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Abstract. Despite the presence of many famous examples, the precise interplay be-
tween basic hypergeometric series and modular forms remains a mystery. We consider
this problem for canonical spaces of weight 3/2 harmonic Maass forms. Using recent
work of Zwegers, we exhibit forms that have the property that their holomorphic
parts arise from Lerch-type series, which in turn may be formulated in terms of the
Rogers-Fine basic hypergeometric series.

1. Introduction and statement of results

There are a number of famous examples of q-series which essentially coincide with
modular forms when q := e2πiτ . For example, the celebrated Rogers-Ramanujan iden-
tities

(1.1) R1(q) :=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
,

(1.2) R2(q) :=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn
2+n

(1− q)(1− q2) · · · (1− qn)
,

provide series expansions of infinite products which are essentially weight 0 modular
forms. As another example, the partition generating function satisfies

(1.3) P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
= 1 +

∞∑
n=1

qn
2

(1− q)2(1− q2)2 · · · (1− qn)2
.

Since q−1P (q24) = 1/η(24τ), the reciprocal of Dedekind’s weight 1/2 modular form,
(1.3) is another instance of a modular form which is a q-series.

Although there are many such identities (for example, see [1]), these scattered results
fall far short of a comprehensive theory which describes the interplay between such
combinatorial series and modular forms. At the Millennial Conference on Number
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Theory at the University of Illinois in 2000 [4], G. E. Andrews discussed this conundrum,
and he urged research in this direction.

The situation is further complicated by Ramanujan’s mock theta functions, a collec-
tion of 22 series such as

(1.4) f(q) := 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

Despite its resemblance to P (q), the mock theta function f(q), like all of the mock
theta functions, does not arise as the minor modification of the Fourier expansion
of a modular form. Nevertheless, a wealth of evidence, such as identities involving
mock theta functions and modular forms, suggested a strong connection between these
objects (for example, see [3]).

This quandary was resolved by S. Zwegers in his 2002 Ph.D. thesis [23, 24, 25].
Zwegers related the mock theta functions to certain real analytic modular forms, which,
following Bruinier and Funke [11], we refer to as harmonic Maass forms (for more on
harmonic Maass forms in number theory see [17]). To make this precise, suppose that
k ∈ 1

2
+ Z. If v is odd, then define εv by

(1.5) εv :=

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).

As usual, we let

(1.6) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
be the weight k hyperbolic Laplacian, where τ = x + iy with x, y ∈ R. If N is a
positive integer and Γ a congruence subgroup of level 4N , then a harmonic Maass form
of weight k on Γ is any smooth function f : H→ C, where H is the upper half-complex
plane, satisfying:

(1) For all A = ( a bc d ) ∈ Γ and all τ ∈ H, we have1

f(Aτ) =

(
c

d

)2k

ε−2k
d (cτ + d)k f(τ).

(2) We have that ∆kf = 0.
(3) The function f(τ) has at most linear exponential growth at all cusps.

Loosely speaking, Zwegers completed the mock theta functions to obtain weight 1/2
harmonic Maass forms. Each mock theta function is the holomorphic part of a weight
1/2 harmonic Maass form. Following the work of Zwegers, the first and third authors

1This transformation law agrees with Shimura’s notion of half-integral weight modular forms [20].



q-SERIES AND WEIGHT 3/2 MAASS FORMS 3

investigated Andrews’ problem for families of weight 1/2 harmonic Maass forms. They
proved [9] that the basic hypergeometric series
(1.7)

R(w, q) :=
∞∑
n=0

qn
2

(1− wq)(1− w−1q) · (1− wq2)(1− w−1q2) · · · (1− wqn) · (1− w−1qn)
,

when w 6= 1 is a root of unity, is essentially the holomorphic part of a weight 1/2
harmonic Maass form. These specializations include f(q) = R(−1, q), and they play
an important role in the study of Dyson’s rank partition functions [9, 10]. All of these
recent results concern weight 1/2 harmonic Maass forms.

Here we describe a similar theory for weight 3/2 harmonic Maass forms. The holo-
morphic parts of these forms, which we also call mock theta functions, arise natu-
rally from Lerch-type series, which in turn may be described in terms of the basic
hypergeometric-type series

(1.8) F (α, β, γ, δ, ε, ζ) :=
∞∑
n=0

(α, ζ)nδ
n2
εn

(β, ζ)n(γ, ζ)n
.

As usual, we have that

(u,w)n :=

{
(1− u)(1− uw)(1− uw2) · · · (1− uwn−1) if n ≥ 1,

1 if n = 0.

Remark. The definition of F is motivated by the examples above. Indeed, we have that

R1(q) = F (0, q, 0, q, 1, q), R2(q) = F (0, q, 0, q, q, q),

P (q) = F (0, q, q, q, 1, q), R(w, q) = F (0, wq, w−1q, q, 1, q).

A famous identity of Rogers and Fine (see page 15 of [13]) implies that

1

1 + α
F (α,−αβ, 0, 1, α, β) =

1

1 + α

∞∑
n=0

(α, β)nα
n

(−αβ, β)n
=
∞∑
n=0

(−1)nα2nβn
2

.

We differentiate it to obtain FRF (α, β)

FRF (α, β) :=
α

2
· ∂
∂α

(
1

1 + α
F (α,−αβ, 0, 1, α, β)

)
=
∞∑
n=1

(−1)nnα2nβn
2

.(1.9)

For formal parameters a and b, we then define FRF (a, b;α, β) by

(1.10) FRF (a, b;α, β) :=
∞∑
n=0

(−1)(bn+a)(bn+ a)α2(bn+a)β(bn+a)2 .

For each pair of integers 0 < a < b, where b ≥ 4 is even, we shall obtain a weight
3/2 harmonic Maass form with the property that its holomorphic part is an expres-
sion involving the Rogers-Fine hypergeometric function. To make this precise, we let
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θ(a, b; τ) be the classical theta function

(1.11) θ(a, b; τ) :=
∑

n≡a (mod b)

q
n2

2b .

We define M+
a,b(τ) by

(1.12) M+
a,b(τ) :=

−1

bΘ0(bτ)

∑
n≡a (mod b)

nq
n2

2b
+n(1−a

b
)

1− qn
,

where Θ0(τ) :=
∑

n∈Z q
n2/2, and we define M−

a,b(τ) by

(1.13) M−
a,b(τ) :=

1

4πi
√
b

∫ i∞

−τ

θ(a, b;w)

(−i(τ + w))
3
2

dw.

Using these two functions, we define the real analytic function Ma,b(τ) by

(1.14) Ma,b(τ) :=M−
a,b(τ) +M+

a,b(τ).

Theorem 1.1. If 0 < a < b are integers, where b ≥ 4 is even, then the following are
true:

(1) For τ ∈ H we have thatMa,b(τ) is a weight 3/2 harmonic Maass form on Γ(2b).

(2) The holomorphic part of Ma,b(τ) satisfies

M+
a,b(τ) =

−1

bΘ0(bτ)

×
∞∑
k=0

(
FRF

(
a, b; q

k
2
+ 1

2
− a

2b ,−q
1
2b

)
+ FRF

(
b− a, b; q

k
2
+ a

2b ,−q
1
2b

))
.

Remark. One may determine how the forms Ma,b(τ) transform under τ 7→ −1/τ by
proceeding in a similar way as in the proof of Theorem 1.1 (1), in particular making
use of Theorem 2.2 (3). The resulting forms may be written as a linear combinations
of deriatives of specializations of the functions µ̂, and are analogous to the Lambert
series in (3.1).

Remark. Although Theorem 1.1 does not include the theta function θ(0, b; τ), a slightly
modified version of its conclusion holds, and it involves the generating function of the
Hurwitz class numbers. Namely, an appropriate Maass form to study is the so-called
“Zagier-Eisenstein series”, which can be thought of as a prototype for the new Maass
forms constructed here. We discuss this in further detail in Section 4.

We obtain Theorem 1.1 using recent work of Zwegers, which we recall in Section 2.
In Section 3 we prove Theorem 1.1. In Section 4 we discuss two roles that such Maass
forms play in number theory. We discuss the case where a = 0 which corresponds to
Zagier’s weight 3/2 non-holomorphic Eisenstein series, and we give an application to
Andrews’s spt-function [5].
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2. The work of Zwegers

In his Ph.D. thesis on mock theta functions [25], Zwegers constructed weight 1/2
harmonic Maass forms by making use of the transformation properties of Lerch sums.
Here we briefly recall some of his results.

For τ ∈ H, and u, v ∈ C \ (Zτ + Z), Zwegers defines the function

(2.1) µ(u, v; τ) :=
z1/2

ϑ(v; τ)
·
∑
n∈Z

(−w)nqn(n+1)/2

1− zqn
,

where z := e2πiu, w := e2πiv and

(2.2) ϑ(v; τ) :=
∑
ν∈Z+ 1

2

eπiνwνqν
2/2.

Zwegers (see Section 1.3 of [25]) proves that µ(u, v; τ) satisfies the following important
properties.

Lemma 2.1. Assuming the notation above, we have that

µ(u, v; τ) = µ(v, u; τ),

µ(u+ 1, v; τ) = −µ(u, v; τ),

z−1wq−
1
2µ(u+ τ, v; τ) = −µ(u, v; τ)− iz−

1
2w

1
2 q−

1
8 ,

µ(u, v; τ + 1) = ζ−1
8 µ(u, v; τ),

(τ/i)−
1
2 eπi(u−v)

2/τµ

(
u

τ
,
v

τ
;−1

τ

)
= −µ(u, v; τ) +

1

2i
h(u− v; τ),

where

h(z; τ) :=

∫ ∞
−∞

eπix
2τ−2πxzdx

cosh πx
,

and ζN := e2πi/N .

Remark. The integral h(z; τ) is known as a Mordell integral.

Lemma 2.1 shows that µ(u, v; τ) is nearly a weight 1/2 Jacobi form, where τ is
the modular variable. Zwegers then uses µ to construct weight 1/2 harmonic Maass
forms. He achieves this by modifying µ to obtain a function µ̂ which he then uses as
building blocks for such Maass forms. To make this precise, for τ ∈ H and u ∈ C, let
c := Im(u)/Im(τ), and let

(2.3) R(u; τ) :=
∑
ν∈Z+ 1

2

(−1)ν−
1
2

{
sgn(ν)− E

(
(ν + c)

√
2Im(τ)

)}
e−2πiνuq−ν

2/2,
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where E(x) is the odd function

(2.4) E(x) := 2

∫ x

0

e−πu
2

du = sgn(x)(1− β(x2)),

where for positive real x we let β(x) :=
∫∞
x
u−

1
2 e−πudu.

Using µ and R, Zwegers defines the real analytic function

(2.5) µ̂(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ).

Zwegers’s construction of weight 1/2 harmonic Maass forms depends on the following
theorem (see Section 1.4 of [25]).

Theorem 2.2. Assuming the notation and hypotheses above, we have that

(1) µ̂(u, v; τ) = µ̂(v, u; τ),

(2) µ̂(u+ 1, v; τ) = z−1wq−
1
2 µ̂(u+ τ, v; τ) = −µ̂(u, v; τ),

(3) ζ8µ̂(u, v; τ + 1) = (−τ/i)− 1
2 eπi(u−v)

2/τ µ̂
(
u
τ
, v
τ
;− 1

τ

)
= µ̂(u, v; τ),

(4) µ̂
(

u
γτ+δ

, v
γτ+δ

; ατ+β
γτ+δ

)
= χ(A)−3(γτ + δ)

1
2 e−πiγ(u−v)

2/(γτ+δ) · µ̂(u, v; τ),

where A =
(
α β
γ δ

)
∈ SL2(Z), and χ(A) := η(Aτ)/

(
(γτ + δ)

1
2η(τ)

)
.

Theorem 2.2 shows that µ̂(u, v; τ) is essentially a weight 1/2 non-holomorphic Ja-
cobi form. In analogy with the classical theory of Jacobi forms, one may then obtain
harmonic Maass forms by making suitable specializations for u and v by elements in
Qτ + Q, and by multiplying by appropriate powers of q. We shall consider specializa-
tions of a certain derivative to obtain weight 3/2 harmonic Maass forms.

Harmonic Maass forms of weight k are mapped to classical modular forms, their
so-called shadows, by the differential operator

ξk := 2iyk · ∂
∂τ
.

The following Lemma will be important for establishing that the non-holomorphic part
of a certain weight 3/2 harmonic Maass form, which we shall prove equals Ma,b(τ), is
indeed the period integral of the weight 1/2 theta function θ(a, b; τ).

Lemma 2.3. [Lemma 1.8 of [25]] The function R is real analytic and satisfies

∂R

∂u
(u; τ) =

√
2y−

1
2 e−2πc2yϑ(u;−τ),

where c := Im(u)/Im(τ). Moreover, we have that

∂

∂τ
R(aτ − b; τ) = − i√

2y
e−2πa2y

∑
ν∈Z+ 1

2

(−1)ν−
1
2 (ν + a)e−πiν

2τ−2πiν(aτ−b).
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3. Proof of Theorem 1.1

Here we prove Theorem 1.1. We first prove an elementary q-series identity.

3.1. A q-series identity. For convenience, we consider the Lambert-type series

(3.1) L(a, b; z, d, q) :=
∑

n≡a (mod b)

nznqn
2

1− qdn
,

where d 6= 0, a 6≡ 0 (mod b). The proof of Theorem 1.1 (2) follows from the following
simple proposition which relates the Lambert series L(a, b; z, d, q) to the Rogers-Fine
hypergeometric series FRF .

Proposition 3.1. Suppose that 0 < a < b are integers. The following q-series identity
is true:

L(a, b; z, d, q) =
∑
k≥0

(
FRF

(
a, b; z1/2qkd/2,−q

)
+ FRF

(
b− a, b; z−1/2q(k+1)d/2,−q

) )
.

Proof. To prove the identity observe the following:

L(a,b; z, d, q) =
∞∑
n=0

(bn+ a)zbn+aq(bn+a)2

1− qd(bn+a)
−
∞∑
n=1

(bn− a)z−(bn−a)q(bn−a)2

1− q−d(bn−a)

=
∞∑
n=0

(bn+ a)zbn+aq(bn+a)2

1− qd(bn+a)
+
∞∑
n=1

(bn− a)z−(bn−a)q(bn−a)2+d(bn−a)

1− qd(bn−a)

=
∞∑
n=0

(
(bn+ a)zbn+aq(bn+a)2

∞∑
k=0

qd(bn+a)k

)

+
∞∑
n=1

(
(bn− a)z−(bn−a)q(bn−a)2

∞∑
k=1

qd(bn−a)k

)
.(3.2)

One next makes changes of variables in the indices of summation k and n in (3.2)
so that the series begin at k = 0 and n = 0. Proposition 3.1 follows by re-ordering
summation and applying (1.10). �

3.2. Proof of Theorem 1.1. Using Zwegers’s function µ̂, we define

(3.3) Φa,b(u; τ) := q−
a2

2b2
+ a

2b
− 1

8 z
a
b
− 1

2 · µ̂
((a

b
− 1
)
τ, u− τ

2
+

1

2
; τ

)
,

where z := e2πiu. If A =
(
α β
γ δ

)
∈ SL2(Z) satisfies α, δ ≡ 1 (mod 2b), β ≡ 0 (mod 2b),

and γ ∈ 2Z, then one may derive the following:

(3.4) Φa,b

(
u

γτ + δ
;
ατ + β

γτ + δ

)
= Ψa,b(A) · (γτ + δ)

1
2 e−

πiγu2

γτ+δ · Φa,b(u; τ),

with
Ψa,b(A) := χ(A)−3 · exp(πi · Ω(A)).



8 KATHRIN BRINGMANN, AMANDA FOLSOM, AND KEN ONO

Here the quantity Ω(A) is defined by

Ω(A) := −αβ
(
a

b
− 1

2

)2

+ βγ

(
a

b
− 1

2

)
− γδ

4
+ (1− α)

(
a

b
− 1

2

)
+
γ

2
+
(a
b
− 1
)

(α− 1) +
1

2
(γ − α + 1) +

(a
b
− 1
)
β +

1

2
(δ − β − 1).

One obtains the transformation given in (3.4) by first applying Theorem 2.2 (4),
followed by repeatedly applying Theorem 2.2 (2). With this, the form Φa,b(u; τ) be-
comes visible, and a tedious but straightforward calculation simplifies the factor of
automorphy, resulting in (3.4).

Although Zwegers’s µ̂-function is essentially a weight 1/2 non-holomorphic Jacobi
form, one may obtain higher weight harmonic Maass forms by specializing some of its
images under various differential operators (e.g. the heat operator). A priori, such
images are in fact higher dimensional Jacobi forms. To obtain our results, the relevant
function is

(3.5) fa,b(τ) :=
1

2πi
· ∂
∂u

Φa,b(u; bτ)|u=0.

By (3.4), we find that

fa,b

(
ατ + β

γτ + δ

)
= Ψa,b

((
α βb
γ/b δ

))
(γτ + δ)

3
2fa,b(τ),

where we now additionally require γ ≡ 0 (mod b). By the classical theory of Dedekind’s
eta-function [18], it is known that if γ is even, then

χ

((
α β
γ δ

))
=

(
γ

δ

)
i−

1
2 · exp

(
πi

12

(
αγ(1− δ2) + δ(β − γ + 3)

))
.

If A ∈ Γ(2b), then a lengthy straightforward calculation shows that

Ψa,b(A) =

(
γ

δ

)
.

This then shows that fa,b(τ) is a weight 3/2 harmonic Maass form on Γ(2b). That
it is harmonic follows from Zwegers’s work, or by a simple inspection of the Fourier
expansion (for example, see Section 3 of [11]).

To complete the proof of (1), it suffices to show that fa,b(τ) = Ma,b(τ). By the
definition of µ̂, we find that the non-holomorphic part of Φa,b is given by

i

2
q−

a2

2b2
+ a

2b
− 1

8 z
a
b
− 1

2R

((
a

b
− 1

2

)
τ − u− 1

2
; τ

)
.

By the definition of R, one finds that this equals

−1

2

∑
n∈a

b
+Z

(
sgn

(
n+

1

2
− a

b

)
− E

((
n− u2

y

)√
2y

))
q−

n2

2 e2πinu,
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where u = u1 + iu2, and τ = x + iy as usual. Letting τ 7→ bτ , differentiating with
respect to u, setting u = 0, and dividing by 2πi gives the non-holomorphic part of
fa,b(τ) which equals

−1

2

∑
n∈a

b
+Z

(
sgn

(
n+

1

2
− a

b

)
− E(n

√
2by)

)
nq−

bn2

2 +
1

4π
√

2by

∑
n∈a

b
+Z

E ′(n
√

2by)q−
bn2

2 .

Using the following facts

E(x) = sgn(x)(1− β(x2)),

β(x) =
1

π
x−

1
2 e−πx − 1

2
√
π
· Γ(−1/2;πx),

E ′(x) = 2e−πx
2

,

where Γ(κ;X) is the usual incomplete Gamma-function, we then find that the non-
holomorphic part of the weight 3/2 non-holomorphic modular form is

1

4
√
π

∑
n∈a

b
+Z

sgn(n)nΓ(−1/2; 2bπyn2)q−
bn2

2

(compare with Lemma 2.3). This is easily seen to equal M−
a,b(τ), thanks to the fact

that for every positive integer n we have∫ i∞

−τ

e2πinw

(−i(τ + w))
3
2

dw = i(2πn)
1
2 · Γ(−1/2, 4πny)q−n.

To complete the proof that fa,b(τ) =Ma,b(τ), we must now equate the holomorphic
parts. Again by the definition of µ̂, we find that the holomorphic part of Φa,b(u; τ) is

q−
a2

2b2
+ a

2b
− 1

8 z
a
b
− 1

2 · µ
((a

b
− 1
)
τ, u− τ

2
+

1

2
; τ

)
=

q−
a2

2b2
+a
b
− 5

8 z
a
b
− 1

2

ϑ
(
u− τ

2
+ 1

2
; τ
) ·∑

n∈Z

e2πiunqn
2/2

1− qn+a
b
−1
.

Using the fact that
∂

∂u
z−

1
2ϑ(u; τ)|u= 1−τ

2
= 0,

we find that the holomorphic part of fa,b(τ) = M+
a,b(τ). To make this last claim we

need the fact that

ϑ

(
1− τ

2
; τ

)
= −q−

1
8 Θ0(τ).

Therefore, it follows thatMa,b(τ) = fa,b(τ) is a weight 3/2 harmonic Maass form on
Γ(2b), and this completes the proof of (1).

The proof of (2) follows from Proposition 3.1 thanks to the fact that

L
(
a, b; q1−a

b , 2b, q
1
2b

)
=

∑
n≡a (mod b)

n(q1−a
b )n · q n

2

2b

1− qn
.
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4. Number theoretic applications of weight 3/2 harmonic Maass forms

Here we give two important examples of these weight 3/2 harmonic Maass forms.
First we recall Zagier’s weight 3/2 non-holomorphic Eisenstein series, which we refor-
mulate in terms of the Rogers-Fine functions. We also consider the spt-function of
Andrews [5]. We give a closed formula for its generating function in terms of weight
3/2 harmonic Maass forms, and we describe a recent result of the second two authors
on the p-adic properties of this function.

4.1. Zagier’s form. Zagier’s weight 3/2 Eisenstein series is perhaps the first prominent
example of a weight 3/2 harmonic Maass form. In view of the combinatorial nature
of the other Maass forms in this paper, it is important to consider the combinatorial
nature of this key form. Here we address this, and relate our results to earlier work of
Zagier [22], Hirzebruch-Zagier [16] and Eichler [12] pertaining to Hurwitz class numbers,
which imply that the Zagier Eisenstein series F(τ) (as defined in §1) is a weight 3/2
Maass form on Γ0(4).

In view of Theorem 1.1, it is natural to expect that the generating function H(τ) for
the Hurwitz class numbers, itself a mock theta function, may be represented in terms
of basic hypergeometric series. This is indeed the case, and it turns out that formula
(5) of [12] implies that

Θ0(2τ) ·H(τ) = − 1

12
− 1

6

∞∑
n=1

∑
d|n

(−1)n d · qn +
1

2

∞∑
n=1

∑
d|n

d≤
√
n

(−1)ndqn

+
∞∑
m=0

(
2FRF

(
iq2(m+1), 1

)
− 2FRF

(
iq2m, q4

)
+

1

6
FRF

(
iq(m+1)/2, 1

)
− 1

2
FRF

(
iqm/2, q

) )
+ FRF (i, q4) +

1

4
FRF (i, q)− 1

4
FRF (1, q),

where FRF (α, β) is as defined in (1.9).

4.2. Andrews’s spt-function. Recently, Andrews [5] introduced the function s(n) =
spt(n) which counts the number of smallest parts among the integer partitions of n.
As an illustration, one sees that s(4) = 10 by examining the partitions of 4 below:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The generating function for s(n) is

(4.1) S(z) :=
∞∑
n=0

s(n)qn =
1

(q)∞
·
∞∑
n=1

qn ·
∏n−1

m=1(1− qm)

1− qn
= q+ 3q2 + 5q3 + 10q4 + · · · ,

where (q)∞ :=
∏∞

n=1(1− qn).
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Recently, the first author [6] related q−1S(24z) to weight 3/2 harmonic Maass forms,
and she obtained congruences modulo primes ` > 3. Further results for such primes
are contained in [7, 15].

These works do not reveal any information about s(n) modulo 2 and 3. To place
this in proper context, we note that very little is known about p(n) modulo 2 and 3.
This difficulty stems from the fact that there are no known methods of mapping the
generating function for p(n) to spaces of holomorphic modular forms mod 2 or 3, where
the powerful theory of Galois representations gives results. These techincal difficulties
persist for s(n).

Using the results of this paper, the second two authors solved conjectures of Garvan
and Sellers concerning s(n) modulo 2 and 3 [14]. We require two further mock theta
functions. The first arises from the nearly modular Eisenstein series E2(τ). Define
D(τ) by

D(τ) :=
q−

1
24

(q)∞

(
1− 24

∞∑
n=1

nqn

1− qn

)
=
q−

1
24

(q)∞
E2(z) = q−

1
24 − 23q

23
24 − · · · .(4.2)

The second mock theta function L(τ) is defined by

L(τ) :=
(q6)2

∞(q24)2
∞

(q12)5
∞

·

(∑
n∈Z

(12n− 1)q6n2− 1
24

1− q12n−1
−
∑
n∈Z

(12n− 5)q6n2− 25
24

1− q12n−5

)
= q

23
24 + q

47
24 + q

71
24 − 4q

95
24 − 6q

119
24 + 12q

143
24 − · · · .

(4.3)

The series L(τ) is easily seen to satisfy

L(τ) = −12M+
11,12(τ) + 12M+

7,12(τ).

It is proven that

D(24τ)− 12L(24τ)− 12q−1S(24τ) = q−1 − 47q23 − 142q47 − 285q71 − 547q95 − · · ·

is a weight 3/2 weakly holomorphic modular form on Γ0(576) with Nebentypus
(
12
•

)
,

which is explicitly given in terms of a complicated expression involving Dedekind’s
eta-function.

Using the theory of p-adic modular forms, we have proved the following two theorems,
which completely determine s(n) modulo the troublesome primes 2 and 3.

Theorem 4.1. [Theorem 1.2 of [14]] We have that s(n) is odd if and only if 24n−1 =
pm2, where m is an integer and p ≡ 23 (mod 24) is prime.

If p ≥ 5 is prime, then let

(4.4) δ(p) := (p2 − 1)/24.

In what follows, we let
(•
◦

)
denote the Legendre symbol.
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Theorem 4.2. [Theorem 1.3 of [14]] If p ≥ 5 is prime, then for every non-negative
integer n we have

s(p2n− δ(p)) +

(
3− 72n

p

)
s(n) + ps

(
n+ δ(p)

p2

)
≡
(

3

p

)
(1 + p)s(n) (mod 3).
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