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1. Introduction and Statement of Results

A partition of a non-negative integer n is a non-increasing sequence of positive integers
whose sum is n. As usual, let p(n) denote the number of partitions of n. The generating
function for p(n) is given by the infinite product

(1.1)
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
.

Although there is a vast literature on the properties of p(n), typically motivated by
work of Ramanujan, some of the simplest questions remain open. For example, little is
known about p(n) modulo 2 and 3. Most results concerning the congruence properties of
p(n) have been proved using properties of (1.1). Theorems typically depend on q-series
identities, the theory of modular equations, or the theory of Hecke operators acting on
p-adic modular forms. Here we propose a new approach, one based on the properties
of algebraic numbers associated to CM points.

Before we discuss the partition function, we begin by considering the q-series

(1.2)
∞∑

n=−1

a(n)qn := q−1

∞∏
n=1

(1− qn)

(1 + qn)(1− q4n)6
= q−1 − 2 + 8q3 − 12q4 + 39q7 − · · · .

It turns out that the following congruences hold for the coefficients a(n).

Theorem 1.1. For every non-negative integer n, we have

a(8n + 3) ≡ 0 (mod 8),

a(3n + 1) ≡ 0 (mod 3).

Furthermore, if −n ≡ 0, 1 (mod 4) is negative, then

a(n) ≡

{
8H(−n) (mod 16) if n ≡ 3 (mod 8),

4H(−n) (mod 5) if
(

n
5

)
= −1,

where H(−n) is the Hurwitz-Kronecker class number for −n.
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The congruences modulo 8 and 3 are easy to prove using q-series manipulations, or the
theory of Hecke operators. Instead we give an “arithmetic” proof uniformly describing
all four congruences. Such arguments, when they apply, arithmetically explain the
congruence properties of integers like a(n) modulo small powers of small primes.

Although we defer the proof of Theorem 1.1 to Section 2, here we illustrate the simple
idea underlying the proof by explaining the congruence

(1.3) a(35) = 69168 ≡ 0 (mod 16).

The class number H(−35) denotes the number of classes of positive definite integral
binary quadratic forms with discriminant −35 under the action of PSL2(Z). It turns
out that H(−35) = 2, and one may represent these two classes of quadratic forms by

Q1(x, y) := x2 + xy + 9y2 and Q2(x, y) := 3x2 + xy + 3y2.

If τQ1 and τQ2 are the unique points in the upper half of the complex plane which are
roots of Q1(x, 1) = 0 and Q2(x, 1) = 0, respectively, and if j(z) is the usual modular
j-function

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · ·
(q := e2πiz throughout), then it is a classical fact that

j(τQ1) = −58982400− 26378240
√

5 and j(τQ2) = −58982400 + 26378240
√

5.

These numbers satisy the congruence

(1.4) j(τQi
)− 744 ≡ 8 (mod 16).

Thanks to recent work of Zagier [4], it is not difficult to show that

(1.5) a(35) ≡ −(j(τQ1)− 744))− (j(τQ2)− 744) = 117966288 (mod 240).

Therefore, congruence (1.3) follows immediately from (1.4) and (1.5).
The proof of Theorem 1.1 depends on the fact that (1.4) and (1.5) hold in greater

generality. In view of this arithmetic proof for the a(n) congruences, it is natural to ask
whether such an approach can be made to apply to the partition function p(n). Success
of such a strategy requires analogs of both (1.4) and (1.5). Here we take the first step
and obtain an analog of (1.5). In other words, we show that p(n) is a “trace” of CM
values of a fixed modular invariant.

To state this result, we first fix notation. Let d ≡ 0, 3 (mod 4) be a positive inte-

ger, and let Q(p)
d be the set of positive definite integral binary quadratic forms (note.

including imprimitive forms, if there are any)

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

of discriminant −d = b2− 4ac, with the additional property that 6 | a. The congruence

subgroup Γ0(6) acts on Q(p)
d . Specifically, if M =

(
α β
γ δ

)
∈ Γ0(6), then this action is

defined by

(1.6) Q ◦M := [a, b, c](αx + βy, γx + δy) := [a′, b′, c′].
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Since 6 | a′, it follows that this action is well defined.
For each Q, let τQ be the unique complex number in H, the upper half of the complex

plane, which is a root of Q(x, 1) = 0, and let ΓτQ
be its isotropy subgroup in Γ0(6). If

f(z) : H → C is a Γ0(6)-invariant function, then for a positive integer n we define the

discriminant −24n + 1 twisted trace of f(z), say Tr(p)(f ; n), by

(1.7) Tr(p)(f ; n) :=
∑

Q∈Q(p)
24n−1

.
Γ0(6)

χ12(Q)f(τQ)

#ΓτQ

,

where χ12(Q) is defined by

χ12([a, b, c]) :=

(
12

b

)
.

Remark. It is simple to check that b ≡ b′ (mod 12) in (1.6). Therefore, formula (1.7) is
well defined.

The partition numbers p(n) are traces of a Poincaré series P (z) which is a weakly
holomorphic Maass form. To define this series, let Is(x) denote the usual I-Bessel
function, the so-called modified Bessel function of the first kind, and let

Γ∞ :=

{
±
(

1 n
0 1

)
: n ∈ Z

}
denote the translations within SL2(Z). This Poincaré series is defined by

(1.8) P (z) := 4π
∑

A∈Γ∞\Γ0(6)

Im(Az)
1
2 I 3

2
(2πIm(Az))e(−Re(Az)),

where for x ∈ R we let e(x) := e2πix.

Theorem 1.2. If n is a positive integer, then

p(n) =
Tr(p)(P ; n)

24n− 1
.

In particular, we have that

p(n) ≡ −Tr(p)(P ; n) (mod 24).

Theorem 1.2 is the partition function analog of (1.5). In both cases we have power
series coefficients expressed as sums of a modular invariant over equivalence classes of
CM points. In (1.5) we have traces of j(z) − 744 modulo 240, and in Theorem 1.2 we
have an exact identity describing p(n) as traces of P (z). It turns out that these two
facts have even more in common. If s > 1 and

Fs(z) := −12 + π
∑

A∈Γ∞\SL2(Z)

Im(Az)
1
2 Is− 1

2
(2πIm(Az))e(−Re(Az))
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(compare with (1.8)), then Niebur [2] showed that the analytic continuation of Fs(z),
as s → 1, is 1

2
(j(z) − 744). Consequently, in both cases the coefficients are traces of

Poincaré series of similar type.

Questions. In view of these results and analogies, it is natural to raise the following
questions.

(1) Is there a simple description of P (z) in terms of

E∗
2(z) = − 3

πIm(z)
+ 1− 24

∞∑
n=1

σ1(n)qn

and canonical modular forms such as Eisenstein series and quotients of Dedekind-
eta functions?

(2) Are there suitable algebraic normalizations of the values of P (z) at CM points?
(3) If so, then are there analogs of congruences such as (1.4) for these normaliza-

tions?

Remark. A positive solution to Question (1) is presumably the most direct approach to
Question (2).

In Section 2 we recall classical congruence properties for values of the j-function,
and we recall Zagier’s work on traces of singular moduli. Then in Section 3 we prove
Theorem 1.1. Theorem 1.2 is simply an arithmetic reformulation of Rademacher’s exact
formula for p(n). In Section 4 we recall a useful version of this formula which describes
p(n) as an infinite sum involving I-Bessel functions and Salié-type sums. We then use
the classical fact that such Salié sums may be rewritten as Poincaré-type series over
orbits of CM points to prove Theorem 1.2. In Section 5 we conclude by describing the
Poincaré series P (z) as a Maass form.

2. Singular moduli and the proof of Theorem 1.1

Here we prove Theorem 1.1. The proof follows from the generalizations of (1.4) and
(1.5). We begin by recalling these generalizations.

As before, let

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · ·
be the usual modular j-function. Its values at CM points in the upper half of the
complex plane are known as singular moduli, and they are algebraic integers.

The facts we require about singular moduli are easily described in the language of
quadratic forms. To make this precise, let d ≡ 0, 3 (mod 4) be a positive integer, and
let Qd be the set of positive definite integral binary quadratic forms (note. including
imprimitive forms, if there are any)

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

with discriminant −d = b2 − 4ac. For each Q, let τQ be the unique complex number in
the upper half-plane which is a root of Q(x, 1) = 0.



AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION 5

It is a classical fact that the singular modulus j(τQ) is an algebraic integer which
depends only on the equivalence class of Q under the action of Γ := PSL2(Z). Following
Zagier, we use these singular moduli to define certain traces which turn out to be integers
closely related to the integers a(n) in Theorem 1.1. If ωQ ∈ {1, 2, 3} is given by

ωQ :=


2 if Q ∼Γ [a, 0, a],

3 if Q ∼Γ [a, a, a],

1 otherwise,

then define the trace Tr(j − 744; d) by

(2.1) Tr(j − 744; d) :=
∑

Q∈Qd/Γ

j(τQ)− 744

ωQ

.

Zagier proved (see Theorem 1 of [4]) the following theorem concerning the generating
function of these traces.

Theorem 2.1. If integers b(n) are defined by

∞∑
n=−1

b(n)qn :=

(
∞∑

n=−1

a(n)qn

)
·

1 + 240
∞∑

n=1

∑
d|n

d3q4n

 = q−1 − 2 + 248q3 − · · · ,

then for every positive integer d ≡ 0, 3 (mod 4) we have

Tr(j − 744; d) = −b(d).

Example. To illustrate Theorem 2.1, consider the case where d = 3. We have H(−3) =
1/3, and the quadratic form Q = x2 + xy + y2 can be chosen to represent Q3/Γ.
Therefore, it follows that

Tr(j − 744; 3) =
j
(
−1+

√
−3

2

)
− 744

3
= −248.

The fact that b(3) = 248 confirms the d = 3 case of Theorem 2.1.

It turns out that singular moduli satisfy some delightfully simple congruences modulo
small powers of small primes. We require the following congruences proven by Gross
and Zagier in [1].

Theorem 2.2. If d ≡ 0, 3 (mod 4) is a positive integer and Q ∈ Qd, then

d ≡ 3 (mod 8) =⇒ j(τQ) ≡ 0 (mod 215),

d ≡ 1 (mod 3) =⇒ j(τQ) ≡ 1728 (mod 36),

d ≡ 2, 3 (mod 5) =⇒ j(τQ) ≡ 0 (mod 53).
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3. Proof of Theorem 1.1

Here we use the facts given in Section 2 to prove Theorem 1.1. By construction, the
integers b(n) defined in the statement of Theorem 2.1 satisfy the congruence

a(n) ≡ b(n) (mod 240)

for all n. Therefore, it suffices to prove the claimed congruences for the integers b(n).
Since we have that

H(−d) =
∑

Q∈Qd/Γ

1

ωQ

,

equation (2.1) and the congruences in Theorem 2.2 imply that

d ≡ 3 (mod 8) =⇒ Tr(j − 744; d) ≡ 8H(−d) (mod 16),

d ≡ 1 (mod 3) =⇒ Tr(j − 744; d) ≡ 0 (mod 3),

d ≡ 2, 3 (mod 5) =⇒ Tr(j − 744; d) ≡ H(−d) (mod 5).

Theorem 1.1 now follows by applying Theorem 2.1.

4. Rademacher’s sums and the proof of Theorem 1.2

Theorem 1.2 is an arithmetic reformulation of Rademacher’s exact formula for p(n).
Here we recall one version of his famous result (see pages 273 and 282 of [3]).

Theorem 4.1. If n is a positive integer, then

p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
I 3

2

(
π
√

24n− 1

6k

)
,

where

Ak(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

(−1){
x
6} · e

( x

12k

)
.

In the sum, x runs through the residue classes modulo 24k, and {α} denotes the integer
nearest to α.

Remark. Note that {x
6
} is well defined for those x appearing in the definition of Ak(n).

The sums Ak(n) are Salié type sums, and they are easily described in terms of orbits
of CM points under the action of Γ0(6).

Proposition 4.2. If k and n are positive integers, then we have

Ak(n) =

√
k

3

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∑
A∈Γ∞\Γ0(6)

Im(AτQ)=
√

24n−1
12k

e (−Re (AτQ)) .
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Proof. For every integral binary quadratic form

Q(x, y) := 6kx2 + bxy + cy2

of discriminant −24n + 1, we have that

τQ =
−b + i

√
24n− 1

12k
.(4.1)

Obviously, the coefficient b of Q solves the congruence

(4.2) b2 ≡ −24n + 1 (mod 24k).

Conversely, every solution of (4.2) corresponds to a quadratic form with an associ-
ated CM point as above. Therefore there is a one-to-one correspondence between the
solutions of

b2 − 24kc = −24n + 1 (k, b, c ∈ Z with k, c > 0)

and the points of the orbits ⋃
Q∈Q(p)

24n−1/Γ0(6)

{
AτQ : A ∈ Γ0(6)/ΓτQ

}
.

The group Γ∞ preserves the imaginary part of such a CM point τQ, and preserves
(4.2). However, it does not preserve the middle coefficient b of the corresponding qua-
dratic forms modulo 24k. It identifies (but does not distinguish) the congruence classes

b, b + 12k (mod 24k) occuring in the definition of Ak(n). Since χ12(Q) = (−1){
b
6
} (see

(124.1) on page 283 of [3]) is fixed under the action of Γ0(6), which includes Γ∞, the cor-
responding summands for such pairs of congruence classes are equal. The proposition
now follows easily since ΓτQ

and Γ∞ both contain the negative identity matrix. �

Proof of Theorem 1.2. Theorem 4.1 and Proposition 4.2 give

p(n) =
2π√

3
(24n− 1)−

3
4

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∞∑
k=1

1√
k

∑
A∈Γ∞/Γ0(6)

Im(AτQ)=
√

24n−1
12k

I 3
2
(2πIm(AτQ)) · e(−Re(AτQ)).

The definition of P (z), combined with the obvious change of variable relating 1/
√

k to

Im(AτQ)
1
2 , gives

p(n) =
4π

24n− 1

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∑
A∈Γ∞/Γ0(6)

Im(AτQ)
1
2 I 3

2
(2πIm(AτQ))e(−Re(AτQ))

= (24n− 1)−1Tr(p)(P ; n).

�
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5. The Poincaré series P (z)

Here we discuss the properties of the Poincaré series P (z). By definition, we have

P (z) := 4π
∑

A∈Γ∞\Γ0(6)

Im(Az)
1
2 I 3

2
(2πIm(Az))e(−Re(Az)).

Since we have
y1/2I 3

2
(y) = O

(
y2
)

( y → 0) ,

it follows that the defining series for P (z) is absolutely uniformly convergent. Moreover,
its definition implies that if M ∈ Γ0(6), then

P (Mz) = P (z)

for all z = x + iy ∈ H. Therefore, P (z) is a Γ0(6)-invariant function on H.
It is a weight 0 weakly holomorphic Maass form for Γ0(6). Using the properties of

I 3
2
(x), the function

f(z) := πy
1
2 I 3

2
(2πy)e(−x)

is easily shown to satisfy
∆ (f(z)) = −2f(z),

where

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
is the usual weight 0 hyperbolic Laplacian. Thus, it follows that

∆ (P (z)) = −2P (z).
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