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Abstract. We study overpartitions where the difference between two successive
parts may be odd only if the larger part is overlined, and use q-difference equations
in order to compute a two-variable hypergeometric q-series representation of the
corresponding generating function. This generating function specializes in one case
to a modular form, and in another to a mixed mock modular form. We also consider
the two-variable generating function for the same overpartitions with odd smallest
part, and again find modular and mixed mock modular specializations. Applications
include linear congruences arising from eigenforms for 3-adic Hecke operators, as
well as asymptotic formulas for the enumeration functions.

1. Introduction and statement of results

An overpartition of n is a partition of n in which the final occurrence of a number
may be overlined. Let p(n) denote the number of overpartitions of n. For example,
p(4) = 14, the 14 overpartitions of 4 being

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2,
2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

Next, let t(n) denote the number of overpartitions where (i) the difference between
two successive parts may be odd only if the larger part is overlined, and (ii) if the
smallest part is odd then it is overlined. Let s(n) denote the number of overpartitions
counted by t(n) but with odd smallest part. Thus t(4) = 8 and s(4) = 4, the 8
overpartitions counted by t(4) being
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4, 4, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

and the 4 overpartitions counted by s(4) being

3 + 1, 3 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1.

The first goal of this paper is to determine q-hypergeometric generating functions
for t(m,n) and s(m,n), the number of overpartitions counted by t(n) (resp. s(n))
having m parts. We employ the usual notation, (n ∈ N0 ∪ {∞})

(a)n := (a; q)n := (1− a)(1− aq) · · ·
(
1− aqn−1

)
.

Theorem 1.1. We have the following identities:

∑
m,n≥0

t(m,n)xmqn =
(−xq)∞
(xq)∞

(
1 +

∑
n≥1

(−q3; q3)n−1(−x)nqn

(−q)n−1(q2; q2)n

)
, (1.1)

∑
m,n≥1

s(m,n)xmqn =
∑
n≥1

(q3; q3)n−1x
nqn

(q)n−1(q2; q2)n
. (1.2)

The second identity follows from a straightforward combinatorial argument, but the
first is more subtle and our proof depends on showing that both sides satisfy a certain
q-difference equation.

When x = 1 in (1.1) or −1 in (1.2), then we have a modular form, and when
x = −1 in (1.1) or 1 in (1.2), then we have the product of a modular form and a
mock theta function, a so-called mixed mock modular form (see [11]). Define the
mock theta functions γ(q) and χ(q) by

γ(q) :=
∑
n≥0

(−1; q)n(q; q)nq
(n+1

2 )

(q3; q3)n
(1.3)

and

χ(q) :=
∑
n≥0

(−1; q)n(−q; q)nq(
n+1
2 )

(−q3; q3)n
. (1.4)

That these are mock theta functions follows from work of the first and the third
authors [5]. Let t±(n) (resp. s±(n)) denote the number of overparititions counted by
t(n) (resp. s(n)) with largest part even (resp. odd).
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Corollary 1.2. We have ∑
n≥0

t(n)qn =
(q3; q3)∞

(q; q)∞ (q2; q2)∞
, (1.5)

∑
n≥0

(
t+(n)− t−(n)

)
qn =

(−q3; q3)∞
(−q; q)3

∞
χ(q), (1.6)

1 + 3
∑
n≥1

(
s+(n)− s−(n)

)
qn =

(−q3; q3)∞
(−q; q)3

∞
, (1.7)

1 + 3
∑
n≥1

s(n)qn =
(q3; q3)∞

(q; q)∞ (q2; q2)∞
γ(q). (1.8)

Equation (1.6) combined with work of the first and the third author on overparti-
tions and class numbers [6, 7] implies that the generating function for t+(n)− t−(n)
is an eigenform modulo 3 for the weight 3/2 Hecke operators. This is recorded below
along with a congruence for t(n) modulo 3. Even though the congruence for t(n)
is immediate from (1.5), it would be interesting to see if it can be deduced from an
explicit 3-fold symmetry for the overpartitions counted by t(n).

Corollary 1.3.

(i) For a prime ` 6= 2, 3, and n ≥ 0, we have

t+
(
`2n
)

+

((
−n
`

)
− `− 1

)
t+(n) + ` t+

( n
`2

)
≡ t−

(
`2n
)

+

((
−n
`

)
− `− 1

)
t−(n) + ` t−

( n
`2

)
(mod 3),

(1.9)

(ii) For n ≥ 1, we have

t(n) ≡

{
(−1)k+1 (mod 3) if n = k2,

0 (mod 3) otherwise.
(1.10)

Our final results give asymptotic formulas for s(n) and t+(n)−t−(n), which are the
cases from Corollary 1.2 in which the generating functions are mixed mock modular
forms.



4 KATHRIN BRINGMANN, JEHANNE DOUSSE, JEREMY LOVEJOY, AND KARL MAHLBURG

Theorem 1.4. As n→∞, we have

s(n) ∼
√

21

36n
e
π
√
7n
3 , (1.11)

t+(n)− t−(n) ∼ (−1)n
√

3

18n
3
4

e
2π
√
n

3 . (1.12)

Remark. Since (1.5) and (1.7) are (up to rational q-powers) weakly holomorphic mod-
ular forms of non-positive weight, Rademacher and Zuckerman’s famous refinement
of the Hardy-Ramanujan Circle Method applies [9, 12, 13]. These results allow one to
use the cuspidal principal parts in order to calculate exact formulas for the coefficients.
In fact, one finds that t(n) is asymptotically equivalent to (1.11) and s+(n) − s−(n)
is asymptotically equivalent to (1.12).

We have highlighted the two cases in Theorem 1.4 because the Hardy-Ramanujan-
Rademacher Circle Method does not generally apply to mixed mock modular forms.
Instead we use Wright’s Circle Method [15], which uses a single “Major Arc” centered
around a dominant cusp to derive an asymptotic expansion for the coefficients. In
most examples in the literature this cusp is q = 1, but for (1.12) the Major Arc is
instead centered at q = −1.

The rest of the paper is organized as follows. In the next section we prove Theorem
1.1 using analytic and combinatorial arguments. In Section 3 we then apply identities
from q-series to establish Corollaries 1.2 and 1.3. Section 4 outlines the proof of
Theorem 1.4 using Wright’s Circle Method. We conclude in Section 5 by briefly
tying the present work to other recent studies of mixed mock modular q-series and
q-difference equations.

2. Combinatorial recurrences and the proof of Theorem 1.1

In this section we use the analytic and combinatorial theory of q-difference equa-
tions in order to prove Theorem 1.1. We begin by considering (1.1). Define H(x; q)
by

H(x; q) :=
∑
m,n≥0

t(m,n)xmqn.

Now, if λ is an overpartition counted by t(m,n), then its smallest part is either 1
or at least 2. In the first case, we may remove the 1 along with any other 1s in λ
and then subtract 1 from each remaining part to obtain an overpartition counted by
t(m− a, n−m), where a ≥ 1 is the number of 1s occurring in λ. In the second case,
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we may remove any 2s in λ and then subtract 2 from each remaining part to obtain an
overpartition counted by t(m− b, n− 2m), where b ≥ 0 is the number of 2s occurring
in λ. Note that if the smallest part in this new partition is odd, then it must have
correspondingly occurred as an overlined part in λ. In other words, we have

H(x; q) =
xq

1− xq
H(xq; q) +

1 + xq2

1− xq2
H
(
xq2; q

)
. (2.1)

Together with the fact that H(0; q) = 1, this uniquely defines H(x; q).
We claim that the right-hand side of (1.1) also satisfies (2.1) with the same initial

condition. To see this, first define

K(x; q) = K(x) := 1 +
∑
n≥1

∏n−1
j=1

(
1− qj + q2j

)
(q2; q2)n

xnqn.

We have that

K
(
xq2
)

= 1−
∑
n≥1

xnqn
∏n−1

j=1

(
1− qj + q2j

)
(q2; q2)n

(
1− q2n − 1

)
= K(x)−

∑
n≥1

xnqn
∏n−1

j=1

(
1− qj + q2j

)
(q2; q2)n−1

= K(x)−
∑
n≥0

xn+1qn+1
∏n−1

j=1

(
1− qj + q2j

)(
1− qn + q2n

)
(q2; q2)n

= K(x)− xqK(x) + xqK(xq)− xqK
(
xq2
)

so that

K(x) = − xq

1− xq
K(xq) +

1 + xq

1− xq
K
(
xq2
)
. (2.2)

Now, the right-hand side of (1.1) is G(x; q), where

G(x; q) = G(x) :=
(−xq)∞
(xq)∞

K(−x),

and applying (2.2) to G(x; q) gives

G(x; q) =
xq

1− xq
G(xq; q) +

1 + xq2

1− xq2
G
(
xq2; q

)
. (2.3)



6 KATHRIN BRINGMANN, JEHANNE DOUSSE, JEREMY LOVEJOY, AND KARL MAHLBURG

Comparing (2.1) and (2.3) and noting the initial condition G(0; q) = 1, yields (1.1).
Next we consider (1.2). Here we require the notion of the conjugate of an overpar-

tition, which is obtained by reading the columns of the Ferrers diagram (an overlined
part is designated by a mark at the end of a row). The right-hand side of (1.2) is

∑
n≥1

(q3; q3)n−1 x
nqn

(q)n−1 (q2; q2)n
=
∑
m≥1

xmqm

1− q2m

m−1∏
j=1

(
qj

1− qj
+

1

1− q2j

)
.

Here the mth summand is the generating function for overpartitions where the largest
part m occurs overlined and an odd number of times, while each part less than m
occurs an even number of times if it does not occur overlined. Conjugating we obtain
an overpartition counted by s(m,n). This is illustrated in Figure 1.

Figure 1. The overpartition (11, 11, 11, 8, 8, 7, 6, 6, 3, 3, 3, 3) and its
conjugate (12, 12, 12, 8, 8, 8, 6, 5, 3, 3, 3).

This establishes (1.2) and completes the proof of Theorem 1.1.
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3. Proof of Corollaries 1.2 and 1.3

In this section we use identities from the theory of hypergeometric q-series in or-
der to evaluate the generating functions for overpartitions with odd differences. We
require the q-Gauss summation formula [8, Equation (1.5.1)],∑

n≥0

(a)n(b)n(c/ab)n

(c)n(q)n
=

(c/a)∞(c/b)∞
(c)∞(c/ab)∞

, (3.1)

and a certain 3φ2 transformation [8, Appendix III, Equation (III.10)],∑
n≥0

(aq/bc)n(d)n(e)n
(q)n(aq/b)n(aq/c)n

(aq
de

)n
=

(aq/d)∞(aq/e)∞(aq/bc)∞
(aq/b)∞(aq/c)∞(aq/de)∞

∑
n≥0

(aq/de)n(b)n(c)n
(q)n(aq/d)n(aq/e)n

(aq
bc

)n
.

(3.2)

Proof of Corollary 1.2. Setting x = 1 in (1.1) and applying (3.1) with a = 1/b = −ζ3

(where ζ3 := e
2πi
3 ) and c = −q, we obtain∑

n≥0

t(n)qn =
(−q)∞
(q)∞

∑
n≥0

(−ζ3)n (−ζ−1
3 )n(−q)n

(q)n(−q)n

=
(−q)∞
(q)∞

×
(ζ3q)∞

(
ζ−1

3 q
)
∞

(−q)2
∞

=
(q3; q3)∞

(q)∞ (q2; q2)∞
,

which proves (1.5).
For the next case we set x = −1 in (1.1) and invoke (3.2) with a = −b = 1,

d = 1/e = −ζ3, and c→∞, which yields∑
n≥0

(
t+(n)− t−(n)

)
qn =

(q)∞
(−q)∞

∑
n≥0

(−ζ3)n
(
−ζ−1

3

)
n
qn

(q)n(−q)n

=
(q)∞

(−q)∞
×

(−ζ3q)∞
(
−ζ−1

3 q
)
∞

(q)∞(−q)∞

∑
n≥0

(−1)nq
(n+1

2 )

(−ζ3q)n (−ζ−1
3 q)n

=
(−q3; q3)∞

(−q)3
∞

χ(q).
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The final two equations in the statement of the corollary are proven similarly. For
(1.7) we set x = −1 in (1.2) and apply (3.1) with a = 1/b = ζ3 and c = −q, whereas
for (1.8) we set x = 1 in (1.2) and appeal to (3.2) in the case a = −b = 1, d = 1/e = ζ3,
and c→∞. �

We remark that (1.5) can also be established by a simple combinatorial argument,
as in the proof of (1.2). Indeed, conjugating an overpartition λ counted by t(n) gives
an overpartition with the property that if m doesn’t occur, then m occurs an even
number of times. Hence∑

n≥0

t(n)qn =
∏
m≥1

(
qm

(1− qm)
+

1

(1− q2m)

)
=

(q3; q3)∞
(q2; q2)∞ (q)∞

.

This argument easily generalizes. Let t
(k)

(n) denote the number of overpartitions of
n where (i) consecutive parts differ by a multiple of (k + 1) unless the larger of the
two is overlined, and (ii) the smallest part is overlined unless it is divisible by k + 1.
Then we have∑

n≥0

t
(k)

(n)qn =
∏
m≥1

(
qm

(1− qm)
+

1

(1− qkm)

)
=

(
qk+1; qk+1

)
∞

(qk; qk)∞ (q)∞
.

We close this section by determining the behavior of these generating functions
modulo 3, which is achieved by relating them to previously studied Hecke eigenforms.

Proof of Corollary 1.3. Reading (1.6) modulo 3, we have∑
n≥0

(
t+(n)− t−(n)

)
qn ≡

∑
n≥0

(−1)nq
(n+1

2 )

(−q)2
n

(mod 3).

We recall from Proposition 5.1 of [7] that if α(n) is defined by∑
n≥0

α(n)qn :=
∑
n≥0

(−1)nq
(n+1

2 )

(−q)2
n

,

then

α
(
`2n
)

+

(
−n
`

)
α(n) + ` α

( n
`2

)
= (`+ 1)α(n).

This proves (1.9).
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To show (1.10), we read (1.5) modulo 3, obtaining∑
n≥0

t(n)qn ≡ (q)2
∞

(q2; q2)∞
≡ 1 + 2

∑
n≥1

(−1)nqn
2

(mod 3).

The last equality is Gauss’ identity [1, Equation (2.2.12)]. �

4. Wright’s Circle Method and the proof of Theorem 1.4

In this section we apply Wright’s Circle Method [15] to find asymptotic formulas for
the mixed mock modular cases of Corollary 1.2. As is typical of the Circle Method,
Wright’s approach recovers the coefficients of a generating series by applying Cauchy’s
Theorem, with the main asymptotic contribution coming from a single Major Arc
(for our two results, this is centered around q = 1 and q = −1, respectively). For
notational convenience we recall (1.6) and (1.8) and write

f1(q) := 1 + 3
∑
n≥1

s(n)qn =
(q3; q3)∞

(q; q)∞ (q2; q2)∞
γ(q), (4.1)

f2(q) :=
∑
n≥0

(
t+(n)− t−(n)

)
qn =

(−q3; q3)∞
(−q; q)3

∞
χ(q).

4.1. Analytic behavior of f1(q). We begin with s(n), as the asymptotic analysis
is analogous to Wright’s original examples, which were also centered around q = 1.
Throughout the section we therefore use the standard parameterization q = e2πiτ ,
where τ = x+ iy and y > 0. Recalling (1.3), we use an alternative expression for the
mock theta function, which follows from equation (1.3) in [5], namely

γ(q) =
(−q)∞
(q)∞

(
1 + 6

∑
k≥1

(−1)kqk
2+k

(1− ζ3qk)(1− ζ−1
3 qk)

)
, (4.2)

with ζ3 := e
2πi
3 .

We show that the overall asymptotic behavior of f1(q) is largely controlled by the
singularities of the infinite product from (4.1), so the dominant pole is at q = 1. The
following result describes the behavior of f1(q) in a neighborhood of q = 1 and gives
a uniform bound away from this point.

Theorem 4.1. Assume that y =
√

7
12
√
n

, and let M > 0 be fixed.
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(i) If |x| ≤My, then, as n→∞,

f1(q) =
√
−6iτe

7πi
72τ +O

(
n−

3
4 e

π
√
7n
6

)
. (4.3)

(ii) If My < |x| ≤ 1
2
, then as n→∞,

|f1(q)| � n
3
4 exp

(
8π
√
n

3
√

7

(
1− 27

4π2

(
1− 1√

1 +M2

)))
.

A short calculation shows that the bound in part (ii) is indeed an error term so

long as M >
((

12
12−π2

)2 − 1
)1/2

= 5.543 . . . .

Corollary 4.2. If M ≥ 6 and My < |x| ≤ 1
2
, then for some ε > 0 we have

f1(q) = O
(
e

1
y (

7π
72
−ε)
)
.

Proof. (i) In order to determine the behavior of f1(q) near q = 1, we begin by studying
γ(q) near this point. By Taylor’s Theorem, we have

γ(q) = γ(1) +O(|τ |),
and by (1.3), we directly calculate

γ(1) =
∑
k≥0

(
2

3

)k
= 3.

Since |x| ≤My, we therefore have the following expansion as n→∞:

γ(q) = 3 +O
(
n−

1
2

)
. (4.4)

We next determine the asymptotic behavior of the infinite product. The modu-
lar inversion formula for Dedekind’s eta-function (page 121, Proposition 14 of [10])
implies that, as τ → 0,

(q; q)∞ =
1√
−iτ

e−
πiτ
12
− πi

12τ

(
1 +O

(
e−

2πi
τ

))
. (4.5)

This formula directly gives that, as n→∞,

(q3; q3)∞
(q; q)∞(q2; q2)∞

=

√
−2iτ

3
e

7πi
72τ

(
1 +O

(
e
− 8π

(M2+1)

√
n
7

))
. (4.6)

Combining (4.4) and (4.6) completes the proof of (4.3).
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(ii) We next consider f1(q) away from q = 1. We begin by considering the sum in
(4.2). Bounding each term in the sum absolutely, we get∣∣∣∣∣∑

k≥1

(−1)kqk
2+k

(1− ζ3qk)
(
1− ζ−1

3 qk
)∣∣∣∣∣� 1

(1− |q|)2

∑
k≥1

|q|k
2

� n
5
4 , (4.7)

where the final bound follows either by an integral comparison or using the transfor-
mation law of the theta function.

Simplifying all of the infinite products from (4.1) and (4.2), we have

f1(q) =
(q3; q3)∞
(q; q)3

∞
·O
(
n

5
4

)
.

For convenience denote the above product by g1(q). We calculate

log (g1(q)) =
∑
m≥1

(
3qm

m (1− qm)
− q3m

m (1− q3m)

)
=
∑
m≥1

(
3q3m−2

(3m− 2) (1− q3m−2)
+

3q3m−1

(3m− 1) (1− q3m−1)

)
.

This implies that

|log (g1(q))| ≤
∑
m≥1

(
3|q|3m+1

(3m+ 1) (1− |q|3m+1)
+

3|q|3m−1

(3m− 1) (1− |q|3m−1)

)
+

3|q|
|1− q|

= log (g1 (|q|))− 3|q|
(

1

1− |q|
− 1

|1− q|

)
. (4.8)

Using the transformation (4.5), we find that

g1(|q|) =
η(3iy)

η(iy)3
=

y√
3
e

2π
9y

(
1 +O

(
e
−2π
3y

))
. (4.9)

To bound the other terms, we use the fact that |x| > My, which implies that
cos(2πx) < cos(2πMy) ≤ 1. Thus

|1− q|2 = 1− 2e−2πy cos(2πx) + e−4πy > 1− 2e−2πy cos(2πMy) + e−4πy;
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calculating the Taylor expansion of the final expression (around y = 0) then gives

|1− q| = c0 + c1y +O
(
y2
)
, (4.10)

with c0 ≥ 0 and c1 > 2π
√

1 +M2. Furthermore, we have

1− |q| = 1− e−2πy = 2πy +O
(
y2
)
. (4.11)

Converting (4.10) and (4.11) to Laurent series and combining with (4.8) and (4.9),
we obtain

|g1(q)| � y exp

[
1

y

(
2π

9
− 3

2π

(
1− 1√

1 +M2

))]
.

This completes the proof of the theorem.
�

4.2. Wright’s Circle Method and the asymptotic formula for s(n). We now
apply Wright’s version of the Circle Method [15] and prove the first formula in The-
orem 1.4. By Cauchy’s Theorem, we have for all n ≥ 1,

3s(n) =
1

2πi

∫
C

f1(q)

qn+1
dq =

∫ 1
2

− 1
2

f1

(
e
−π
√
7

6
√
n

+2πix
)
e
π
√

7n
6
−2πinxdx, (4.12)

where the contour is the counterclockwise traversal of the circle C := {|q| = e−2πy},
and y =

√
7

12
√
n

as in the previous section. We separate (4.12) in two integrals, writing

3s(n) = I ′ + I ′′, where the ranges are split as

I ′ :=

∫
|x|≤My

and I ′′ :=

∫
My<|x|≤ 1

2

.

It turns out that I ′ provides the main asymptotic contribution, while I ′′ is an error
term.

We approximate I ′ by Bessel functions, which are defined for real s and u > 0 by

I−s−1 (2u) :=
1

2πi

∫
Γ

tseπu(t+
1
t )dt,

where Γ is Hankel’s standard contour that begins in the lower-half plane at −∞,
goes counterclockwise around the origin and then goes back to −∞ in the upper-half
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plane. The Bessel functions have the well-known asymptotic expansion (see (4.12.7)
in [2])

I`(x) =
ex√
2πx

+O

(
ex

x
3
2

)
. (4.13)

Assuming that M > 0 is fixed and that u > 0 is a real variable, we introduce the
auxiliary function

Ps(u) :=
1

2πi

∫ 1+Mi

1−Mi

vseu(v+ 1
v )dv.

Finally, we note a result relating Ps to a Bessel function, which is proven in essentially
the same manner as Lemma XVII on page 138 of [15].

Lemma 4.3 ([15]). As n→∞,

Ps = I−s−1 (2u) +O (eu) .

Proof of Theorem (1.11). Making the change of variables v = − iτ
y

= −12
√
ni√
7

and

using Theorem (i), we write I ′ as

I ′ = −iy
∫ 1+Mi

1−Mi

f1

(
e
−π
√
7v

6
√
n

)
e
π
√
7nv
6 dv (4.14)

= −i
√

6y
3
2

∫ 1+Mi

1−Mi

(√
ve

π
√
7

6
√
nv +O

(
n−

3
4 e

π
√
7n
6

))
e
π
√
7nv
6 dv.

Combining (4.3), (4.13), and Lemma 4.3 (with u = π
√

7
6
√
n

and s = 1
2
), we find that, as

n→∞,

I ′ =

√
21

12

e
π
√
7n
3

n
+O

(
n−

5
4 e

π
√
7n
3

)
.

We now turn to I ′′ and show that it is negligible compared to I ′. Applying Corollary
4.2 and taking the absolute value of the rest of the integrand, we directly obtain that,
for some ε > 0,

I ′′ � e
√
7nπ
3

(1−ε).

This completes the proof. �
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4.3. Asymptotic behavior of f2(q). In this section we apply Wright’s Circle Method
to f2(q), where now the dominant cusp is q = −1, which can be seen by comparing

the singularities of the product (−q3;q3)∞
(−q;q)3∞

. As such, in this section we change the

parametrization of the unit disc to τ = x+ iy with x ∈ [0, 1).
Recalling (1.4) (and [5]), we again provide an alternative series,

χ(q) =
(−q)∞
(q)∞

(
1 + 2

∑
k≥1

(−1)kqk
2+k

(1 + ζ3qk)(1 + ζ−1
3 qk)

)
. (4.15)

The asymptotic behavior of f2(q) is recorded in the following result.

Theorem 4.4. Assume that y = 1
6
√
n

, and let M > 0 be fixed.

(i) If
∣∣x− 1

2

∣∣ ≤My, then as n→∞,

f2(q) =
1

3
exp

(
πi

18
(
τ − 1

2

))+O
(
n−

1
2 e

π
√
n

3

)
.

(ii) If My <
∣∣x− 1

2

∣∣ ≤ 1
2
, then as n→∞,

|f2(q)| � n exp

(
7π
√
n

12

(
1− 36

7π2

(
1− 1√

1 +M2

)))
.

Corollary 4.5. If My <
∣∣x− 1

2

∣∣ ≤ 1
2

and M ≥ 6, then for some ε > 0 we have

f2(q) = O
(
e

1
y (

π
18
−ε)
)
.

Proof. (i) A direct calculation using (1.4) shows that χ(−1) = 1
3
, so that its Taylor

expansion satisfies χ(q) = 1
3

+O(n−
1
2 ). To determine the asymptotic behavior of the

product (−q3;q3)∞
(−q;q)3∞

near q = −1, we make the change of variables w := τ− 1
2

= x− 1
2
+iy,

and correspondingly Q := e2πiw = −q. Denote the product under this change of
variables by

h2(Q) :=
∏
m≥1

(1 + (−Q3)m)

(1 + (−Q)m)3 =
(Q2;Q2)

6
∞ (Q3;Q3)∞ (Q12;Q12)∞

(Q;Q)3
∞ (Q4;Q4)3

∞ (Q6;Q6)2
∞

.

Applying (4.5) implies that

h2(Q) = e
πi
18w

(
1 +O

(
e−

πi
6w

))
.
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(ii) Using a similar argument as in (4.7), we conclude that∣∣∣∣∣∑
k≥1

(−1)kqk
2+k

(1 + ζ3qk)
(
1 + ζ−1

3 qk
)∣∣∣∣∣� n

5
4 .

Combining the products from (1.6) and (4.15), we therefore write

g2(q) :=
(−q3; q3)∞

(q)∞ (−q; q)2
∞

=
(q)∞ (q6; q6)∞

(q2; q2)2
∞ (q3; q3)∞

.

After some simplification, we obtain

log (g2(q)) =
∑
m≥1

(
− qm

m (1 + qm)
+

q3m

m (1− q6m)

)
.

We therefore have the bound

|log (g2(q))| ≤
∑
m≥1

(
|q|m

m (1− |q|m)
+

|q|3m

m (1− |q|6m)

)
− |q|

(
1

1− |q|
− 1

|1 + q|

)

= log

( (
|q|6; |q|6

)
∞(

|q|; |q|
)
∞

(
|q|3; |q|3

)
∞

)
− |q|

(
1

1− |q|
− 1

|1 + q|

)
.

Once again (4.5) implies that(
|q|6; |q|6

)
∞(

|q|; |q|
)
∞

(
|q|3; |q|3

)
∞

=

√
y

2
e

7π
72y
(
1 + o(y)

)
.

Now we use the fact that
∣∣x− 1

2

∣∣ > My, which implies that

cos(2πx) = cos (2π|x|) = − cos

(
2π

(
1

2
− x
))

> − cos(2πMy),

from which we conclude

|1 + q|2 = 1 + 2e−2πy cos(2πx) + e−4πy > 1− 2e−2πy cos(2πMy) + e−4πy.

The remainder of the proof proceeds analogously to the arguments following (4.10).
�
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Proof of (1.12). We proceed as in Section 4.2, with the main differences due to the
different parameterization around q = −1. By Cauchy’s Theorem, we again have that
for all n ≥ 1,

t+(n)− t−(n) =
1

2πi

∫
C

f2(q)

qn+1
dq =

∫ 1

0

f2

(
e−2πy+2πix

)
e2πny−2πinxdx,

where the contour is the counterclockwise traversal of the circle C := {|q| = e−2πy},
and y = 1

6
√
n

as above. We now split the integral as

I ′ :=

∫
|x− 1

2 |≤My

and I ′′ :=

∫
|x− 1

2 |>My

,

and reparameterize I ′ using x̃ = x − 1
2

(and again also writing τ̃ = τ − 1
2
). After

applying Theorem (i), we obtain

I ′ =

∫
|x̃|≤My

f2

(
e2πiτ

)
e2πn(τ̃+ 1

2)dx̃ =

∫
|x̃|≤My

(
1

3
e
πi
18τ̃ +O

(
n−

1
2 e

π
√
n

3

))
e2πnτ̃ (−1)ndx̃.

After pulling the (−1)n out of the integral, the remainder of the argument follows as

in (4.14) (note that Lemma 4.3 is now applied with u = π
√
n

3
and s = 0).

�

5. Concluding Remarks

We close by discussing the relationship between the combinatorial functions stud-
ied in this paper and Ramanujan’s classical mock theta functions, as well as some
applications of similar series. For ` ∈ N we define

f2,`(x) := f2,`(x; q) := 1 +
∞∑
n=1

xnqn

(q)n

n−1∏
j=0

(
1 + (`− 1)qj + q2j

)
.

If we further set

f ∗2,`(q) :=
(q; q)∞∏

k≥1

(
1 + (`− 1)qk + q2k

) · f2,`(1; q),
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then we have the following relations to mock theta functions, using the notation of
[14]:

χ(q) = f ∗2,0(q),

φ(q) = f ∗2,1(q),

γ(q) = f ∗2,2(q),

f(q) = f ∗2,3(q).

Moreover, for ` = 0 or 1, the function f2,`(x, q) has recently played a role in studies
of partitions without sequences [3] and lower 1-run overpartitions [4].

The function K(x; q) in Section 2 of the present paper is the case ` = 0 of a similar
function,

f 2,`(x) := f 2,` (x; q) := 1 +
∞∑
n=1

xnqn

(q2; q2)n

n−1∏
j=0

(
1 + (`− 1)qj + q2j

)
.

Both f2,` and f 2,` satisfy simple q-difference equations, namely

f2,`(x) =
(1 + (`− 1)xq)

1− xq
f2,`(xq) +

xq

1− xq
f2,`

(
xq2
)

and

f 2,`(x) =
(`− 1)xq

1− xq
f 2,`(xq) +

(1 + xq)

1− xq
f 2,`

(
xq2
)
.

It would be worthwhile to investigate these series for other `. In particular, if ` =
0, 1, 2, or 3, then the functions f 2,`(1) are related to mock theta functions in [5] via
(3.2).
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