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Abstract. We study two types of crank moments and two types of rank moments for overpartitions.
We show that the crank moments and their derivatives, along with certain linear combinations of the
rank moments and their derivatives, can be written in terms of quasimodular forms. We then use this
fact to prove exact relations involving the moments as well as congruence properties modulo 3, 5, and
7 for some combinatorial functions which may be expressed in terms of the second moments. Finally,
we establish a congruence modulo 3 involving one such combinatorial function and the Hurwitz class
number H(n).

1. Introduction

Dyson’s rank of a partition is the largest part minus the number of parts [14]. Let N(m,n) denote
the number of partitions of n whose rank is m. The Andrews-Garvan crank is either the largest part, if
1 does not occur, or the difference between the number of parts larger than the number of 1’s and the
number of 1’s, if 1 does occur [1]. For n 6= 1 let M(m,n) denote the number of partitions of n whose
crank is m. Even though there is only one partition of one, for technical reasons we set M(0, 1) = −1,
M(−1, 1) = M(1, 1) = 1, and M(m, 1) = 0 otherwise. Then the kth rank moment Nk(n) and the kth
crank moment Mk(n) are given by

Nk(n) :=
∑
m∈Z

mkN(m,n), (1.1)

and
Mk(n) :=

∑
m∈Z

mkM(m,n). (1.2)

Since their introduction by Atkin and Garvan [4], the rank and crank moments and their linear
combinations have been the subject of a number of works [2, 3, 5, 6, 16, 17]. A key role in several
of these studies is played by the fact that the crank moments and their derivatives, along with a
specific linear combination of the rank moments and their derivatives, can be expressed in terms of
quasimodular forms. Here we shall see that this holds in the case of overpartitions as well.

Recall that an overpartition [13] is a partition in which the first occurrence of each distinct number
may be overlined. For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,

2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.
(1.3)
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We denote by P the generating function for overpartitions (throughout q = e2πiτ and τ = x+ iy with
x, y ∈ R) [13],

P = P (q) =
∏
n≥1

(1 + qn)
(1− qn)

.

The case of overpartitions is somewhat different from that of partitions. First, there are two distinct
ranks of interest: Dyson’s rank and the M2-rank [20]. The M2-rank is a bit more complicated than
Dyson’s rank. We use the notation `(·) to denote the largest part of an object, n(·) to denote the
number of parts, and λo for the subpartition of an overpartition consisting of the odd non-overlined
parts. Then the M2-rank of an overpartition λ is

M2-rank(λ) :=
⌈
`(λ)

2

⌉
− n(λ) + n(λo)− χ(λ),

where χ(λ) = 1 if the largest part of λ is odd and non-overlined and χ(λ) = 0 otherwise.
Let N(m,n) (resp. N2(m,n)) denote the number of overpartitions of n whose rank (resp. M2-rank)

is m. We define the rank moments Nk(n) and N2k(n), along with their generating functions Rk and
R2k, by

Rk = Rk(q) :=
∑
n≥0

Nk(n)qn :=
∑
n≥0

(∑
m∈Z

mkN(m,n)

)
qn, (1.4)

and

R2k = R2k(q) :=
∑
n≥0

N2k(n)qn :=
∑
n≥0

(∑
m∈Z

mkN2(m,n)

)
qn. (1.5)

We note that in light of the symmetries N(m,n) = N(−m,n) [19] and N2(m,n) = N2(m,n) [20], we
have Rk = R2k = 0 when k is odd.

The second difference between partitions and overpartitions is that in the latter case no notion of
crank has been defined. Indeed, the crank for partitions arose because of its relation to Ramanujan’s
congruences, and Choi has shown that no such congruences exist for overpartitions [11]. What we
will be required to consider are two “residual cranks”. The first residual crank of an overpartition is
obtained by taking the crank of the subpartition consisting of the non-overlined parts. The second
residual crank is obtained by taking the crank of the subpartition consisting of all of the even non-
overlined parts divided by two.

Let M(m,n) (resp. M2(m,n)) denote the number of overpartitions of n with first (resp. second)
residual crank equal to m. Here we make the appropriate modifications based on the fact that for
partitions we have M(0, 1) = −1 and M(−1, 1) = M(1, 1) = 1. For example, the overpartition
7 + 5 + 2 + 1 contributes a −1 to the count of M(0, 15) and a +1 to M(−1, 15) and M(1, 15). Define
the crank moments Mk(n) and M2k(n), along with their generating functions Ck and C2k, by

Ck = Ck(q) :=
∑
n≥0

Mk(n)qn :=
∑
n≥0

(∑
m∈Z

mkM(m,n)

)
qn, (1.6)

and

C2k = C2k(q) :=
∑
n≥0

M2k(n)qn :=
∑
n≥0

(∑
m∈Z

mkM2(m,n)

)
qn. (1.7)

As with the rank moments, the crank moments turn out to be 0 for k odd (see (2.1) and (2.2)).
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We are now ready to state the quasimodularity properties of the rank and crank moments for
overpartitions.

Theorem 1.1. For k ≥ 1 let Wk denote the space of quasimodular forms on Γ0(2) of weight at most
2k having no constant term. The following functions are in P · Wk:

(i) The functions in

Ck :=
{
δmq
(
C2j

)
: m ≥ 0, 1 ≤ j ≤ k, j +m ≤ k

}
,

(ii) the functions in

C2k :=
{
δmq
(
C22j

)
: m ≥ 0, 1 ≤ j ≤ k , j +m ≤ k

}
,

(iii) for a = 2k the function

(
a2 − 3a+ 2

)
Ra + 2

a/2−1∑
i=1

(
a

2i

)(
32i − 22i − 1

)
δqRa−2i

+
a/2−1∑
i=1

((
a

2i

)
(22i + 1) + 2

(
a

2i+ 1

)(
1− 22i+1

)
+

1
2

(
a

2i+ 2

)(
32i+2 − 22i+2 − 1

))
Ra−2i,

(iv) for a = 2k the function

(
a2 − 3a+ 2

)
R2a +

1
2

a/2−1∑
i=1

(
a

2i

)(
32i − 22i − 1

)
δqR2a−2i

+
a/2−1∑
i=1

((
a

2i

)
(22i + 1) + 2

(
a

2i+ 1

)(
1− 22i+1

)
+

1
2

(
a

2i+ 2

)(
32i+2 − 22i+2 − 1

))
R2a−2i.

It turns out that for k = 2, 3, and 4 the number of functions above exceeds the dimension of
Wk, which implies relations among these functions. In Corollaries 3.1–3.3, we compute several such
relations. This is the same approach taken by Atkin and Garvan in their study of rank and crank
moments of partitions [4].

Then we show how Theorem 1.1 can be used to deduce congruence properties for combinatorial
functions which can be expressed in terms of second rank and crank moments. First, let nov(n) (resp.
ov(n)) denote the sum, over all overpartitions of n, of the non-overlined (resp. overlined) parts. For
example, (1.3) shows that ov(4) = 21 and nov(4) = 35. The generating functions of nov(n) and ov(n)
are given by (see Section 4)

Nov(q) :=
∞∑
n=0

nov(n) qn = P

∞∑
n=1

n qn

1− qn
, (1.8)

Ov(q) :=
∞∑
n=0

ov(n) qn = P
∞∑
n=1

n qn

1 + qn
. (1.9)

Theorem 1.2. We have

(n+ 2)nov(n) ≡ (n2 + 4n+ 3)ov(n) (mod 5), (1.10)

and
(n2 + 1)nov(n) ≡ (4n3 − n2 − 1)ov(n) (mod 7). (1.11)
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Notice that congruences like (1.10) and (1.11) imply simpler congruences in arithmetic progressions
for ov(n) and nov(n) modulo 5 and 7.

Next, let spt1(n) (resp. spt2(n)) denote the sum, over all overpartitions λ of n, of the number
of occurrences of the smallest part of λ, provided this smallest part is odd (resp. even). Let spt(n)
be the sum of these two functions. For example, using (1.3) we have spt1(4) = 20, spt2(4) = 6, and
spt(4) = 26. When the overpartition has no overlined parts, spt(n) reduces to Andrews’ smallest parts
function spt(n) [3, 16, 17]. The functions spt2(n) and spt(n) can be easily computed using (4.2) and
(4.3).

Theorem 1.3. We have
spt2(3n) ≡ spt2(3n+ 1) ≡ 0 (mod 3), (1.12)

spt(3n) ≡ 0 (mod 3), (1.13)

spt2(5n+ 3) ≡ 0 (mod 5), (1.14)

and
spt1(5n) ≡ 0 (mod 5). (1.15)

To finish we use a different method to give a congruence modulo 3 between spt1(n) and α(n), the
number of overpartitions with even rank minus the number with odd rank.

Theorem 1.4. We have

spt1(n) ≡
(
n

3

)
α(n) (mod 3).

Remark 1.5. In [7], the coefficients α(n) are related to the Hurwitz class number H(n) of binary
quadratic forms of discriminant −n. To be more precise, it is shown in [7] that

(−1)nα(n) =


−4H(4n) if n ≡ 1, 2 (mod 4),
−24H(n) if n ≡ 3 (mod 8),
−16H(n) if n ≡ 7 (mod 8),
−16H(n)− 1

3r(n/4) if 4 | n,

(1.16)

where r(n) is given by
∞∑
n=0

r(n) qn := Θ3(τ),

with Θ(τ) :=
∑

n∈Z q
n2

. It is well-known that

r(n) =


12H(4n) if n ≡ 1, 2 (mod 4),
24H(n) if n ≡ 3 (mod 8),
r(n/4) if n ≡ 0 (mod 4),
0 if n ≡ 7 (mod 8),

(1.17)

thus modulo 3, spt1(n) is related to class numbers.

As a corollary, class number relations imply the following multiplicative formula:
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Corollary 1.6. Let ` 6= 2, 3 be a prime. Then we have

spt1
(
`2n
)

+
(
−n
`

)
spt1(n) + ` spt1

( n
`2

)
≡ (`+ 1)spt1(n) (mod 3).

Remark 1.7. Work of the authors [8] shows that the generating function for spt1(n) can (up to a
quasimodular form) be viewed as the holomorphic part of a harmonic Maass form (see Section 5 for
the definition). Corollary 1.6 now says that modulo 3 the generating function for spt1(n) is a Hecke
eigenform.

The paper is organized as follows. In Section 2, we recall some facts about quasimodular forms and
prove Theorem 1.1. In Section 3, we compute some exact relations involving rank and crank moments.
In Section 4, we write the combinatorial functions in Theorems 1.2 and 1.3 in terms of the rank and
crank moments and prove these theorems. In Section 5, we recall the notion of harmonic Maass forms
along with some results from [8], and prove Theorem 1.4 and Corollary 1.6.

2. Proof of Theorem 1.1

Before proving Theorem 1.1, we recall a few facts about quasimodular forms [18]. First, quasimod-
ular forms on Γ0(N) may be regarded as polynomials in the Eisenstein series E2 whose coefficients are
modular forms (of non-negative weight) on Γ0(N). The reader unfamiliar with the theory of modular
forms may consult [21]. Here we have

E2(τ) := 1− 24
∑
n≥1

nqn

(1− qn)
.

Second, the space of quasimodular forms on Γ0(N) is preserved by the differential operator δq := q ddq .
More specifically, this operator sends a quasimodular form of weight 2k to a quasimodular form of
weight 2k + 2. Finally, replacing q by q2 sends a quasimodular form of weight 2k on Γ0(N) to a
quasimodular form of weight 2k on Γ0(2N).

Proof of Theorem 1.1. We now prove parts (i) and (ii) of Theorem 1.1. Let C(z; q) denote the two-
variable generating function for the crank of a partition,

C(z; q) :=
∑
m∈Z
n≥0

M(m,n)zmqn =
(q; q)∞

(zq; q)∞(q/z; q)∞
.

Here we employ the standard q-series notation,

(a; q)∞ :=
∏
k≥0

(
1− aqk

)
.

By definition, the residual cranks have two-variable generating functions

C(z; q) :=
∑
m∈Z
n≥0

M(m,n)zmqn = (−q; q)∞C(z; q) =
(q2; q2)∞

(zq; q)∞(q/z; q)∞
, (2.1)

and

C2(z; q) :=
∑
m∈Z
n≥0

M2(m,n)zmqn =
(−q; q)∞
(q; q2)∞

C
(
z; q2

)
=

(−q; q)∞(q2; q2)∞
(q; q2)∞(zq2; q2)∞(q2/z; q2)∞

. (2.2)
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Now using the differential operator δz := z d
dz we have

δjz
(
C(z; q)

) ∣∣∣
z=1

=

{
Cj if j is even,
0 if j is odd,

and

δjz
(
C2(z; q)

) ∣∣∣
z=1

=

{
C2j if j is even,
0 if j is odd.

But δjz
(
C(z; q)

)
= (−q; q)∞δjz (C(z; q)) and Atkin and Garvan [4, Section 4] have already shown that

if j ≥ 1, then δjz (C(z; q)) |z=1 is in the space P · Wj , where P = P (q) := 1/(q; q)∞ is the generating
function for partitions and Wj is the space of quasimodular forms of weight at most 2j on SL2(Z)
having no constant term. Since P = (−q; q)∞P , we have that C2j is in P · Wj . In a similar way we
see that C22j is in P · Wj .

To finish we may calculate that

δq
(
P
)

= P

∑
n≥1

2nqn

(1− qn)
−
∑
n≥1

2nq2n

(1− q2n)

 ,

and hence δq(P ) ∈ P · W1. By the Leibniz rule and the fact that δq maps the space Wk into Wk+1,
we have that δqf ∈ P · Wk+1 if f ∈ P · Wk. This completes the proof of parts (i) and (ii).

For parts (iii) and (iv), we use partial differential equations established in [8]. Let R(z; q) denote
the two-variable generating function for N(m,n),

R(z; q) :=
∑
m∈Z
n≥0

N(m,n)zmqn.

Thus we have

δjz
(
R(z; q)

) ∣∣∣
z=1

=

{
Rj if j is even,
0 if j is odd.

We have the following partial differential equation which relates C(z; q) and R(z; q) [8]:

z(1 + z)
(q)2
∞

(−q)∞
[C(z; q)]3 (−zq; q)∞ (−q/z; q)∞

=
(

2(1− z)2(1 + z)δq + z(1 + z) + 2z(1− z)δz +
1
2

(1 + z)(1− z)2δ2
z

)
R(z; q).

(2.3)

Let a be even and positive. After applying δaz to both sides of (2.3) and setting z = 1 we get

1
PP

a∑
j=0

(
a

j

)
δjz
{

(z2 + z)C(z; q)3
}
δa−jz {(−zq; q)∞ (−q/z; q)∞}|z=1 − (2a + 1)P

−2 (3a − 2a − 1) δq(P ) =
(
a2 − 3a+ 2

)
Ra + 2

a/2−1∑
i=1

(
a

2i

)(
32i − 22i − 1

)
δqRa−2i

+
a/2−1∑
i=1

((
a

2i

)
(22i + 1) + 2

(
a

2i+ 1

)(
1− 22i+1

)
+

1
2

(
a

2i+ 2

)(
32i+2 − 22i+2 − 1

))
Ra−2i.

(2.4)
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We claim that the left hand side of (2.4) is in P · Wk, where 2k = a. This is clearly true for the
final term. For the first term, we have already noted that for j ≥ 1 we have δjzC(z; q)|z=1∈ P · Wj .
As for (−zq; q)∞ (−q/z; q)∞, we may compute that

δz

(
(−zq; q)∞ (−q/z; q)∞

)
=

(
z

∞∑
m=1

qm

1 + zqm
− z−1

∞∑
m=1

qm

1 + z−1qm

)
(−zq; q)∞ (−q/z; q)∞

=

( ∞∑
m=1

∞∑
s=1

(−1)sqms(z−s − zs)

)
(−zq; q)∞ (−q/z; q)∞ ,

and for j ≥ 1,

δjz

( ∞∑
m=1

∞∑
s=1

(−1)sqms
(
z−s − zs

))∣∣∣∣∣
z=1

=


0 if j is even,

−2
∞∑
m=1

∞∑
s=1

(−1)ssjqms if j is odd.

Then one can check that

−2
∞∑
m=1

∞∑
s=1

(−1)ssjqms = −2j+2
∑
n≥1

njq2n

(1− q2n)
+ 2

∑
n≥1

njqn

(1− qn)
.

Thus for j ≥ 1 we have

δjz {(−zq; q)∞ (−q/z; q)∞}|z=1 ∈ (P 2
/P 2) · Wj .

Putting everything together we see that the only contribution from the first term on the left hand side
which is not in P · Wk is

1
PP

δaz
{

(z2 + z)
}
C(z; q)3(−zq; q)∞ (−q/z; q)∞

∣∣∣∣
z=1

.

But this cancels with the second term on the left hand side. This establishes part (iii).
The proof of part (iv) is the same, except that we use the partial differential equation [8]

2z(1 + z)
(
q2; q2

)2
∞
[
C
(
z; q2

)]3 (−zq; q)∞ (−q/z; q)∞
=
(

(1 + z)(1− z)2δq + 2z(1 + z) + 4z(1− z)δz + (1 + z)(1− z)2δ2
z

)
R2(z; q).

Here R2(z; q) is the two-variable generating function for N2(m,n), so that

δjz
(
R2(z; q)

) ∣∣∣
z=1

=

{
R2j if j is even,
0 if j is odd.

�
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3. Exact relations

From part (b) of Proposition 1 in [18] and known formulas for the dimensions of spaces of modular
forms on Γ0(2) (see [21]), we have that the sequence {dim (Wk)}∞k=1 begins {2, 6, 12, 21, 33, 49, . . . }.
Suppose first that k = 2. Then there are 6 functions in parts (i) and (ii) of Theorem 1.1. Computation
(with MAPLE, for example) shows that they are linearly independent. Hence, each function in parts
(iii) and (iv) may be written as a linear combination of these 6 functions, and we compute the
following:

Corollary 3.1. We have

N4(n) = (−8n−1)N2(n)+
(
−216 + 24n

77

)
M2(n)+

192
77

M4(n)+
(

260 + 184n
77

)
M22(n)− 40

11
M24(n)

(3.1)
and

N24(n) = (−2n− 1)N22(n) +
(
−27 + 3n

77

)
M2(n) +

24
77
M4(n) +

(
71− 131n

77

)
M22(n)− 16

11
M24(n).

(3.2)

Now let k = 3. Again we find that the 12 functions in parts (i) and (ii) of Theorem 1.1 are linearly
independent, and so the functions in parts (iii) and (iv) may be written in terms of them. Following
the lead of Atkin and Garvan, we use (3.1) and (3.2) to eliminate N4(n) and N24(n), thus expressing
N6(n) (resp. N26(n)) in terms of N2(n) (resp. N22(n)) and the crank moments.

Corollary 3.2. We have

N6(n) =
(
3 + 20n+ 48n2

)
N2(n) +

(
2192796
274505

+
123276n

7595
+
−5185344n2

1921535

)
M2(n)

+
(
−445728

54901
+
−5730048n

384307

)
M4(n) +

(
5376
3565

)
M6(n)

+
(
−386988

39215
+
−54556468n

1921535
+
−30679392n2

1921535

)
M22(n)

+
(

96204
7843

+
1412352n

54901

)
M24(n) +

(
−9056
3565

)
M26(n)

(3.3)

and

N26(n) =
(
3 + 5n+ 3n2

)
N22(n) +

(
249003
274505

+
36273n
83545

+
−162042n2

1921535

)
M2(n)

+
(
−46014
54901

+
−179064n

384307

)
M4(n) +

(
168
3565

)
M6(n)

+
(
−765123
274505

+
6826601n
1921535

+
4805874n2

1921535

)
M22(n)

+
(

39102
7843

+
44136n
54901

)
M24(n) +

(
−3848
3565

)
M26(n).

(3.4)

Now for k = 4, there are 22 functions in Theorem 1.1 and the dimension of P · Wk is 21. This
implies a relation among these 22 functions. If we would like relations wherein only one type of rank
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moment occurs then we may combine the function

F = F (q) := q(q; q)6
∞
(
q2; q2

)9
∞ :=

∑
n≥1

aF (n)qn

with the functions in C4 and C24 to get a basis for P · W4. (The fact that F is in this space follows
from the fact that q(q; q)8

∞
(
q2; q2

)8
∞ is a cusp form of weight 8 on Γ0(2)). Then each of the functions

in (iii) and (iv) of Theorem 1.1 may expressed in terms of this basis. We display the relation for the
case of Nk(n), again using results above to eliminate the 4th and 6th rank moments in favor of the
2nd.

Corollary 3.3.

N8(n) =
(
−17− 112n− 224n2 − 256n3

)
N2(n) +

(
15815680
70153149

)
aF (n)

+
(
−3743678558672

83365325395
+
−141447890442736n

1750671833295
+
−135995781048448n2

1750671833295
+

9269071448192n3

583557277765

)
M2(n)

+
(

772193500416
16673065079

+
9412063348224n
116711455553

+
9106119501824n2

116711455553

)
M4(n)

+
(
−75923065344

7578665945
+
−737849634816n

83365325395

)
M6(n) +

(
2715648
2125853

)
M8(n)

+
(

4640559869932
83365325395

+
260410320833296n

1750671833295
+

345677277049024n2

1750671833295
+

50935374262656n3

583557277765

)
M22(n)

+
(
−1173668372016

16673065079
+
−2419446071808n

16673065079
+
−2390306267136n2

16673065079

)
M24(n)

+
(

130253841984
7578665945

+
1671243657216n

83365325395

)
M26(n) +

(
−4858240
2125853

)
M28(n).

(3.5)

When k ≥ 5, the number of functions in Theorem 1.1 is smaller than the dimension of P · Wk.
Presumably this could be remedied by adding functions of the form Pf , where f is a cusp form, along
with their δq- derivatives. We shall not pursue this here.

4. Proof of Theorems 1.2 and 1.3

We begin this section by expressing our combinatorial functions in terms of the second moments
N2(n), N22(n), M2(n), and M22(n).

Proposition 4.1. We have nov(n) = 1
2M2(n) and ov(n) = 1

2M2(n)−M22(n).

Proof. Dyson [15] has shown that M2(n) = 2np(n), where p(n) is the number of partitions of n. Since∑
n≥0

M2(n)qn = δ2
zC(z; q)

∣∣
z=1

,
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we have that ∑
n≥0

M2(n)qn = (−q; q)∞δ2
zC(z; q)|z=1

= (−q; q)∞
∑
n≥0

2np(n)qn

= 2
∑
n≥0

nov(n)qn.

Similarly, we find that M22(n) may be interpreted as enov(n), where enov(n) denotes the sum, over
all overpartitions of n, of the even non-overlined parts. Using Euler’s identity between the number
of partitions of n into odd parts and the number of partitions of n into distinct parts, we see that
nov(n)− enov(n) = ov(n). �

Note that by applying δq to P , we see that
1

(q; q)∞

∑
n≥0

nqn

(1− qn)
=
∑
n≥0

np(n)qn, (4.1)

which gives equations (1.8) and (1.9).
We now turn to the smallest parts functions.

Proposition 4.2. We have spt(n) = M2(n)−N2(n) and spt2(n) = M22(n)−N22(n).

Proof. By the work in [8], we find that
∞∑
n=0

spt(n)qn =
(−q; q)∞
(q; q)∞

∑
n≥1

2nqn

(1− qn)
−
∞∑
n=0

N2(n)qn, (4.2)

and
∞∑
n=0

spt2(n)qn =
(−q; q)∞
(q; q)∞

∑
n≥1

2nq2n

(1− q2n)
−
∞∑
n=0

N22(n)qn. (4.3)

Combining (4.1) with (4.2), (4.3), and the proof of Proposition 4.1 finishes the proof. �

We now prove the congruences in Theorems 1.2 and 1.3.

Proof of Theorem 1.2. For (1.10), we simply multiply (3.3) by 5 and reduce modulo 5. The result is(
2n2 + n+ 2

)
M2(n) +

(
n2 + 4n+ 3

)
M22(n) ≡ 0 (mod 5), (4.4)

which implies the desired congruence.
For (1.11), we first multiply (3.1) by 7 and reduce modulo 7. The result is

(2 + 6n)M2(n) + 6M4(n) + (2 + 4n)M22(n) ≡ 0 (mod 7). (4.5)

Next we take the set C4 ∪ C24 ∪ {F} and replace δqC4 by C2C4/P and δ2
qC4 by C2C6/P . This turns

out to be a basis for P · W4. Expressing the function in part (iii) of Theorem 1.1 in terms of this
basis, multiplying by 7 and reducing modulo 7 gives(

4 + 6n+ 2n2 + 3n3
)
M2(n) + 6M4(n) +

(
4n+ 5n2 + n3

)
M22(n) ≡ 0 (mod 7).

Using (4.5) to substitute for M4(n) gives(
2n3 + 3n2 + 3

)
M22(n) ≡

(
n3 + 3n2 + 3

)
M2(n) (mod 7),
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and the congruence (1.11) follows. �

Proof of Theorem 1.3. First reduce (3.2) modulo 3 to obtain

(2n+ 2)N22(n) ≡ (2n+ 2)M22(n) (mod 3).

Since spt2(n) = M22(n)−N22(n), we have (1.12).
Reducing (3.1) modulo 3 we obtain

(2n+ 2)N2(n) ≡ (2n+ 2)M22(n) (mod 3).

Combined with the fact that nov(3n) ≡ −ov(3n) (mod 3) (since nov(n) + ov(n) = np(n)) and the
fact that spt(n) = M2(n)−N2(n), we have (1.13).

Next we perform the same computation used to obtain (3.4), except that we replace δ2
qC22 by

C2C4/P . Reducing the result modulo 5 gives(
1− n2

)
N22(n) ≡

(
2n2 + 3

)
M2(n) (mod 5). (4.6)

Combining this with (4.4) when n is replaced by 5n+ 3 gives (1.14).
Finally we perform the same calculation used to obtain (3.3), again replacing δ2

qC22 by C2C4/P .
Reducing the result modulo 5 gives(

3 + 2n2
)
N2(n) ≡

(
n+ 4n2

)
M2(n) + (4 + 4n)M22(n) (mod 5).

Combining this with (4.6) and (4.4) when n is replaced by 5n, together with the fact that spt1(n) =
M2(n)−N2(n)−M22(n) +N22(n), gives (1.15).

�

5. Proof of Theorem 1.4 and Corollary 1.6

Proof of Theorem 1.4. Let Spt1 = Spt1(q) denote the generating function for spt1(n) and let f = f(q)
denote the generating function for α(n). Since by (1.12) and (1.13) we have

spt1(3n) ≡ 0 (mod 3),

to prove Theorem 1.4 it is enough to show that

G = G(q) :=
(
•
3

)
⊗
(

4Spt1−
(
•
3

)
⊗ f

)
≡ 0 (mod 3),

where for a character χ and a q-series g, χ ⊗ g denotes the twist of g by χ, i.e., the nth Fourier
coefficient of g is multiplied by χ(n). Let us next recall the definition of a harmonic Maass form. If
k ∈ 1

2Z \ Z, then the weight k hyperbolic Laplacian is given by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
. (5.1)

If v is odd, then define εv by

εv :=

{
1 if v ≡ 1 (mod 4),
i if v ≡ 3 (mod 4).

(5.2)

Moreover we let χ be a Dirichlet character. A harmonic Maass form of weight k with Nebentypus χ
on a subgroup Γ ⊂ Γ0(4) is any smooth function g : H→ C satisfying the following:
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(1) For all A =
(
a b
c d

)
∈ Γ and all τ ∈ H, we have

g(Aτ) =
(
c

d

)2k

ε−2k
d χ(d) (cτ + d)k g(τ).

(2) We have that ∆kg = 0.
(3) The function g(τ) has at most linear exponential growth at all the cusps of Γ.

Define the integral

NH(τ) :=
1

2
√

2πi

∫ i∞

−τ̄

η2(u)

η(2u)(−i(τ + u))
3
2

du,

where η(τ) is Dedekind’s eta function. Combining (4.2) and (4.3) with Theorems 4.1 and 5.1 of [8],
we may conclude that

M1(τ) := Spt1 +
1
12
η(2τ)
η2(τ)

E2 (τ)− 1
3
η(2τ)
η2(τ)

E2 (2τ) +NH(τ)

is a weight 3
2 harmonic Maass form on Γ0(16). From [7] we have that

M(τ) := f − 4NH(τ)

is also a harmonic Maass form of weight 3
2 on Γ0(16).

Turning back to the proof of Theorem 1.4, it is not hard to check that

G ≡ H (mod 3),

where

H = H(q) :=
(
•
3

)
⊗
(

4
(
Spt1 +

1
12
η(2τ)
η2(τ)

E2 (τ)− 1
3
η(2τ)
η2(τ)

E2 (2τ)
)

+
η(2τ)
η2(τ)

+
η(2τ)
3η2(τ)

(−E4 (2τ) + E4(τ))−
(
•
3

)
⊗ f

)
.

As in the proof of Proposition 4.1 of [9], one can show that the non-holomorphic parts of M1(τ) and
M(τ) are supported on negative squares. This easily yields that H is a linear combination of weakly
holomorphic modular forms, i.e. meromorphic modular forms whose poles are supported in the cusps,
of weights −1

2 , 3
2 , and 7

2 on Γ0(144). We next place bounds on the orders of vanishing of H in the
cusps. Clearly E4(τ) and E4(2τ) have no poles. Moreover from the transformation law of f (see [7])
it follows that f also has no poles. Using this one can show that poles can only arise from η(2τ)

η2(τ)
and

thus are of the form a
c with c odd. Using properties of twists, we can bound the orders of vanishing

of H at a
c with c odd as follows: If 9|c, its order can be bounded by − 1

16 , if 3 ‖ c its order is bounded

by − 9
16 , and if 3 - c the order is bounded by − 1

144 . This now easily yields that η18(τ)
η9(2τ)

G is the sum of

three holomorphic modular forms of weight 4, 6, and 8, respectively. Using the fact that η6(τ)
η2(3τ)

is a
holomorphic weight 2 modular form on Γ0(9) satisfying

η6(τ)
η2(3τ)

≡ 1 (mod 3),
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we can show that G is congruent to a holomorphic modular form of weight 8 on Γ0(144) modulo 3.
Sturm’s Theorem now gives that this form is congruent to 0 if the first[

8
12

[SL2(Z) : Γ0(144)]
]

+ 1 = 193

coefficients are congruent 0 modulo 3. This can be done by MAPLE. �

Corollary 1.6 now follows easily from Theorem 1.4 and the following

Proposition 5.1. Let ` 6= 2, 3. Then we have

α
(
`2n
)

+
(
−n
`

)
α(n) + ` α

( n
`2

)
= (`+ 1)α(n). (5.3)

Proof. To prove (5.3), we have to show that

g`(τ) := f |T`2 − (`+ 1)f = 0,

where T` is the usual half-integral weight Hecke-operator. Using that η2(τ)
η(2τ) is a Hecke eigenform with

eigenvalue 1 + 1
` , one obtains from [10] that g`(τ) is a weakly holomorphic modular form of weight

3
2 on Γ0(16). Since the coefficients of f̄ have only polynomial growth it is a holomorphic form. The
valence formula now gives that g` = 0 if its first 4 Fourier coefficients equal 0. Thus to finish the
proof, we have to show that (5.3) is true for 0 ≤ n ≤ 3. For n = 0 this claim is trivial. For the other
cases recall (1.16) and (1.17). Moreover we need the fact [12] that if −n = Df2, where D is a negative
fundamental discriminant, then

H(n) =
h(D)
w(D)

∑
d|f

µ(d)
(
D

d

)
σ1(f/d). (5.4)

Here h(D) is the class number of Q(
√
D), w(D) is half the number of units in the ring of integers of

Q(
√
D), σ1(n) is the sum of the divisors of n, and µ(n) is the Möbius function. We only show (5.3)

for n = 1 since the other cases follow similarly. In this case we have to show that

α
(
`2
)

= 2
(
`+ 1−

(
−1
`

))
.

Firstly we have from (1.16) that
α
(
`2
)

= 4H
(
4`2
)
.

Since h(−4) = 1 and ω(−4) = 2, (5.4) yields

α
(
`2
)

= 2
(
σ1(`)−

(
−1
`

))
= 2

(
`+ 1−

(
−1
`

))
,

as claimed. �
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