
+
(2) If k is even, then
Wik 1 e? dup 2 y _zmins?
Or(q) = —1— w 2 w OL(Ql) - . Z (_1) € . Ik Vr(w)‘
Wh,k/2 " Onk/2 , Cod 1) B

Proof. We proceed similarly as in the proof of Theorem 2.1 and therefore we skip most of the details.
Moreover, we only show the claim for k odd, the case k even is treated similarly. Define

n2

6r(Q) = Z(—l)nm-

ne”

Changing n into v + km with v running modulo k£ and m € Z, we obtain, using Poisson summation
and making a change of variables,

27r1uz 7r7, 27’L+1)($ I/)

~ 1 I/ 271'7,hu
Or(q) = E Z o Z/R 1+€27rz7':|:27”h”$Tw:B dx

v (mod k) nENO

One can show that poles of the integrand only lie in points

' 1
xm::Z<m+ikr>
w 2

and we have nontrivial residues at most for one v (mod k) which can can chose as

k
Upp 1= — _5 (2m + 1)1
Using the Residue Theorem, we shift the path of integration through
 2n+1
Wn = —p —

There are no poles on the real axis or in w,. Moreover we have to take those x,, with m > 0 into
account that satisfy n > 2m + 1. We denote by )\i the residue of each summand and compute

)\i ::l:ie 27fw93m+m(2n+1)($m Vm)
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Thus

which gives

where

S = gy 5 At
T k T (@m—vm)’

271'w:v 71'2 (2n+1)(171’)
dx.

27rzhu

Fg

D S C D O

2mirt
v (mod k) nGNO +on 14e

A lengthy calculation gives that

1 2
. F(m“+m
2 2nkr?  wr qf( )
E = — € w w
w _2mr =m
1 mez 1 —e v qf

To compute ) ,, we change the sum over n back into a sum over Z and change x — x + wy. This gives

_ 2rwa?

1 2mihy? - i e w
Z % Z (=1)"e * Z e~ shw (2nH1)2 =T (2n+ 1)y _ L
2 k v (mod k) nez R1+ €_ﬁ(2n+1)+T_T+2WW‘

Changing n — 2p + § (with p € Z and § € {0, —1}) and v — —h/(v + p) gives

_27T’IJJ£132
Y = 1§ 2 (- Lesr)? +5(26+1)) 16 (4P H20+D)’ ek e
> k — 1 R 1 — o2mirt 2L —ZL(2641)— 2mus

Now the sum over p equals

3

2
(55 (M'+1))
2
- P01 2) - W(u2+”)/ e
Z_k( (b + z)) Z ek 5 A T d

+
2 v (mod k) L+e
+

which gives the claim using (2.16), (2.17), and (2.18). O

(From Theorem 4.1, we can conclude a transformation law for O(—1;¢). For this define

an(z) gz
U =
@ = s 2 G
_27rwac2
e k
I,;t,y(w) = / —— — dz.
R (1+e:|:27;€zu:':7uk _27rkw;L>

Corollary 4.2. Assume the notation above. We have.
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(1) If k is odd, then

2 2
]_ w wih! 1 w wih! v
O(—1;q) = L ws R Ry <qf> +2V/2w? ’ bk Z ¢ (-7 +5) I,fy(w).
V2 Wah, k Wahk |, oo k)
+
(2) If k is even, then
2 2
w 4(4) s’ LIIJ2
O(-130) = —w i L O(—Lig) + o wi 3 (<) e T I ().

Wh,k/2 konka (oo ¥) ’

Proof. We only prove (i), (ii) can be shown similarly. We have

2 m
1 a 6271'1127‘ _% <3q12 _ 1
5 | 9 " 2nr @ = m~ 2
2mi | Or 1—e w q12 o 2w <1 _ q12 )
Now
i(m2+m) 2 1 2 1 2
qi (3(]1 _ 1) qu(m +m) 11(7” +m)
Z m 2 —3 Z z +2 m 2

meZ (1 —q7 ) mezZ (1 —qq ) mez (1 —q7 >

1(m*+m)

=2y
meZ (1 - Q12 )

since in the first sum the mth and —mth term cancel. Now (i) can be easily concluded by using that

[ ) o
20 ar 1 T e:t 2T]r€iu:F72rTi_27r]:Jz +omir —0 (1 n ej: 27;:1/:F;%727T]$u:c>2 .

g

Remark. jFrom Corollary 4.2 we can obtain the transformation law for O(—1; z) under (: ? ) € SLa(Z)
by setting b’ = a, k =, h = —4§, and w = —i (§ + 7).

We next realize the integral occurring in Corollary 4.2 for £ = 1 as a theta integral. For this let

_27r7112
+ o e -
) = /R1iie2”"—2”f’”
1[0
I = — | = (IF I-
) = o {ar(mm [

Lemma 4.3. We have

R Gl A n” (iu) "
I(r) Vor /o n(%) (—i(iT—l—iu))%d

Proof. Via analytic continuation it is sufficient to show the claim for 7 = it. Making the change of

variables x +— —7 gives

—omta?

o €
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We use the theory of Mittag-Leffler to rewrite

1 n 1 1 1 N 1
: 2mir 21  omir 27 9o . 1 . 1 :
1+ 42T e2™% ] — s elTT 27Tme x—z(—m—i—z—r) :U—z(m—z—r)

This implies that

727rta:2 6727rt:1:2
I )+ 1. dx.
(it) + Z/R z—i m+f—r)+x—i(m—%—r) !

From this we conclude

t Z e—27rtx2 t Z e—27rm2
- Ly PR O
. 1 1\\2 2 im\ 2
A R (=i (m+ 5 F 5)) Ams e TR (o - )
+ m odd
We have the integral identity
- ’LL 727rus
e “T du = du s#0
/R u—is 2v/2 / (u-+1) (s70)
which follows since both sides are solutions of the differential equation —% + 27s? = % and have
2V/2t2
limit 0 as ¢ — oo. Using integration by parts gives
—2omta? 0o ,—2mus?
/ c dr = fﬂt/ 673 du.
w (z—is)? 0 (u+t)2
Thus
2
) 00 _ mum
e 8
1(it) = _/ DY
2V2r Jo Ao (u+t):
m odd
which easily gives the claim. O

Combining Theorem 4.1, Corollary 4.1, and Lemma 4.3 gives

Corollary 4.4. For z € H, we have

N W AP IRY B (—iz)2 [ 2(iu)
O<_1’_z>__ﬂ(_w) u(-13)+2= /0 n(iu/z)y—i(izﬂu))idu'

We next give the transformation law of the non-holomorphic part of M(—1;z) which can be shown
as in proof of Theorem 3.2.

Lemma 4.5. For z € H, we have

J(=1L;z+1) = J(-1;2),

Lty - P B,
(—iz)2 z Tz n(r/2) (—i(r +2))2 ™ Jo nliu/2) (—i(iu + 2))2

Using that 222(3 is a modular form on I'y(16) gives the claim.
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5. CONGRUENCES FOR OVERPARTITIONS

Following the original strategy of Ono [27] and Ono and the first author [6, 8, 9] we can prove the
congruences in Theorem 1.2. We limit ourselves to a sketch of the proof.

Sketch of Proof of Theorem 1.2. Throughout we assume the assumptions of Theorem 1.2. First one
can show, using the results above that the function

(5.1) i <N(r,t; n) — p(t”)> o

n=0

is the holomorphic part of a weak Maass form of Welght on I'y (160 ) In order to use results of Serre
on p-adic modular forms, we next apply twists to the assomated weak Maass forms, which “kill” the
non-holomorphic part. This requires knowing on which arithmetic progressions it is supported. We
prove

M(fz)—l—i—z Z N(m,n)Cimq"™

n=1m=—o0

(®) T o) (e

k  (mod 2c¢) m=k (mod 2c)

(5.2)

2mix

where e(z) := e“™*, and where

(5.3) I'(a;x) ::/ ettt qt

is the incomplete Gamma-function. Using this one can show that for a prime p 1 6¢ the function

(5.4) n; (N(r,t; n) — p(t”)) "

&)

is a weight % weakly holomorphic modular form on I'y(16¢?p*). Now the theorem can be concluded as
in [9] using a geralization of Serre’s results on p-adic modular forms (Theorem 4.2 of [9]). O

6. PROOF OF THEOREM 1.3

Here we prove Theorem 1.3. While we follow the model of Ono [27] and the first author and Ono
[6, 9], the proof of the modularity is rather delicate. For brevity we set ¢ := ¢™. Define the function

gr(2) ==t - 0" (202) - n*(L2) ZN r,t;n)q
where 0 < 71 < 48 is a solution of 7/ = —1 (mod 48). We have

01 gl = 1L th o (wt (B2) (2 ) wrcote) e

We denote the two summands by f(z) and fr(z), respectively. Define for a function h(z) =), a(n)q"”
the twist

(6.2 i) =5 () (me) - (‘;)h(z)e)e,
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where as before

(6.3) hy ::% 3 (%)h|(é—1%).

Clearly

(6.4) h(z) = Z a(n)q".

The main step in the proof of Theorem 1.3 is the following theorem.

Theorem 6.1. For every u > 0 there ewist a character x, integers \,\', N, N', and modular forms
h(z) € Sy, 1 (To(N),x) and he(2) € Sy, 1 (T1 (N')) such that
2 2

77’“1(%9;3(:27)724(&) = h(z) + hy(2) (mod £*).

The proof of Theorem 6.1 is given later. We first show how Theorem 1.3 follows from Theorem 6.1.
Proof of Theorem 1.3. We easily see that

gA;ﬂ(Z) == N . n
n?(0z) -y (20z) t(_%:_l N(r,t;n)q".

Now we let 0 < 8 < /¢ —1 with (_Tﬂ) = —1 be given. Define
grp(z)i=t > N(rtn)q"
n=6 (mod ¢)

Theorem 6.1 gives that

9r3(2) = hp(z) + hrg(z)  (mod £Y),
where hg(z) and h, g(z) denote the restrictions of the Fourier expansion of h(z) resp. hy(z) to those
coefficients n with n = 8 (mod ¢). Using the theory of Hecke operators, we can show that for all n = 3
(mod ¢) coprime to p we have

tN (T, t;pgn) =0 (mod ¢*).
Dividing by ¢ directly gives the theorem since u is arbitrary. O

Proof of Theorem 6.1. If a is a positive integer, then define

t z
E@,a(z) = Z(ﬂgz%

where x¢q(d) = . It is well known that Ey,(z) vanishes at those cusps of I'g(¢%) that are
not equivalent to co and that for all u > 0

(6.5) Ef, ' ()=1 (mod (%),

€ My (To(€*), Xt,a) »

_1)(*~1)/2¢a
(S5

We now treat the summands in (6.1) separately. We start with f(z). Using Theorem 1.64 from [29], it
is not hard to see that f(z) is a modular form of weight % with some character on I'g(2¢). ;From

this we see that f(z) € M, 1201 (F0(2€5), i) for some character X. For sufficiently large u’ the function
2

f(2) B (2)
M) = ) )
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is a weakly holomorphic modular form on I'g(8¢°) that vanishes at all cusps with the exception of oo
and % with r € {1,2,4}, and satisfies

f(z)

(2) = Tl lR) (mod ¢%).

We show that h(z) is a cusp form. It is easy to see that in the cusp oo the Fourier expansion of f(z)

(7‘1+€)+1' (7‘1+£)

starts at least with qé Since the Fourier expansion of 1" (2¢z) - n**(¢z) starts with qé ,

we see that h(z) vanishes in co. Since f(z) is a modular form on T (2¢°) and the Fourier expansion of
r1-+£) 1
405
Next consider the cusp E%”' In (6.3), we can choose a set of respresentatives with v even. Now for

even v it is not hard to see that (é 71%) (815 (1]) is F0(2£5)— equivalent to (615 (1)) (é 71% ) Thus

= X (Hnen ).

v (mod ¢)

v even

0" (20z) - n*(Lz) in % with r even starts with qé( , h(z) vanishes also in the cusps ﬁ and

It is not hard to see that f(z) vanishes in Eis of order 54(—3+ 1€+ 4¢%). Since the cusp width of éis in
['o(20%) is 2, the Fourier expansion of f| (415 9) starts with ¢, where rg := 35(—3 + £ + 4¢%). Thus
the Fourier expansion of (%) fe starts with

—1 g 1 _ 2mirgy —7"0
J — = —] =1.
<6>£ 2 @ ’ <E>
v (mod £)

v even

Since twisting doesn’t decrease the order of vanishing, f(z) has in e% a Fourier expansion starting at
0(rq +46)
least with q”0+%, whereas 771 (20z) - n?(¢2) has in %5 a Fourier expansion starting with ¢~ 4 . Thus

h(z) vanishes in all cusps and is therefore a cusp form.

We next turn to f-(z). Using Theorem 1.1, it is not hard to see that fr(z) is the holomorphic part
of a weak Maass form on I'1(16¢2¢%). Moreover by (5.2) it is easy to see that the corresponding weak

Maass form doesn’t have a non-holomorphic part, and thus f,(z) is a weakly holomorphic modular
form. Since Ej 3,,(2) vanishes at each cusp % with 3 { v for sufficiently large v/, the function

F1(2) = Bl () o (2)

is a weakly holomorphic modular form on I'y (16t2£4) that vanishes at all cusps % with #3 { v and
satisfies

fr(2) = fr(2)  (mod £).
Therefore to finish the proof it remains to show that W% % with
t3]y. Now let (: ?) € Tg(t3). In the following we need the commutation relation for v/ = §?v (mod /)

60 G )ECD- N6 )

with
<a/’ ﬁ/’) (a1 gy ?é,/z_au € To(t).
v 9 v 6+ -

We distinguish the cases whether 2|y or not.

vanishes also at those cusps
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If 2|7, then one can easily see that the Fourier expansion of 7™ (2£2)n?(¢z) in & starts with %(rl +

¢) =: ng. Clearly ¢|ng. Thus we have to prove that the g-expansion of f~}(z) in & starts with ¢” with

212 22

b > ng. We may assume that 48|, /. Then we can write

i (33)= 2 H(EE) ()
48|v,

Let
frj(z) =M <‘i, z) 0" (20z) - 7724(&)

and define f,ﬂvj(z) for weak Maass forms as for holomorphic forms. It is enough to show that J%(z)
starts with ¢® with b > ng. As before it follows that fr.j(2) doesn’t have a non-holomorphic part. We
use twice (6.6), Corollary 2.3, and the transformation law of the n-function. We let & := ()’, § := (¢")’,

and 74 := (7). The holomorphic part of f, ;| (g g ) is given by
il (~ | wij285 w%~ ] g
ay/2 ®aF/e a2
AN 2 (14r1420)
<—i ('f?z n 5)) T ).

Using [26]
(6.8) ey [ (©) i B0 g o odd,

' oy N (%)ef—;(av(l—éz)wté(ﬁ—w?))) if § is odd,

we can show that in (6.7) we can change «, g, and 7 into o, &', and «/, respectively if we change z into
z+ ’%. The Fourier expansion of f; ;s starts with ¢"° and £|ng. Moreover

s (e g 0

v (mod ¢) v (mod ¢)
v=0 (mod 48)

Thus the Fourier expansion of the holomorphic part of (f; ;)¢ (2‘,/ ’?,/ > starts with at least ¢"*! which
implies that the Fourier expansion of the holomorphic part of

—1 1 Ql
(fr,j - <£> (fm‘)z) (55)
starts at least with ¢"°. Arguing in the same way, we obtain that the Fourier expansion of

(5= (F) ) 1(59)

starts with at least ¢ as desired.
Next assume that v is odd. It is not hard to see that the Fourier expansion of

no+1

0" (202)n% (€2) in < starts with qfé(rﬁu) =: ¢"0. Since twisting does not decrease the order of vanishing,

it is enough to show that the Fourier expansion of the holomorphic part of ( frj— (%) ( fr,j)g) \ (f; g )
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starts with ¢® with b > ng. This time we use (6.6) once. One can compute that the holomorphic part

/

of frl (:,/ g,) equals

il 1 is' ¢ 5! | 2mig2s’ ) . w2
(6.9) VZiesy @ FOHET (A== (T CRE—
1
w?a’,'y’ . (,020(,’,}/,/Z . wa,ﬁ,/e

T 2¢+1 E 6
(i +8) 2 p(ez) (;) U (J'z> .

t i

Again using (6.8), one can show that one can change ', §’, and 4/ into «, §, and ~, respectively if one
changes z into z + ”7/ The expansion of (6.9) starts with qfls(érﬁut?’). For

ro 1= ﬁ(fﬁ + 402 — 3) one clearly has (rg,¢) = 1. Moreover

g —1 v 727r7l7'01// . —T0 .
7)) = () =(7)-
(mod ¢)

14
v,v'=0 (mod 48)
Thus the expansion of (f,; — (1) (fr.j)e) | <:; ’g,l ) starts at least with qug(ér1+4e2+45) which implies the

claim. O

7. PROOF OF THEOREM 1.5

Proof of Theorem 1.5. ;From (5.1) it follows that

c- p(n)
> (N(sz-,ﬁ;n) - p£> q"
n=0
for i € {1, 2} is the holomorphic part of a weak Maass form on T'1 (16¢2). Moreover the non-holomorphic
part is supported on negative squares. The same is true for the function

o)

> (N(s1,6:n) = N(s2,4:n)) q".

n=0
The restriction of the associated weak Maass form to those coefficients congruent to d modulo /¢ gives

a weak Maass form on T'y(16¢%). Since (%) = —(_71) it does not have a non-holomorphic part which

proves Theorem 1.5. U

Next we state some identities which may be deduced thanks to our theorem.
Define for a positive integer NV, g, h real numbers that are not simultaneously congruent to 0 (mod N),
the generalized Dedekind eta-function

[e.o]

Eg7h(z) = q%B(%) . H (1 — C]f\bf . qm—l-i-%) (1 _ C&h . qm_%) ’

m=1

where B(z) := 2? — x + ¢. We have the following identities.

= — 502)

7.1 N(1,5,5n +2) — N(2,5,50 + 2 snvz _ o 10502)
(7.1) > (v ) - N ) 4 e
= — 50z)

2 N(1 ~N(©2 sty _ g 10002)

(7.2) > (N(1,5,5n+3) = N(2,5,5n+3)) g @)

n=0
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o0

~ ~ 50z)

7.3 N(0.5.5n + 3) — N(2.5.5n + 3)) ¢+3 = 2_1002)
(7.3) 2 (NV( ) ( ) q o)
(7.4) Z (N(0,5,5n +2) — N(2,5,5n +2)) ¢ =0,

n=0
(7.5) S (N(0,3,3n +1) — N(1,3,3n + 1)) ¢*"+! = QW.
n=0

1

(30]
(31]

REFERENCES

G. E. Andrews, On the theorems of Watson and Dragonette for Ramanugjan’s mock theta functions, Amer. J. Math.
88 No. 2 (1966), pages 454-490.

A. O. L. Atkin and H. P. F. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. 4 (1954), pages
84-106.

C. Bessenrodt and 1. Pak, Partition congruences by involutions, Eur. J. Comb. 25 (2004), pages 1139-1149.

F. Brenti, Determinants of Super-Schur Functions, Lattice Paths, and Dotted Plane Partitions, Adv. Math. 98 (1993),
pages 27-64.

K. Bringmann, Asymptotics for rank partition functions, Trans. Amer. Math. Soc., accepted for publication.

K. Bringmann, Congruences for Dyson’s rank, submitted for publication.

K. Bringmann and J. Lovejoy, Rank and congruences for overpartition pairs, Int. J. Number Theory, accepted for
publication.

K. Bringmann and K. Ono, The f(q) mock theta function conjecture and partition ranks, Invent. Math. 165 (2006),
pages 243-266.

K. Bringmann and K. Ono, Dysons ranks and Maass forms, Ann. Math., accepted for publication.

K. Bringmann, K. Ono, and R. Rhoades, Fulerian series as modular forms, submitted for publication.

S. Corteel and P. Hitczenko, Multiplicity and number of parts in overpartitions, Ann. Comb. 8 (2004), pages 287-301.
S. Corteel and J. Lovejoy, Frobenius partitions and Ramanujan’s 141 summation, J. Combin. Theory Ser. A 97 (2002),
pages 177-183.

S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), pages 1623-1635.

S. Corteel and O. Mallet, Lattice paths, successive ranks, and Rogers-Ramanugjan identities, J. Combin. Theory Ser.
A, accepted for publication.

P. Desrosiers, L. Lapointe, and P. Mathieu, Jack polynomials in superspace, Commun. Math. Phys. 242 (2003), pages
331-360.

F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), pages 10-15.

J-F. Fortin, P. Jacob, and P. Mathieu, Generating function for K-restricted jagged partitions, Electron. J. Comb. 12
No. 1 (2005), Research paper R12, 17 p.

J-F. Fortin, P. Jacob, and P. Mathieu, Jagged partitions, Ramanujan J. 10 (2005), pages 215-235.

S-J. Kang and J-H. Kwon, Crystal bases of the Fock space representations and string functions, J. Algebra 280 (2004),
pages 313-349.

J. Lovejoy, Overpartitions and real quadratic fields, J. Number Theory 106 (2004), pages 178-186.

J. Lovejoy, Overpartition theorems of the Rogers-Ramanugjan type, J. London Math. Soc. 69 (2004), pages 562-574.
J. Lovejoy, Rank and conjugation for the Frobenius representation of an overpartition, Ann. Comb. 9 (2005), pages
321-331.

J. Lovejoy and O. Mallet, Overpartition pairs and two classes of basic hypergeometric series, preprint.

J. Lovejoy and O. Mallet, n-color overpartitions, twisted divisor functions, and Rogers-Ramanujan identities, preprint.
J. Lovejoy and R. Osburn, Rank differences for overpartitions, Quart. J. Math. (Oxford), accepted for publication.
M Newman, Construction and applications of a class of modular functions. II, Proc. London Math. Soc. 9 (1959),
pages 373-397.

K. Ono, Distribution of the partition function modulo m, Ann. Math. 151 (2000), pages 293-307.

K. Ono, Nonvanishing of quadratic twists of modular L-functions and applications to elliptic curves, J. reine angew.
Math. 533 (2001), pages 81-97.

K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and g-series. CBMS Regional Con-
ference Series in Mathematics, 102.

1. Pak, Partition bijections: A survey, Ramanujan J. 12 (2006), pages 5-75.

G. Shimura, On modular forms of half integral weight, Ann. Math. 97 (1973), pages 440-481.



24 KATHRIN BRINGMANN AND JEREMY LOVEJOY

[32] S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London Math. Soc. 93 (2006),
pages 304-324.

[33] Y. Yang, Transformation formulas for generalized Dedekind eta function, Bull. London Math. Soc. 36 (2004), pages
671-682.

[34] A.-J. Yee, Combinatorial proofs of Ramanujan’s 1101 summation and the q-Gauss summation, J. Combin. Theory Ser.
A 105 (2004), 63-77.

[35] S. P. Zwegers, Mock 9-functions and real analytic modular forms, g-series with applications to combinatorics, number
theory, and physics (Ed. B. C. Berndt and K. Ono), Contemp. Math. 291, Amer. Math. Soc., (2001), pages 269-277.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455, U.S.A.
E-mail address: bringman@math.umn.edu

CNRS, LIAFA, UNIVERSITE DENIS DIDEROT, 2, PLACE JUSSIEU, CASE 7014, F-75251 PARIS CEDEX 05, FRANCE
E-mail address: lovejoy@liafa.jussieu.fr



