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Abstract. In this paper, we consider the question of correcting mock modular forms in order
to obtain p-adic modular forms. In certain cases we show that a mock modular form M+ is
a p-adic modular form. Furthermore, we prove that otherwise the unique correction of M+ is
intimately related to the shadow of M+.

1. Introduction and statement of results

In his last letter to Hardy (see [17], pp. 127-131), Ramanujan introduced 17 examples of
functions which he called mock theta functions. He stated that these forms had properties similar
to those of theta functions, but were not modular forms. A series of authors (cf. [3], [4], [13],
[16], and [21]) investigated these functions extensively by means of complicated combinatorial
arguments, proving many of Ramanujan’s claims about identities between mock theta functions
and modular transformation properties. However, the source of these properties remained a
mystery until Zwegers’ thesis [24, 23] related the mock theta functions to harmonic weak Maass
forms. Using the recent development of the theory of harmonic weak Maass forms [10], the first
author and Ono obtained an exact formula for the coefficients of one of the mock theta functions
[8]. Furthermore, this investigation has lead to an infinite family of mock theta functions related
to Dyson’s rank statistic on partitions [9]. In particular, the first author and Ono determined the
shadows of these forms, which allowed them to establish that certain coefficients are coefficients
of weakly holomorphic modular forms, i.e., those meromorphic modular forms whose possible
poles lie only at the cusps, and to determine nice congruence properties. This new perspective
on mock theta functions has lead to positivity of rank differences [5, 6], a connection between
the Hurwitz class numbers and overpartition rank differences [7], and a duality relating the
coefficients of mock theta functions to coefficients of weakly holomorphic modular forms [14, 25],
among a wide variety of other applications.

The emergence of the theory of harmonic weak Maass forms in explaining the properties of the
mock theta functions has lead to further investigation of what are called mock modular forms.
More formally, let k ≥ 2 and N > 0 be integers, χ be a Dirichlet character, and g ∈ Sk(N,χ) be a
(normalized) newform of weight k, level N , and Nebentypus χ whose coefficients lie in a number
field Kg. For a harmonic weak Maass form M ∈ H2−k(N,χ) (see Section 2 for the relevant

definition), we define as usual the antiholomorphic differential operator ξ2−k := 2iy2−k ∂
∂z . We

let M+ be the holomorphic part of M and M− denote its non-holomorphic part (see Section 2).
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Following Zagier [22], we refer to M+ as a mock modular form and ξ2−k(M) as the shadow of

the mock modular form M+. Throughout, we let M ∈ H2−k(N,χ) be good for gc(z) := g(−z)
(for the definition of good, see [12] or Section 2).

Since mock theta functions and mock modular forms generally have transcendental coeffi-
cients, it should be quite surprising to find out that one may consider p-adic properties related
to these coefficients. We will prove in this paper that mock modular forms will combine with
their shadows to give p-adic modular forms. Serre [18] initiated the study of p-adic modular
forms in order to investigate congruences between modular forms. His construction allowed
him to define a p-adic topology on modular forms so that two modular forms whose Fourier
coefficients are congruent to high p-powers will be p-adically close and limits of increasingly
p-adically closer sequences would exist. Serre also used the theory of p-adic modular forms to
give a p-adic interpolation of the values at negative integers of L-series of a totally real number
field by using a convergent sequences of Eisenstein series and determining the constant term of
the resulting p-adic modular form. This groundwork has lead to a number of applications. For
example, Ahlgren and Boylan [1] obtained deep congruences for the partition function and other
modular forms.

We now turn to the statement of our results. For this, let p be a prime and fix an algebraic

closure Qp of Qp along with an embedding ι : Q ↪→ Qp. We let Q̂p denote the p-adic closure of

Qp and normalize the p-adic order so that ordp(p) = 1. We do not distinguish between algebraic

numbers and their images under ι. In particular, for algebraic numbers a, b ∈ Q we write a ≡ b
(mod pm) if ordp(ι(a − b)) ≥ m. For a formal power series H(q) =

∑
n∈Z a(n)qn ∈ Q̂p[[q, q

−1]],
we write H ≡ 0 (mod pm) if sup

n∈Z
(ordp(a(n))) ≥ m.

In this paper, a p-adic modular form of level N and Nebentypus χ will refer to a formal

power series H(q) =
∑
n≥−t

a(n)qn with coefficients in Q̂p satisfying the following condition: for

every m ∈ N there exists a weakly holomorphic modular form (q := e2πiz for z ∈ H) Hm(z) =∑
n≥−t

bm(n)qn ∈ M !
`m

(N,χ) (the space of weakly holomorphic modular forms of weight `m, level

N , and Nebentypus χ), with algebraic coefficients bm(n) ∈ Q, which satisfies the congruence

(1.1) H ≡ Hm (mod pm).

If `m = ` is constant, then we will refer to H as a p-adic modular form of weight `, level N , and
Nebentypus χ.

Remark. One can relate p-adic modular forms in our sense to those in the sense of Serre. For this,
let ∆ be the unique normalized newform of weight 12 for SL2(Z). Consider the case of trivial
Nebentypus and level N = ps (s ∈ N0). After multiplication by ∆t, where t is the appropriate
power as given in the expansion of H(q) above, every p-adic modular form in our sense becomes
a p-adic modular form of weight ` in the sense of Serre due to Theorem 5.4 of [19].

In this paper, we will determine the unique correction (up to addition by a p-adic modular
form) needed to complete M+ to a p-adic modular form. We will prove that when M+ is not
itself a p-adic modular form, this series has an intimate relationship with the shadow of M+.
To determine the correction needed, we will first establish some notation. We define the Eichler
integral of g by

(1.2) Eg(z) :=
∑
n≥1

n1−kag(n)qn,
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where ag(n) denotes the n-th coefficient of g. One easily sees that Dk−1(Eg) = g, where

D := q ∂∂q . In Theorem 1.1 of [15], the second author, Kent, and Ono have shown that

FaM (1) := M+ − aM (1)Eg

has coefficients in Kg, where we have abused notation to denote the n-th coefficient of M+ by

aM (n). The embedding ι allows us to consider FaM (1) as an element of Q̂p[[q, q
−1]]. Hence for

every γ ∈ Q̂p,

(1.3) Fα := M+ − αEg := FaM (1) − γEg

is an element of Q̂p[[q, q
−1]]. Here α := aM (1) + γ ∈ AM , where

AM := aM (1) + Q̂p :=
{
aM (1) + x : x ∈ Q̂p

}
denotes a set of formal sums.

As an example of the algebraicity of the coefficients of Fα, consider the case where g = ∆
and M+ is the mock modular form associated to ∆ with principal part q−1, so that 11!M+ is
approximately given by

11!q−1 − 2615348736000

691
− 73562460235.683647469q − 929026615019.113082q2 + · · · .

Then a computer calculation indicates that

11!FaM (1) = 11!q−1 − 2615348736000

691
− 929888675100q2 − 80840909811200

9
q3 − · · · .

This numerically demonstrates the above statement that all of the coefficients of FaM (1) are
rational, as K∆ = Q.

The fact that the function Fα defined in (1.3) has coefficients in Q̂p now permits one to
consider its p-adic properties. We begin with the case that p - N . Let β, β′ be the roots of the
polynomial

x2 − ag(p)x+ χ(p)pk−1 = (x− β)(x− β′),
ordered so that ordp(β) ≤ ordp(β

′). We first treat the “generic” case when ordp(β) < ordp(β
′).

For this, we consider

(1.4) F∗α := Fα − p1−kβ′Fα|V (p) =
(
M+ − αEg

)
|
(

1− p1−kβ′V (p)
)
,

where V (p) is the usual V -operator.
For instance, in the above example where g = ∆, denote the coefficients of 11!FaM (1) (resp.

11!F∗aM (1)) by c(n) ∈ Q (resp. c∗(n)). Writing these coefficients 3-adically, a computer calcula-

tion indicates that

c∗(3) = c(3) = 3−2 + 3−1 + 2 + · · · ,
c
(
36
)

= 3−47 + 3−46 + 2
(
3−45

)
+ · · · ,

c∗
(
36
)

= 3−47 + 3−46 + 2
(
3−45

)
+ · · · ,

c
(
37
)

= 3−56 + 3−55 + 2
(
3−54

)
+ · · · ,

c∗
(
37
)

= 3−56 + 3−55 + 2
(
3−54

)
+ · · · .
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Having dispatched the difficulty arising from transcendental coefficients, our goal of realizing
M+ as a 3-adic modular form now seems to be thwarted by the high powers of 3 appearing in
the denominators. However, choosing α = aM (1) + γ/11! with

γ := 154300462955809413372268553898 = 37 + 38 + · · ·
and denoting the coefficients of 11!Fα (resp. 11!F∗α) by cα(n) (resp. c∗α(n)), one sees that

c∗α(3) = cα(3) = 2
(
35
)

+ 37 + 38 + · · · ,
cα
(
36
)

= 2
(
3−5
)

+ 2
(
3−3
)

+ 3−2 + · · · ,
c∗α
(
36
)

= 35 + 36 + 38 + · · · ,
cα
(
37
)

= 2
(
3−7
)

+ 2
(
3−5
)

+ 2
(
3−4
)

+ · · · ,
c∗α
(
37
)

= 2 + 2(3) + 2(32) + · · · .
Hence the denominators of the coefficients of F∗α seem to have vanished, while the denominators
of Fα still seem to grow.

In order to cancel the denominators of Fα itself, we will require a further refinement of our

corrected series. For this purpose, for δ ∈ Q̂p, we define

(1.5) Fα,δ := Fα − δ
(
Eg − βEg|V (p)

)
.

Denoting the coefficients of 11!Fα,δ by cα,δ(n), we see in our above example (with α chosen as
above and δ chosen to be 23974292034 = 2

(
37
)

+ 2
(
39
)

+ 310 + · · · ), that

cα,δ
(
36
)

= 35 + 36 + 38 + · · · ,
cα,δ

(
37
)

= 2 + 2(3) + 2(32) + · · · .
The phenomenon we have observed here is evidenced by the fact that the correct choice of α
and δ will result in a p-adic modular form.

Theorem 1.1. Assume that ordp(β) < ordp(β
′).

(1) There exists exactly one α ∈ AM such that F∗α is a p-adic modular form of weight 2− k,
level pN , and Nebentypus χ. The unique choice of α is given by the p-adic limit

(1.6) α = aM (1) +
(
β − β′

)
lim
m→∞

bM (pm)

βm+1
,

where bM (n) denotes the n-th coefficient of Dk−1(M+)− aM (1)g.

(2) If ordp(β
′) 6= (k− 1), then there exists exactly one pair (α, δ) ∈ AM × Q̂p such that Fα,δ

is a p-adic modular form of weight 2 − k, level pN , and Nebentypus χ. Moreover, α is
the unique choice from part (1) and

(1.7) δ = lim
m→∞

aFα (pm) pm(k−1)

β′m
.

Remarks.

(1) One predicts that α is transcendental whenever g does not have CM, as conjectured by
the second author, Kent, and Ono [15], and hence the dependence on aM (1) in equation
(1.6) is likely unavoidable in the general case.

(2) The limit occurring in equation (1.6) also occurs (up to multiplication by a constant in
Kg(β)) as the first coefficient of a limit in Proposition 2.2 of [15]. In [15], the authors

conclude that this series has coefficients in Qp. However, due to the fact that the algebraic
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closure Qp of Qp is not p-adically closed, one cannot actually conclude that this limit is

an element of Qp, but only necessarily an element of the larger field Q̂p.
(3) As Zagier observed in [22], Eichler integrals are mock modular forms when one extends

the definition to include shadows which are weakly holomorphic modular forms. Hence
our p-adic modular forms F∗α and Fα,δ transform like mock modular forms.

Consider again the example of the mock modular form M+ associated to g = ∆ with principal
part q−1 which we have computationally investigated above. Since g has trivial level and the

principal part is q−1, taking the unique choice of α ∈ AM and δ ∈ Q̂p given by Theorem 1.1
(2), ∆Fα,δ will be a 3-adic modular form in the sense of Serre. Quite pleasantly, computational
evidence indicates that

∆Fα,δ ≡ 1 (mod 3),

∆Fα,δ ≡ E2 (mod 32),

∆Fα,δ ≡ E2 + 9∆ (mod 33),

...

where E2(z) := 1− 24
∑∞

n=1 σ1(n)qn, with σr(n) :=
∑

d|n d
r.

Theorem 1.1 gives a strong interplay between g and the weight 2− k correction of

F∗0 = M+ − p1−kβ′M+|V (p)

in the case when α 6= 0. It is of course of particular interest to consider the case when α = 0, so
that F∗0 is itself a p-adic modular form. This leads us immediately to consider the case when g
has CM by an imaginary quadratic field K.

Theorem 1.2. Assume that g has CM by K, p - N , and p is split in OK . Then α = 0 is the
unique choice from Theorem 1.1, so that F∗0 is a p-adic modular form of weight 2− k, level pN ,
and Nebentypus χ.

When we are not in the generic case, the situation can differ greatly, as the next theorem
reveals. In the case where g has CM and p is inert, the extra symmetry β′ = −β allows us to

obtain a p-adic modular form correction of M+ itself. To do so, for α ∈ Q̂p, we define another
type of corrected series

(1.8) F̃α := M+ − αEg|V (p).

Theorem 1.3. Assume that g has CM by K, p is inert in OK , and p - N . Then there exists

precisely one α ∈ Q̂p such that F̃α is a p-adic modular form of weight 2 − k, level pN , and
Nebentypus χ, given by the p-adic limit

(1.9) α = lim
m→∞

aDk−1(M+)

(
p2m+1

)
β2m

.

Remarks. (1) It is worth remarking that the proof of Theorem 1.3 shows more generally that

there exists exactly one pair (α, δ) ∈ AM × Q̂p such that Fα,δ is a p-adic modular form
whenever p - N and ag(p) = 0, but the properties of the CM form allow us to relate δ
and α in this case.

(2) It is an interesting question whether α = 0 ever occurs in Theorem 1.3. In a particular
example considered in [15], it was shown that this does not happen for every prime
p < 32500.
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For every α ∈ AM , we define

F̃α := Dk−1
(
M+ − αEg|V (p)

)
,

so that if g has CM by K and p is inert in OK , then for α given in equation (1.9), F̃α is the
image under Dk−1 of the p-adic modular form given in Theorem 1.3. Let U(p) denote the usual
U -operator. We will conclude Theorem 1.3 from the following proposition.

Proposition 1.4. Assume that g has CM by K, p is inert in OK , and p - N . Then for all but

exactly one α ∈ Q̂p, we have the p-adic limit

(1.10) lim
m→∞

F̃α|U
(
p2m+1

)
a
F̃α

(p2m+1)
= g.

Remark. Proposition 1.4 corrects the original statement of Theorem 1.2 (2) of [15], which con-
tained an error that was pointed out and fixed by the third author. The proof given here was
then subsequently included in the final version of [15]. The existence of the limit in the original
statement, with

(1.11) Fα := Dk−1(Fα)

instead of F̃α, is independent of α, and one cannot even conclude existence of that limit without
determining explicitly that α 6= 0 in this theorem. Even if the limit with Fα would exist, such a
limit would have a linear dependence on α times g|V (p), and hence could not equal g, as stated
in [15].

Lastly, we deal with the “bad” primes.

Theorem 1.5. Let p | N and g be a newform with ag(p) = 0. Then Fα is a p-adic modular
form of level N and Nebentypus χ for every α ∈ AM .

From this one concludes the following corollary in the CM case.

Corollary 1.6. Assume that g has CM and p divides the conductor of the Hecke Grössencharacter

associated to g. Then Fα is a p-adic modular form of level N and Nebentypus χ for every α ∈ Q̂p.
In particular, if p divides the conductor of the Hecke Grössencharacter, then M+ and Eg are
both p-adic modular forms of level N and Nebentypus χ.

The paper is organized as follows: Section 2 is devoted to a quick overview of the relevant
definitions involving harmonic weak Maass forms. In Section 3, we define an operator which
recasts the question about our corrected series being a p-adic modular form to one about a
certain p-adic limit equaling zero. We then use this equivalence to establish the results in the
generic case. In Section 4 we combine the aforementioned equivalence and the fact that a certain
quadratic twist is a weakly holomorphic modular form to establish the results when g has CM.

2. Basic facts on harmonic weak Maass forms

We begin by recalling the relevant definitions and some important facts about harmonic weak
Maass forms. For further details, we refer the reader to [10]. We will write an element of the
upper half plane as z = x+ iy with x, y ∈ R. Denote the weight 2− k hyperbolic Laplacian by

∆2−k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ i(2− k)y

(
∂

∂x
+ i

∂

∂y

)
.

A harmonic weak Maass form M of weight 2 − k, level N , and Nebentypus χ is defined as a
smooth function on the upper half plane which satisfies the following properties:
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(1) For all
(
a b
c d

)
∈ Γ0(N) we have

M

(
az + b

cz + d

)
= χ(d)(cz + d)2−kM(z).

(2) We have that ∆2−k(M) = 0.
(3) The function M(z) has at most linear exponential growth at all cusps of Γ0(N).

We denote this space of harmonic weak Maass forms by H2−k(N,χ).
We now restrict our attention to the subspace of harmonic weak Maass forms which map to

cusp forms under the ξ-operator. Taking the Fourier expansion in terms of e2πix, M decomposes
naturally as

M(z) = M+(z) +M−(z),

where the holomorphic part of M is given by

M+(z) :=
∑

n�−∞
aM (n)qn

and the non-holomorphic part of M is defined by

(2.1) M−(z) :=
∑
n>0

a−M (−n)Γ (1− k; 4πny) q−n.

Here

Γ(a;x) :=

∫ ∞
x

e−tta−1dt

is the incomplete Γ-function. One refers to∑
n≤0

aM (n)qn

as the principal part of M .
As defined in [12], we say that a harmonic weak Maass form M ∈ H2−k(N,χ) is good for the

cusp form g ∈ Sk(N,χ) if the following conditions are satisfied:

(i) The principal part of M at the cusp ∞ belongs to Kg[q
−1].

(ii) The principal parts of M at other cusps of Γ0(N) are constant.
(iii) We have that ξ2−k(M) = ‖g‖−2g, where ‖ · ‖ is the usual Petersson norm.

We let T (n) denote the n-th Hecke operator. The action of the Hecke operator on a harmonic
weak Maass form M is defined analogously to that on holomorphic modular forms. We denote
this action by M |2−kT (n), suppressing the weight in the notation when it is clear from the
context. We extend this definition to formal power series in the obvious way. One can show
that (see [12], the proof of Theorem 1.3)

(2.2) M |2−kT (n) = n1−kag(n)M +Rn,

for some weakly holomorphic modular form Rn ∈M !
2−k(N,χ). We use the commutation relation

between Dk−1 and T (n) given by

(2.3) nk−1Dk−1
(
E|2−kT (n)

)
=
(
Dk−1E

)
|kT (n),

which is valid for every formal power series E. This yields that

(2.4) Fα|kT (n) = ag(n)Fα + rn,

where Fα was defined in (1.11) and

(2.5) rn := nk−1Dk−1(Rn).
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Similarly to Fα, for Fα,δ defined in (1.5), we let

(2.6) Fα,δ := Dk−1(Fα,δ).

When n and p are coprime, one obtains

(2.7) Fα,δ|kT (n) = ag(n)Fα,δ + rn.

3. A Criterion for p-adic modular forms and the proof of Theorem 1.1

The uniqueness of α in the theorems will follow from the fact that Eg and Eg|V (p) are not
p-adic modular forms when p - N . We shall show this through the following simple lemma.

Lemma 3.1. Assume that p - N and either ordp(β) < ordp(β
′) or β′ = −β. Then Eg, Eg|V (p),

and Eg − β′p1−kEg|V (p) = Eg−β′g|V (p) are not p-adic modular forms. Furthermore, if ordpβ
′ 6=

k − 1, then Eg−βg|V (p) is not a p-adic modular form.

Proof. Let H be a p-adic modular form. We first note that there exists a constant A ≥ 0 such
that ordp (aH(n)) ≥ −A for every n ∈ Z. This follows easily from the fact that the coefficients of
weakly holomorphic modular forms have bounded denominators, which can be concluded from
the corresponding statement for holomorphic modular forms in Theorem 3.52 of [20]. Hence for
every m ∈ N we have

ordp

(
aDk−1(H) (pm)

)
≥ m(k − 1)−A.

Let C ≥ 0 be given. Using the fact that g is a Hecke eigenform, the statements for Eg and
Eg|V (p) follow by

ag|V (p)

(
p2m+1

)
= ag

(
p2m

)
=

2m∑
`=0

β`β′
2m−`

= β2m
2m∑
`=0

(
β′

β

)`
,

which, since ordp(β) < ordp(β
′) or β′ = −β, has p-order ordp

(
β2m

)
≤ 2m(k−1)

2 < 2m(k− 1)−C
for m sufficiently large.

The equality Eg − β′p1−kEg|V (p) = Eg−β′g|V (p) follows by the commutation relation

(3.1)
(
Dk−1(f)

)
|V (p) = p1−kDk−1 (f |V (p))

between Dk−1 and the V -operator on a formal power series f(q) =
∑

n�−∞ af (n)qn. The lemma
for Eg−β′g|V (p) then follows by the fact that for m ≥ 0 one has ag−β′g|V (p) (pm) = βm , which

has p-order at most m(k−1)
2 < m(k − 1)− C. One concludes the lemma for Eg−βg|V (p) similarly

by the fact that ag−βg|V (p) (pm) = β′m and the assumption that ordp (β′) < k − 1. �

In order to deduce a helpful equivalence relation which will determine whether our corrected
series are p-adic modular forms, one defines the operator

(3.2) B(p) := −βp1−k
(

1− β′p1−kV (p)
)(

1− β−1pk−1U(p)
)
.

In order to determine the action of B(p) on our corrected series Fα and Fα,δ, we will first
determine the actions of B(p) and B(p)U(p) on the correction terms Eg and Eg − β′Eg|V (p).
This is established in the following lemma.

Lemma 3.2. The series Eg is annihilated by B(p). Furthermore, Eg|V (p) is annihilated by
B(p)U(p).
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Proof. Since V (p)U(p) acts like the identity, β + β′ = ag(p) and ββ′ = χ(p)pk−1, one obtains
that

(3.3) B(p) = U(p) + χ(p)p1−kV (p)− ag(p)p1−k.

However, rewriting the right hand side in terms of the weight 2 − k Hecke operator T (p) and
using the commutation relation (2.3) between T (p) and Dk−1 yields that

Dk−1 (Eg|B(p)) = p1−kg|
(
T (p)− ag(p)

)
= 0.

One concludes that Eg|B(p) = 0, giving the first statement of the lemma.
Since we have already seen that Eg is annihilated by B(p), the second statement is equivalent

to the statement that Eg−β′g|V (p) is annihilated by B(p)U(p). Now observe that

(3.4) B(p)U(p) = ββ′p2(1−k)
(

1− β′−1
pk−1U(p)

)(
1− β−1pk−1U(p)

)
.

Thus B(p)U(p) clearly annihilates any formal power series which is an eigenform under the
U(p)-operator with eigenvalue βp1−k or β′p1−k. To finish the proof, we use the commutation
relation

(3.5)
(
Dk−1(f)

)
|U(p) = pk−1Dk−1 (f |U(p))

between Dk−1 and the U -operator, on a formal power series f(q) =
∑

n�−∞ af (n)qn. Together
with the fact that g− β′g|V (p) is an eigenform under the U(p)-operator with eigenvalue β, this
yields

Eg−β′g|V (p)|U(p) = p1−kE(g−β′g|V (p))|U(p) = βp1−kEg−β′g|V (p),

and the claim follows. �

Recall the definitions of Fα, Fα, F∗α, Fα,δ, and Fα,δ given in equations (1.3), (1.11), (1.4),

(1.5), and (2.6), respectively. Furthermore, for α ∈ AM and δ ∈ Q̂p, define

F∗α,δ := Fα,δ|
(

1− β′p1−kV (p)
)
,(3.6)

F ∗α,δ := Dk−1(F∗α,δ) = Fα,δ|
(
1− β′V (p)

)
,

which follows by the commutation relation (3.1). We will bootstrap from the following proposi-
tion in order to obtain Theorem 1.1.

Proposition 3.3. Let α ∈ AM and δ ∈ Q̂p.

(1) The form F∗α,δ|U(p) is a p-adic modular form of weight 2− k, level pN , and Nebentypus
χ if and only if

h
(∗)
α,δ := lim

m→∞

(
β−mF ∗α,δ|U (pm)

)
= 0.

(2) If ordp(β) < ordp(β
′), then F∗α is a p-adic modular form of weight 2− k, level pN , and

Nebentypus χ if and only if

(3.7) hα := lim
m→∞

(
β−mFα|U (pm)

)
= 0.

(3) Finally, if ordp(β
′) 6= k − 1, then Fα,δ is a p-adic modular form of weight 2 − k, level

pN , and Nebentypus χ if and only if

(3.8) hα,δ := lim
m→∞

(
β′
−m

Fα,δ|U (pm)
)

= 0.
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Proof. Let a formal power series H ∈ Q̂p[[q, q
−1]] be given such that there exists a weakly

holomorphic modular form W ∈M !
2−k(N,χ) with algebraic coefficients which satisfies

(3.9) H|B(p) = W.

Denote

(3.10) H∗ := H|
(

1− β′p1−kV (p)
)
,

and plug in the definition (3.2) of B(p) to equation (3.9). Then acting on both sides of equation

(3.9) by
m−1∑
`=0

β−`p`(k−1)U
(
p`
)

and taking the p-adic limit m→∞ gives

(3.11) H∗ = lim
m→∞

(
β−mpm(k−1)H∗|U (pm)

)
− β−1pk−1

∞∑
`=0

β−`p`(k−1)W |U
(
p`
)
,

with the sum on the right hand side converging by the fact that W has bounded denominators.
Hence H∗ is a p-adic modular form (of weight 2 − k, level pN , and Nebentypus χ, which we
suppress hereafter) if and only if

(3.12) lim
m→∞

(
β−mpm(k−1)H∗|U (pm)

)
is a p-adic modular form. We now note that (3.12) is clearly an eigenform under the U(p)-
operator with eigenvalue βp1−k. Hence for any n ∈ N and r ∈ N0, the (npr)-th coefficient of
(3.12) equals its n-th coefficient times

(
βp1−k)r and one concludes that the n-th coefficient must

be zero if (3.12) is a p-adic modular form since p-adic modular forms have bounded denominators.
Therefore (3.12) is a p-adic modular form if and only if it is identically zero.

Moreover, since V (p)U(p) acts like the identity, we have that

(3.13) lim
m→∞

(
β−mpm(k−1)H∗|U (pm)

)
=

(
1− β′

β

)
lim
m→∞

(
β−mpm(k−1)H|U (pm)

)
,

whenever the right hand side limit exists.

Next assume that H̃ is a formal power series such that there exists a weakly holomorphic

modular form W̃ ∈M !
2−k(N,χ) satisfying

H̃|B(p)U(p) = W̃

and ordp (β′) 6= k − 1. Defining H̃∗ analogously to H∗ given in (3.10), we will now prove that

H̃ is a p-adic modular form if and only if

(3.14) lim
m→∞

(
β−mpm(k−1)H̃∗|U (pm)

)
and

(3.15) lim
m→∞

(
β′
−m

pm(k−1)H̃|U (pm)
)

are both p-adic modular forms. Plugging in the definition (3.2) of B(p), by an argument analo-
gous to that giving equation (3.11), one obtains

(3.16) H̃∗|U(p) = βp1−k lim
m→∞

(
β−mpm(k−1)H̃∗|U (pm)

)
− β−1pk−1

∞∑
`=0

β−`p`(k−1)W̃ |U
(
p`
)
.

This shows that H̃∗|U(p) is a p-adic modular form if and only if (3.14) is a p-adic modular form

(and furthermore identically zero). Since H̃∗|U(p) is clearly a p-adic modular form whenever
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H̃ is a p-adic modular form, one may assume without loss of generality that H̃∗|U(p) is a p-
adic modular form since otherwise both sides of the desired equivalence are false. Then acting

by U(p) on both sides of equation (3.10) combined with the fact that H̃∗|U(p) has bounded
denominators, one argues as in the proof of equation (3.11) to obtain the equality

(3.17) H̃ = lim
m→∞

(
β′
−m

pm(k−1)H̃|U (pm)
)
− β′−1

pk−1
∞∑
`=0

β′
−`
p`(k−1)H̃∗|U

(
p`+1

)
,

with the sum converging since ordp (β′) 6= k − 1. Therefore, it follows that H̃ is a p-adic
modular form if and only if (3.15) is a p-adic modular form. By again noting that (3.15) is an
eigenform for the U(p)-operator with eigenvalue β′p1−k and p-adic modular forms have bounded

denominators, one concludes that H̃ is a p-adic modular form if and only if (3.15) is identically

zero. Thus, we have established that H̃ is a p-adic modular form if and only if (3.14) and (3.15)
are both identically zero. However, if (3.15) is identically zero, then it follows that (3.14) is

identically zero, and hence the statement that H̃ is a p-adic modular form is equivalent to (3.15)
equaling zero.

We next establish that the above criterion may be applied to H = Fα and H̃ = Fα,δ. By
equation (3.3) one sees that equation (2.2) for n = p is simply the statement that

(3.18) Rp = M |B(p) = M+|B(p),

where we have used the fact that M− is annihilated by B(p) = T (p) − ag(p)p1−k (see Lemma
7.4 of [11]). But then by Lemma 3.2 and equation (3.18) one obtains

Fα|B(p) = M+|B(p)− αEg|B(p) = Rp,

Fα,δ|B(p)U(p) = Rp|U(p).

Since Fα|B(p) is a weakly holomorphic modular form, if ordp(β) < ordp (β′), then F∗α is a p-adic
modular form if and only if

Hα :=

(
β

β − β′

)
lim
m→∞

(
β−mpm(k−1)F∗α|U (pm)

)
= 0.

Moreover, since Fα,δ|B(p)U(p) is a weakly holomorphic modular form, equation (3.16) with

H̃ = Fα,δ shows that F∗α,δ|U(p) is a p-adic modular form if and only if

H(∗)
α,δ := lim

m→∞

(
β−mpm(k−1)F∗α,δ|U (pm)

)
= 0.

Furthermore, if ordp (β′) 6= k − 1, then Fα,δ is a p-adic modular form if and only if

Hα,δ := lim
m→∞

(
β′
−m

pm(k−1)Fα,δ|U (pm)
)

= 0.

The first and third statements of the proposition now follow by noting that the commutation re-

lation (3.5) between Dk−1 and the U(p)-operator yields Dk−1
(
H(∗)
α,δ

)
= h

(∗)
α,δ and Dk−1 (Hα,δ) =

hα,δ. The second statement follows by from the fact that Dk−1 (Hα) = hα and the existence of
the limit on the right hand side of equation (3.13), given by Proposition 2.2 of [15], in the case
when ordp(β) < ordp(β

′). �

Based on Proposition 3.3, it will be helpful to evaluate Hα and Hα,δ. We first note that for
every α ∈ AM , the limit Hα exists by equation (3.11). By equation (2.2) and the fact that T (n)
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commutes with U(p) whenever n and Np are relatively prime, one obtains

Hα|2−kT (n) = n1−kag(n)Hα + lim
m→∞

(
β−mpm(k−1)Rn|U (pm)

)
.

Moreover, limm→∞
(
β−mpm(k−1)Rn|U (pm)

)
= 0 since Rn has bounded denominators. Since

Hα is clearly an eigenform for the U(p)-operator with eigenvalue βp1−k, one may recursively
compute the coefficients of Hα using the U(p)-operator and the Hecke operators to establish
that

(3.19) Hα = LαEg−β′g|V (p),

where, analogously to equation (3.13), for ordp (β) < ordp (β′) the first coefficient of Hα is given
by

(3.20) Lα :=

(
β

β − β′

)
lim
m→∞

(
β−mpm(k−1)aF∗α (pm)

)
= lim

m→∞

(
β−maFα (pm)

)
∈ Q̂p.

Now assume ordp (β) < ordp (β′) and ordp(β
′) 6= k − 1. Note that since ordp (β) < ordp (β′), if

the limit Hα,δ exists, then the limit (3.14), with H̃ = Fα,δ, must be identically zero. However,
by equation (3.16), the limit (3.14) exists if and only if F∗α,δ|U(p) is a p-adic modular form.

Combining this with equation (3.17) implies that the limit Hα,δ exists if and only if F∗α,δ|U(p)

is a p-adic modular form. For (α, δ) given so that F∗α,δ|U(p) is a p-adic modular form, one may
again use the Hecke operators to obtain that

(3.21) Hα,δ = Lα,δEg−βg|V (p),

where the first coefficient of Hα,δ is

(3.22) Lα,δ := lim
m→∞

(
β′
−m

aFα,δ (pm)
)
∈ Q̂p.

We are now ready to treat the generic case.

Proof of Theorem 1.1. By Proposition 3.3 (2), the first part of Theorem 1.1 (1) is equivalent to
showing that precisely one α ∈ AM exists so that

Dk−1 (Hα) = hα = 0.

Fix α0 ∈ AM . Equation (3.19) gives

(3.23) hα0 = Lα0

(
g − β′g|V (p)

)
,

where Lα0 is defined in equation (3.20). Let γ ∈ Q̂p be given and write α = α0 + γ. Then by
the definitions (3.7) of hα and (1.11) of Fα, one has

hα = hα0 − γ lim
m→∞

(
β−mg|U (pm)

)
.

Clearly this limit is a Hecke eigenform with the same eigenvalues as g and level pN , while it is
an eigenform under the U(p)-operator with eigenvalue β by construction, and a straightforward
calculation shows that

(3.24) lim
m→∞

(
β−mg|U (pm)

)
=

β

β − β′
(
g − β′g|V (p)

)
.

Therefore by equations (3.23) and (3.24), we obtain that

hα =

(
Lα0 −

β

β − β′
γ

)(
g − β′g|V (p)

)
.
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Thus, hα = 0 if and only if

(3.25) γ = Lα0

(
β − β′

β

)
.

Choosing α0 = aM (1) above and noting that the first coefficient of FaM (1)|U(pm) is precisely
bM (pm) establishes equation (1.6). This concludes the proof of Theorem 1.1 (1).

We now turn to the proof of Theorem 1.1 (2). Since ordp(β
′) 6= k−1, we may use Proposition

3.3 (3), which states that Fα,δ is a p-adic modular form if and only if Dk−1 (Hα,δ) = hα,δ = 0.
We begin by taking α1 to be the unique choice from above so that hα1 = 0 and assume that
hα,δ = 0. Since g − βg|V (p) is an eigenform under the U(p)-operator with eigenvalue β′ and
ordp(β) < ordp(β

′), we have that

lim
m→∞

(
β−m (g − βg|V (p)) |U (pm)

)
= 0.

Therefore,

lim
m→∞

(
β−mFα,δ|U (pm)

)
= lim

m→∞

(
β−mFα|U (pm)

)
,

and it follows that α = α1. Indeed, if one has

lim
m→∞

(
β−mFα,δ|U (pm)

)
6= 0,

then the fact that ordp(β
′) > ordp(β) implies that the limit hα,δ does not even exist. Because

F∗α1
is a p-adic modular form by Proposition 3.3 (2), equations (3.17) and (3.18) with H̃ = Fα1,0

imply that the limit hα1,0 exists. Since g − βg|V (p) has eigenvalue β′ under the U(p)-operator,
equations (3.21) and (3.22) give that

hα1,δ = (Lα1,0 − δ) (g − βg|V (p)) ,

for Lα1,0 defined in equation (3.22). It again follows that this limit is zero if and only if δ =
Lα1,0. �

4. Shadows with Complex Multiplication

For this section we assume that g has CM. We will use the following lemma, which follows by
a direct calculation and the fact that in this case the coefficients of M+ are contained in Kg(ζ)
for some root of unity ζ by Theorem 1.3 of [12]. For a Dirichlet character χ and a formal power

series H(q) =
∑

n�−∞
a(n)qn we define H(q) twisted by χ as

(H ⊗ χ) (q) :=
∑

n�−∞
a(n)χ(n)qn.

Furthermore, for a quadratic field K we denote the character associated to K by χK .

Lemma 4.1. Let M ∈ H2−k(N,χ) be good for g, where g is a cusp form with CM by K =
Q(
√
−D). Then the twist

R :=
1

2
(M +M ⊗ χK)⊗ χK

is a weakly holomorphic modular form. In particular, there exists a weakly holomorphic modular
form R with coefficients in Kg(ζ), where ζ is a primitive DN -th root of unity, so that whenever
χK(n) = 1 the coefficients aM (n) and aR(n) are equal and otherwise we have aR(n) = 0.

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let p - N be split in OK . By equation (3.25), the claim that α = 0 is the
unique choice from Theorem 1.1 (1) is equivalent to showing that L0 = 0. However, by Lemma
4.1 we know that

aF0 (pm) = aDk−1(M) (pm) = aDk−1(R) (pm) .

Since R is a weakly holomorphic modular form with algebraic coefficients, Proposition 2.1 of
[15] implies that there exists an constant A ≥ 0, depending only on R, such that

ordp

(
aDk−1(R) (pm)

)
≥ m(k − 1)−A,

while ordp(β
m) = 0, and it follows that L0 = 0. �

Proof of Proposition 1.4. Let p - N be inert in OK . By Theorem 1.3 of [12], the coefficients of

M+ are contained in Kg(ζ), where ζ is a primitive DN -th root of unity. But Kg(ζ) ⊆ Q ↪→ Q̂p

so that F̃α, as defined in (1.8), clearly has coefficients in Q̂p for every α ∈ Q̂p. We will first show
that the p-adic limit

(4.1) Wα := lim
m→∞

(
β−2mF̃α|U

(
p2m+1

))
is an element of Q̂p[[q]]. By Proposition 2.3 of [15], limit (4.1) exists for α = 0. Since g is an

eigenform under the Hecke operator T (p) with eigenvalue ag(p) = 0 and −β2 = χ(p)pk−1, one
obtains that

(4.2) g|U(p) = β2g|V (p).

Iterating U(p) in equation (4.2) together with the fact that g|V (p)|U(p) = g gives that

(4.3) β−2mg|V (p)|U
(
p2m+1

)
= g.

Therefore, the limit Wα exists. Its first coefficient is given by

L̃α := aWα(1) = lim
m→∞

(
β−2ma

F̃α

(
p2m+1

))
.

Clearly by evaluating the first coefficient for W0 and determining the linear dependence on α of
the first coefficient by equation (4.3), one obtains

(4.4) L̃α = L̃0 − α.

Choosing δ := −α
β and α̃ := −δ gives Fα̃,δ = F̃α. Whenever (n, pN) = 1, multiplying by β−2m

and acting by U
(
p2m+1

)
on both sides of equation (2.7) hence yields the equation

(4.5) β−2mF̃α|U
(
p2m+1

)
|T (n) = ag(n)β−2mF̃α|U

(
p2m+1

)
+ β−2mrn|U

(
p2m+1

)
.

Since rn ∈ Dk−1
(
M !

2−k(N,χ)
)
, Proposition 2.1 of [15] implies that

lim
m→∞

(
β−2mrn|U

(
p2m+1

))
= 0.

Hence Wα|T (n) = ag(n)Wα. Since Wα|U
(
p2
)

= β2Wα, inductively computing the coefficients
yields that

Wα = L̃αg +Apg|V (p),

where Ap := aWα(p). To conclude the proposition, it remains to show that Ap = 0 to establish
that

(4.6) Wα = L̃αg,
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and when L̃α 6= 0 (namely, precisely when α 6= L̃0), the limit in equation (1.10) becomes

L̃−1
α Wα = g.
To show that Ap = 0, we first note that equation (4.3) implies that

Ap = lim
m→∞

(
β−2maDk−1(M)

(
p2m+2

)
− αβ−2mag

(
p2m+1

))
= lim

m→∞

(
β−2maDk−1(M)

(
p2m+2

)
− αag(p)

)
,

but ag(p) = 0 because p is inert, and hence Ap is independent of α. Since χK
(
p2m+2

)
= 1, we

know by Lemma 4.1 that

Ap = lim
m→∞

(
β−2maDk−1(M)

(
p2m+2

))
= lim

m→∞

(
β−2maDk−1(R)

(
p2m+2

))
.

By Proposition 2.1 of [15], there exists a constant A ≥ 0 such that aDk−1(R)

(
p2m+2

)
has p-order

at least (2m + 2)(k − 1) − A, while ordp
(
β2m

)
= m(k − 1), and it follows that Ap = 0. This

completes the proof of Proposition 1.4.
�

We now prove Theorem 1.3.

Proof of Theorem 1.3. Since g has CM by K and p is inert in OK , one has β′ = −β. By
Proposition 3.3 (3), Fα,δ, as defined in (1.5), is a p-adic modular form of weight 2− k, level pN

and Nebentypus χ if and only if hα,δ = 0. Choose δ := −α
β and α̃ := −δ, so that Fα̃,δ = F̃α.

Hence hα̃,δ = 0 if and only if Wα = 0, where Wα was defined in equation (4.1). However,
combining equations (4.4) and (4.6), one see that Wα = 0 if and only if

α = L̃0 = lim
m→∞

(
β−2ma

F̃0

(
p2m+1

))
.

Thus we have shown that F̃α is a p-adic modular form if and only if α = L̃0, which is the
statement of the theorem. �

We conclude with the case when p|N , and in particular the case when g has CM and p is a
ramified prime. We first show that Eg is a p-adic modular form.

Proposition 4.2. If p | N and ag(p) = 0, then Eg is a p-adic modular form of level N and
Nebentypus χ.

Proof. Since ag(p) = 0 and p | N , one has ag(pn) = 0 for every n ∈ N. For n relatively prime to
p, Euler’s Theorem states that for any C ∈ N, we have

nC(pm−pm−1) ≡ 1 (mod pm).

Choosing C large enough to satisfy `m := C(pm − pm−1) − (k − 1) > 0 gives, using definition
(1.2), that

Eg(z) ≡
∑
n≥1

ag(n)nC(pm−pm−1)−(k−1)qn = D`m(g) (mod pm).

But the image under D`m of a modular form is itself a p-adic modular form (see [18] for the
level 1 case), and the proposition follows. �

In order to prove Theorem 1.5, we will use an argument similar to that given in the proof of
Proposition 4.2 to show that Fα is a p-adic modular form of level N and Nebentypus χ.
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Proof of Theorem 1.5. Since g|U(p) = 0, one concludes that g⊗χ2
p = g. It follows that M+⊗χ2

p

has shadow g
‖g‖ and thus differs from M+ by a weakly holomorphic modular form. Hence for

every α ∈ AM one has

(4.7) Fα ⊗ χ2
p −Fα = M+ ⊗ χ2

p −M+,

which is a weakly holomorphic modular form. In particular, for the choice α = aM (1), the
left hand side of equation (4.7) has coefficients in Kg since FaM (1) has its coefficients in Kg by

Theorem 1.1 of [15]. Thus the weakly holomorphic modular form M+⊗χ2
p−M+ has coefficients

in Kg.

Moreover Fα ⊗ χ2
p = Dk−1

(
Fα ⊗ χ2

p

)
is a weakly holomorphic modular form. We then note

that for every n, the (pn)-th coefficient of Fα ⊗ χ2
p clearly equals zero. But then we may

argue as in the proof of Proposition 4.2, using Euler’s Theorem to approximate Fα ⊗ χ2
p by

D`m
(
Fα ⊗ χ2

p

)
. Similarly to the case for holomorphic modular forms, the image of any weakly

holomorphic modular form under D`m is a p-adic modular form, which can be shown by using
the weight 2 Eisenstein series E2 and then noting that E2 is a p-adic modular form. Thus Fα⊗χ2

p

is a p-adic modular form which differs from Fα by a weakly holomorphic modular form with

coefficients in Kg ⊆ Q̂p, and it follows that Fα is also a p-adic modular form. This concludes
the proof of the theorem. �
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