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Abstract. In previous work, we introduced harmonic Maass-Jacobi forms. The space of
such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as
well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of
mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose nat-
urally into holomorphic and non-holomorphic parts. In this paper, we give exact formulas
for the Fourier coefficients of the holomorphic parts of harmonic Maass-Jacobi forms and,
in particular, we obtain explicit formulas for the Fourier coefficients of weak Jacobi forms.

1. Introduction and statement of results

In 1985, Eichler and Zagier [5] systematically developed a theory of Jacobi forms. That
theory has since grown enormously, establishing deep connections to many other areas of
mathematics and physics, such as the theory of Heegner points (see Gross, Kohnen, and
Zagier [6]), the theory of elliptic genera (see Zagier [10]), string theory (for example, see
Cardy [4]), and more recently, mock theta functions (see Zwegers [11]). In [2], we initiated a
theory of harmonic Maass-Jacobi forms, which includes the holomorphic Jacobi forms of [5],
the real-analytic Jacobi forms in [11], and certain Maass-Jacobi-Poincaré series as explicit
examples. Of particular interest is Ĵcusp

k,m , a distinguished subspace of harmonic Maass-Jacobi
forms, which we will briefly review in Section 2. If φ ∈ Ĵcusp

k,m , then φ = φ+ + φ−, where

(1) φ+(τ, z) =
∑

n,r∈Z
D#∞

c+(n, r)qnζr

is the holomorphic part of φ, while the non-holomorphic part of φ is given by

(2) φ−(τ, z) =
∑

n,r∈Z
D>0

c−(n, r)Γ
(

3
2
− k,

πDy

m

)
qnζr.

Here and throughout the paper, τ = x + iy ∈ H (the usual complex upper half plane),
z = u + iv ∈ C, q := e2πiτ , ζ := e2πiz, D := r2 − 4nm, and Γ(s, x) :=

∫∞
x e−tts−1 dt is the

incomplete Gamma-function. In particular, if φ ∈ Ĵcusp
k,m is holomorphic, then φ = φ+ is a

weak Jacobi form. If in addition, the Fourier series in (1) is only over D ≤ 0, then φ is a
Jacobi form as in [5] and if the Fourier series in (1) is only over D < 0, then φ is a Jacobi
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cusp form. Note that our notion of weak Jacobi form is slightly more general then the one
in [5], where weak Jacobi forms have an expansion as in (1) with the additional condition
that n ≥ 0. If φ+ is as in (1), then we call

(3) Pφ+(τ, z) :=
∑

n,r∈Z
D>0

c+(n, r)qnζr

the principal part of φ+.

In this paper, we extend ideas of [1] to obtain exact formulas for the coefficients of φ+ in
(1). It turns out that the principal part Pφ+ in (3) dictates the coefficients of φ+ for D < 0,
as explained in the following theorem, which is the main result of this paper.

Theorem 1. Let φ ∈ Ĵcusp
k,m with holomorphic part φ+ as in (1). If k < 0 is even and

D′ := r′2 − 4mn′ < 0, then

c+(n′, r′) =
1

2Γ
(

5
2 − k

)
∑

r (mod 2m)
D>0

c+(n, r)c(k)
n,r(n

′, r′),

where Γ(·) is the Gamma-function and

(4) c(k)
n,r(n

′, r′) := b(k)
n,r(n

′, r′) + (−1)kb(k)
n,r(n

′,−r′)

with

b(k)
n,r(n

′, r′) :=
√

2πi−km− 1
2

(
|D′|
D

) k
2−

3
4 ∑

c>0

c−
3
2 Kc(n, r, n′, r′)Ik− 3

2

(
π
√
|D′|D
mc

)
.

Here Is(x) is the usual I-Bessel function of order s and Kc(n, r, n′, r′) is the Kloosterman
sum

Kc(n, r, n′, r′) := e2mc(−rr′)
∑

d (mod c)∗

λ (mod c)

ec
(
d̄mλ2 + n′d− r′λ + d̄n + d̄rλ

)
,

where ec(x) := e
2πix

c and the sum over d runs through the primitive residue classes modulo
c and d̄ is the inverse of d modulo c.

In Section 2, we follow Bruinier and Funke [3] to define a pairing of harmonic Maass-
Jacobi forms and skew-holomorphic Jacobi forms. We find that this pairing is determined
by the principal part of the holomorphic part of a harmonic Maass-Jacobi form. In Section
3, we recall the Maass-Jacobi-Poincaré series from [2]. Given a harmonic Maass-Jacobi form,
linear combinations of such Poincaré series allow one to construct a new harmonic Maass-
Jacobi form whose holomorphic part has the same principal part as the given one. This
is the key idea in our proof of Theorem 1. Finally, we give an explicit application of our
results. The ring of Jacobi forms of even weights is generated (over the ring of modular
forms) by certain weak Jacobi forms of index 1 and weights −2 and 0, which we denote by
φ−2,1 and φ0,1, respectively (see §8 and §9 of [5]). We show that φ−2,1 can be expressed as
Jacobi-Poincaré series. It is likely that φ0,1 can also be realized as a Jacobi-Poincaré series,
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but this requires the existence of a Maass-Jacobi Poincaré series of weight 0, which we have
not constructed yet.

2. The pairing

In this section, we introduce a pairing between skew-holomorphic Jacobi forms and har-
monic Maass-Jacobi forms, which is vital to our proof of Theorem 1 in Section 3. Let Jsk

k,m

denote the space of skew-holomorphic Jacobi forms of weight k and index m and let Jsk,cusp
k,m

be the subspace of cusp forms (for details, see Skoruppa [8, 9]). If φ, ψ ∈ Jsk,cusp
k,m , then the

Petersson scalar product of φ and ψ is defined by

〈φ, ψ〉 :=
∫

ΓJ\H×C
φ(τ, z)ψ(τ, z)e−

4πmv2

y ykdV,

where ΓJ := SL2(Z)!Z2 is the Jacobi group and dV := dudvdxdy
y3 is the ΓJ -invariant volume

element on H × C (for details, see Skoruppa [7, 9]). Note that skew-holomorphic Jacobi
forms have a theta decomposition, i.e., if φ(τ, z) =

∑
n,r∈Z
D≥0

c(n, r)e−
πDy

m qnζr ∈ Jsk
k,m, then

(5) φ(τ, z) =
∑

µ (mod 2m)

hµ(τ)θm,µ(τ, z),

where
hµ(τ) :=

∑

N≥0

cµ(N)q
N
4m

with

(6) cµ(N) :=

{
c
(

r2−N
4m , r

)
for r ∈ Z, r ≡ µ (mod 2m), and N ≡ µ2 (mod 4m)

0 if N *≡ µ2 (mod 4m)

and

(7) θm,µ(τ, z) :=
∑

r∈Z
r≡µ (mod 2m)

q
r2

4m ζr.

If φ(τ, z) =
∑

hµ(τ)θm,µ(τ, z) ∈ Jsk,cusp
k,m and ψ(τ, z) =

∑
gµ(τ)θm,µ(τ, z) ∈ Jsk,cusp

k,m , then
analogous to Theorem 5.3 of [5], one finds that

(8) 〈φ, ψ〉 =
∫

F

∑

µ (mod 2m)

hµ(τ)gµ(τ)yk−5/2dxdy,

where F is the standard fundamental domain for the action of SL2(Z) on H.
We wish to review the definition of harmonic Maass-Jacobi forms of [2]. Therefore, we

need to recall the slash action for Jacobi forms and a certain differential operator which is
invariant under that action. If φ : H× C → C, then

(9)
(
φ
∣∣
k,m

A
)

(τ, z) := φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(cτ + d)−k e

2πim

„
− c(z+λτ+µ)2

cτ+d +λ2τ+2λz

«
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for all A =
[(

a b
c d

)
, (λ, µ)

]
∈ ΓJ . Furthermore, if ∂w := ∂

∂w for a variable w, then

Ck,m :=− 2(τ − τ)2∂ττ − (2k − 1)(τ − τ)∂τ +
(τ − τ)2

4πim
∂τzz

+
k(τ − τ)
4πim

∂zz +
(τ − τ)(z − z)

4πim
∂zzz − 2(τ − τ)(z − z)∂τz + k(z − z)∂z

+
(τ − τ)2

4πim
∂τzz +

(
(z − z)2

2
+

k(τ − τ)
4πim

)
∂zz +

(τ − τ)(z − z)
4πim

∂zzz

which (up to the constant 5
8 + 3k−k2

2 ) is the Casimir operator with respect to the action in
(9).

Definition 1. A function φ : H × C → C is a harmonic Maass-Jacobi form of weight k
and index m if φ is real-analytic in τ ∈ H and z ∈ C and satisfies the following conditions:

(1) For all A ∈ ΓJ ,
(
φ

∣∣
k,m

A
)

= φ.

(2) We have that Ck,m(φ) = 0.

(3) We have that φ(τ, z) = O
(
eaye2πmv2/y

)
as y →∞ for some a > 0.

Of particular interest are harmonic Maass-Jacobi forms, which are holomorphic in z; the
space of such forms is denoted by Ĵk,m.

The differential operator

ξk,m := yk−3/2
(
−2iy∂τ − 2iv∂z +

y

4πm
∂zz

)

plays an important role in this context. It maps harmonic Maass-Jacobi forms that are
holomorphic in the Jacobi variable z to skew-holomorphic Jacobi forms. Moreover, with
Ĵcusp

k,m ⊂ Ĵk,m we denote the space of harmonic Maass-Jacobi forms, which appear in the
pre-image of skew-holomorphic Jacobi cusp forms under ξk,m. The next proposition was
proved in [2].

Proposition 1. ([2]) The map

ξk,m : Ĵcusp
k,m → Jsk,cusp

3−k,m

is surjective.

If φ ∈ Ĵcusp
k,m and ψ ∈ Jsk,cusp

3−k,m , then we define the (non-degenerate) pairing

(10) {φ, ψ} := 〈ξk,m(φ), ψ〉 .

The following result extends Proposition 3.5 of [3] to Jacobi forms and shows that the pairing
in (10) is determined by the principal part Pφ+ of φ+.
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Proposition 2. Let φ = φ+ + φ− ∈ Ĵcusp
k,m with φ+ and φ− as in (1) and (2) and let

ψ(τ, z) =
∑

n,r∈Z
D>0

d(n, r)e−
πDy

m qnζr ∈ Jsk,cusp
3−k,m . If k is even, then

{φ, ψ} =
∑

r (mod 2m)
D>0

c+(n, r)d(n, r).

Proof: Let
ψ(τ, z) =

∑

µ (mod 2m)

gµ(τ)θm,µ(τ, z)

with
gµ(τ) =

∑

N>0

dµ(N)q
N
4m

be the theta decomposition of ψ. It is easy to see that elements in Ĵcusp
k,m and hence also

their holomorphic and non-holomorphic parts have theta decompositions. More precisely,
we have

φ(τ, z) =
∑

µ (mod 2m)

hµ(τ)θm,µ(τ, z),

where hµ = h+
µ + h−µ ,

h+
µ (τ) =

∑

N#∞
c+
µ (N)q−

N
4m ,

h−µ (τ) =
∑

N>0

c−µ (N)Γ
(

3
2
− k,

πNy

m

)
q−

N
4m ,

and c±µ (N) is as in (6).
We now follow the proof of Proposition 3.5 in [3]. First, if k is even, then one verifies that

(11)
∑

µ (mod 2m)

hµgµ dτ is an SL2(Z)-invariant 1-form on H.

Set Lk := −2iy2∂τ and ξk := yk−2Lk. From (8) we have

{φ, ψ} = lim
t→∞

1
4m

4m−1∑

j=0

∫

Ft,j

∑

µ (mod 2m)

ξk− 1
2
(hµ) (τ)gµ(τ)y

1
2−k dxdy,

where each

Ft,j :=
{

τ ∈ H
∣∣∣∣ |τ − j| ≥ 1, 0 ≤ x− j ≤ 1

2
, y ≤ t, or |τ − j − 1| ≥ 1,

1
2
≤ x− j ≤ 1, y ≤ t

}

is a translation by j of the truncated fundamental domain Ft := {τ ∈ F | y ≤ t}, and where,
in addition, the “left half” is “cut and pasted” to the right. Let dω := dxdy

y2 denote the usual
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invariant volume form on H. With the help of Stokes’ Theorem, we find that

1
4m

4m−1∑

j=0

∫

Ft,j

∑

µ (mod 2m)

ξk− 1
2
(hµ) (τ)gµ(τ)y

1
2−k dxdy

=
1

4m

4m−1∑

j=0

∫

Ft,j

∑

µ (mod 2m)

Lk− 1
2
(hµ) gµ dω

=
Stokes

−1
4m

4m−1∑

j=0

∫

∂Ft,j

∑

µ (mod 2m)

hµgµ dτ

=
(11)

1
4m

∫ 4m

0

∑

µ (mod 2m)

hµ(x + it)gµ(x + it) dx

=
∑

µ (mod 2m)
N>0

c+
µ (N)dµ(N) +

∑

µ (mod 2m)
N>0

c−µ (N)dµ(N)Γ
(

3
2
− k,

πNt

m

)
,

where the last equation follows from inserting the Fourier expansions of hµ and gµ. Finally,

Γ
(

3
2 − k, πNt

m

)
= O

((
πNt
m

) 1
2−k

e−
πNt
m

)
as t →∞, which shows that

{φ, ψ} =
∑

µ (mod 2m)
N>0

c+
µ (N)dµ(N) =

∑

r (mod 2m)
D>0

c+(n, r)d(n, r).

!

3. Maass-Jacobi-Poincaré series and the proof of Theorem 1

In [2], we investigated Maass-Jacobi-Poincaré series, which we will now recall after in-
troducing necessary notation. Let Mν,µ be the usual M -Whittaker function. Let D =
r2 − 4nm *= 0, and for s ∈ C, κ ∈ 1

2Z, and t ∈ R \ {0}, define

Ms,κ(t) := |t|−
κ
2 Msgn(t)κ

2 ,s− 1
2
(|t|)

and

φ(n,r)
k,m,s(τ, z) := Ms,k− 1

2

(
−πDy

m

)
e2πirz−πr2y

2m +2πinx.

Set ΓJ
∞ :=

{[(
1 η
0 1

)
, (0, n)

]
| η, n ∈ Z

}
. Then the Poincaré series

(12) P (n,r)
k,m,s(τ, z) :=

∑

A∈ΓJ
∞\ΓJ

(
φ(n,r)

k,m,s

∣∣
k, m

A
)
(τ, z)

converges absolutely and uniformly for Re(s) > 5
4 and P (n,r)

k,m,s ∈ Ĵk,m if s = k
2 −

1
4 , k > 3 or

if s = 5
4 −

k
2 , k < 0. In [2], we determined the Fourier expansion of P (n,r)

k,m,s, which features a
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certain theta series ϑ(r)
k,m. It is not difficult to see that

(13) ϑ(r)
k,m(τ, z) = q−

r2

4m

(
θm,r(τ, z) + (−1)kθm,−r(τ, z)

)
.

For brevity, we will only recall the part of the Fourier expansion, which is needed for the
purpose of this paper. Let P (n,r)

k,m,s

+
denote the holomorphic part of P (n,r)

k,m,s. If D > 0 and
s = 5

4 −
k
2 , k < 0, then Corollary 1 of [2] and (13) imply that

(14) P (n,r)
k,m,s

+
= Γ

(
5
2
− k

)
q−

D
4m

(
θm,r(τ, z) + (−1)kθm,−r(τ, z)

)
+

∑

n′,r′∈Z
D′≤0

c(k)
n,r(n

′, r′)qn′ ζr′ ,

where (as before) D′ = r′2 − 4n′m. If D′ < 0, then c(k)
n,r(n′, r′) is as in (4).

Proof of Theorem 1. Let φ ∈ Ĵcusp
k,m (k < 0) with holomorphic part φ+ as in (1) and principal

part
Pφ+(τ, z) =

∑

µ (mod 2m)
N>0

c+
µ (N)q−

N
4m θm,µ(τ, z)

with c+
µ (N) as in (6). Equation (14) together with the identity c+

−µ(N) = (−1)kc+
µ (N) shows

that the holomorphic part of

ϕ :=
1

2Γ
(

5
2 − k

)
∑

r (mod 2m)
D>0

c+(n, r)P (n,r)

k,m, 54−
k
2

=
1

2Γ
(

5
2 − k

)
∑

µ (mod 2m)
N>0

c+
µ (N)P

„
µ2−N

4m ,µ

«

k,m, 54−
k
2

has the same principal part as φ+. Consider ψ := φ − ϕ ∈ Ĵcusp
k,m . Suppose that ψ

has a non-trivial non-holomorphic part. Then ξk,m (ψ) *= 0 and hence {ψ, ξk,m (ψ)} =
〈ξk,m (ψ) , ξk,m (ψ)〉 *= 0. On the other hand, Proposition 2 expresses {ψ, ξk,m (ψ)} in terms
of the principal part of ψ, which is zero by construction. This gives a contradiction and thus
ψ is necessarily holomorphic, i.e., ψ is a weak Jacobi form. Again, the principal part of ψ
is zero and hence ψ is a holomorphic Jacobi form (as in [5]) of weight k < 0. We conclude
that ψ = 0 and Theorem 1 follows. !

We end with an explicit example. Let φ−2,1(τ, z) = ζ − 2 + ζ−1 + . . . be the weak Jacobi
form of weight −2 and index 1 alluded to in the introduction. Note that

∑

n,r∈Z
D=1

qnζr =
∑

r≡1 (mod 2)

q
r2−1

4 ζr = q−
1
4 θ1,1(τ, z)

appears as the principal part of φ−2,1(τ, z) and also of 1
2Γ( 9

2)
P (0,1)

−2,1, 94
(τ, z). Hence we find

that
φ−2,1 =

1
2Γ

(
9
2

)P (0,1)

−2,1, 94
.
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