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1. Introduction and Statement of Results

A partition of a positive integer n is any non-increasing sequence of positive integers whose
sum is n. Let p(n) denote the number of partitions of n (with the usual convention that
p(0) := 1, and p(n) := 0 for n 6∈ N0).

Ramanujan proved that for every positive integer n, we have:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).
(1.1)

Using theta functions and q-series identities, Atkin [7] and Watson [17] later on showed
generalisations of (1.1) for powers of 5, 7, and 11. In a celebrated paper Ono [14] treated
these kinds of congruences systematically. Combining Shimura’s theory of modular forms
of half-integral weight with results of Serre on modular forms modulo ` he showed that for
any prime ` ≥ 5 there exist infinitely many non-nested arithmetic progressions of the form
An+B such that

p(An+B) ≡ 0 (mod `).

Ahlgren and Ono [1] and [2] extended this phenomenon to prime powers.
In order to explain the congruences in (1.1) with moduli 5 and 7 combinatorically, Dyson

[11] introduced the rank of a partition. The rank of a partition is defined to be its largest
part minus the number of its parts. Dyson conjectured that the partitions of 5n + 4 (resp.
7n+ 5) form 5 (resp. 7) groups of equal size when sorted by their ranks modulo 5 (resp. 7).
This conjecture was proven in 1954 by Atkin and Swinnerton Dyer [6]. Thus, if for integers
r and t, we denote by N(r, t;n) the number of partitions of n whose rank is r modulo t, then
Dyson’s conjecture reads as

N(r, 5; 5n+ 4) =
p(5n+ 4)

5
,

N(r, 7; 7n+ 5) =
p(7n+ 5)

7
.
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In [10], Ono and the author showed that Dyson’s rank partition function satisfies congru-
ences of Ramanujan type.

Theorem 1.1. Let t be a positive odd integer, and let ` - 6t be a prime. If u is a positive
integer, then there are infinitely many non-nested arithmetic progressions An+ B such that
for every 0 ≤ r < t we have

N(r, t;An+B) ≡ 0 (mod `u).

In this paper, we consider the case t = `m (m ∈ N) and show that a similar result as in
Theorem 1.1 holds. For this we define for a prime ` ≥ 5 the integer δ` := `2−1

24 and ε` :=
(−6
`

)
.

Moreover we let

S` :=
{

0 ≤ β ≤ `− 1;
(
β + δ`
`

)
= −ε`

}
.

We show the following Theorem.

Theorem 1.2. Suppose that ` ≥ 5 is a prime, m,u ∈ N, and β ∈ S`. Then a positive
proportion of primes p ≡ −1 (mod 24`) have the property that for every 0 ≤ r ≤ `m − 1

N

(
r, `m;

p3n+ 1
24

)
≡ 0 (mod `u)

for all n ≡ 1− 24β (mod 24`) that are not divisible by p.

This directly implies the following corollary.

Corollary 1.3. If ` ≥ 5 is a prime, m,u ∈ N, then there are infinitely many non-nested
arithmetic progressions An+B such that

N (r, `m;An+B) ≡ 0 (mod `u)

for all 0 ≤ r ≤ `m − 1.

Two remarks.
1) The congruences in Theorem 1.2 may be viewed as a combinatorial decomposition of the
partition function congruence

p(An+B) ≡ 0 (mod `u).

2) Corollary 1.3 was conjectured in [10].
The paper is organized as follows: In Section 2 we recall facts about modular forms and

weak Maass forms, in Section 3 we show certain properties of rank generating functions, and
in Section 4 we prove Theorem 1.2.

2. Modular forms and weak Maass forms

Let us recall some basic facts about modular forms of half-integral weight. For this, we
let Γ be a congruence subgroup of SL2(Z), λ,N ∈ N, and χ a Dirichlet character modulo N .
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Denote by Mλ+ 1
2

(Γ, χ) (resp. Sλ+ 1
2

(Γ, χ)) the vector spaces of modular forms (resp. cusp

forms) of weight λ+ 1
2 with Nebentypus character χ for Γ. In particular, we let

Γ0(N) :=
{(

α β
γ δ

)
∈ SL2(Z)

∣∣∣∣ γ ≡ 0 (mod N)
}
,

Γ1(N) :=
{(

α β
γ δ

)
∈ SL2(Z)

∣∣∣∣ (α β
γ δ

)
≡
(

1 ∗
0 1

)
(mod N)

}
.

For brevity, let Mλ+ 1
2

(Γ1(N)) := Mλ+ 1
2

(Γ1(N), χ0) and Sλ+ 1
2

(Γ1(N)) := Sλ+ 1
2

(Γ1(N), χ0),

where χ0 is the trivial character modulo N . Moreover we denote by M !
λ+ 1

2

(Γ, χ) the vector

space of weakly holomorphic modular forms of weight λ+ 1
2 with Nebentypus character χ for

Γ. We call a meromorphic modular form weakly holomorphic if its poles, if there are any, are
supported at the cusps of Γ. Moreover we denote by |k the usual weight k slash operator.

Next we recall the definition of Hecke operators for modular forms of half-integral weight for
Γ1(N). If p is a prime, then the Hecke operator T (p2) for f =

∑∞
n=1 a(n)qn in Sλ+ 1

2
(Γ1(N))

is defined as

f
∣∣T (p2) :=

∞∑
n=1

(
a
(
p2n
)

+ pλ−1

(
(−1)λn

p

)
a(n) + p2λ−1a

(
n

p2

))
qn.(2.1)

It is well known that f |T
(
p2
)
∈ Sλ+ 1

2
(Γ1(N)).

Moreover we consider certain quadratic twists of modular forms. For this we let for a
prime p the Gauss sum with respect to p be given as g :=

∑p−1
v=1

(
v
p

)
e

2πiv
p , and define for

f(z) =
∑

n a(n)qn

(2.2) f(z)p :=
g

p

p−1∑
v=1

(
v
p

)
f(z)

∣∣∣( 1 − v
p

0 1

)
.

This definition is independent of the weight of the slash operator. Moreover it is not hard
to see that f(z)p is the p−quadratic twist of f , i.e., the n-th Fourier coefficient in the
q−expansion of f is multiplied by

(
n
p

)
. It is well known that if f ∈ Mλ+ 1

2
(Γ0(N), χ), then

f(z)p ∈Mλ+ 1
2

(
Γ0(Np2), χχ0

)
, where χ0 is the trivial character modulo p.

Moreover we need the fact that if f(z) =
∑∞

n=1 a(n)qn ∈ Sλ+ 1
2

(Γ1(N)), then for m ∈ N
and 0 ≤ r ≤ m− 1, we have∑

n≡r (mod m)

a(n)qn ∈ Sλ+ 1
2

(
Γ1

(
Nm2

))
.(2.3)

The following theorem, which is shown in [10], follows from Serre’s theory of modular forms
modulo M .

Theorem 2.1. Suppose that f1(z), f2(z), . . . , fs(z) are half-integral weight cusp forms, where

fi(z) ∈ Sλi+ 1
2
(Γ1(Ni)) ∩ OK [[q]],
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and where OK is the ring of integers of a fixed number field K. If ` is prime and j ≥ 1 is an
integer, then the set of primes p for which

fi(z) | T
(
p2
)
≡ 0 (mod `j),

for each 1 ≤ i ≤ s, has positive Frobenius density.

Remark. The primes p in Theorem 2.1 can be chosen to satisfy p ≡ −1 (mod N1 . . . Ns`
j)

Next we recall the definition of a weak Maass form of weight k := λ+ 1
2 . For this we define

for an odd integer v

(2.4) ev :=

{
1 if v ≡ 1 (mod 4),
i if v ≡ 3 (mod 4).

Moreover if z = x+ iy with x, y ∈ R, then the weight k hyperbolic Laplacian is given by

(2.5) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

A weak Maass form of weight k on Γ0(N) with Nebentypus character χ is any smooth function
f : H→ C satisfying the following:

(1) For all A =
(
a b
c d

)
∈ Γ0(N) and all z ∈ H, we have

f(Az) = χ(d)
(
c

d

)2k

e−2k
d (cz + d)k f(z).

(2) We have that ∆kf = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps of Γ0(N).

It is not hard to see that we can define twists for weak Maass forms as in (2.2) and that the
twist changes the level and the Nebentypus character in exactly the same way as for modular
forms.

3. Properties of rank generating functions

If N(m,n) denotes the number of partitions of n with rank m, then it is well known that

(3.1) R(w; q) := 1 +
∞∑
n=1

∞∑
m=−∞

N(m,n)wmqn = 1 +
∞∑
n=1

qn
2

(wq; q)n(w−1q; q)n
,

where
(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).

In [10], Ono and the author showed that if w 6= 1 is a root of unity, then R(w; q) is the
holomorphic part of a weak Maass form (see [10] for a precise version). Here we need its
transformation law under all elements of SL2(Z). For this we define the theta function
Θ
(
a
c ; τ
)

by

(3.2) Θ
(a
c

; τ
)

:=
∑

m (mod fc)

(−1)m sin
(
πa(6m+ 1)

c

)
· θ
(

6m+ 1, 6fc;
τ

24

)
,
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where fc := 2c
gcd(c,6) , and where

(3.3) θ(α, β; τ) :=
∑

n≡α (mod β)

ne2πiτn2
.

Moreover we define the period integral

(3.4) S
(a
c

; z
)

:= −
i sin

(
πa
c

)
√

3

∫ i∞

−z̄

Θ
(
a
c ; τ
)√

−i(τ + z)
dτ.

Letting ζc := e
2πi
c and q := e2πiz, define D

(
a
c ; z
)

by

(3.5) D
(a
c

; z
)

:= −S
(a
c

; z
)

+ q−
1
24R(ζac ; q).

If b
c ∈ (0, 1) \ {1

2 ,
1
6 ,

5
6}, then define the integer s(b, c) by

s(b, c) :=


0 if 0 < b

c <
1
6 ,

1 if 1
6 <

b
c <

1
2 ,

2 if 1
2 <

b
c <

5
6 ,

3 if 5
6 <

b
c < 1.

Moreover let

N(a, b, c; q) :=
i

2(q; q)∞

( ∞∑
m=0

(−1)me−
πia
c · q

m
2

(3m+1)+ms(b,c)+ b
2c

1− e−
2πia
c · qm+ b

c

−
∞∑
m=1

(−1)me
πia
c · q

m
2

(3m+1)−ms(b,c)− b
2c

1− e
2πia
c · qm−

b
c

)
,

where
(a; q)∞ := lim

n→∞
(a; q)n.

Define

N (a, b, c; q) := 4 sin
(πa
c

)
e−2πi

a·s(b,c)
c

+3πi b
c( 2a

c
−1) · ζ−bc · q

b
c
s(b,c)− 3b2

2c2
− 1

24 · N(a, b, c; q)

and

S(a, b, c; z) := −
sin
(
πa
c

)
ζ−5b

2c

2
√

3

∫ i∞

−z̄

Θ (a, b, c; τ)√
−i(τ + z)

dτ,

where for tc := lcm(c, 6) the theta series Θ(a, b, c; τ) is defined as

Θ(a, b, c; τ) :=
∑

m (mod tc)

(−1)m sin
(π

3
(2m+ 1)

)
e2πima

c · θ
(

2cm+ 6b+ c, 2ctc;
τ

24c2

)
.

Now define

D(a, b, c; z) := N (a, b, c; z)− S(a, b, c; z).
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Moreover let ωh,k be given by

ωh,k := exp (πit(h, k)) ,

where

t(h, k) :=
∑

µ (mod k)

((µ
k

))((hµ
k

))
.

Here

((x)) :=
{
x− bxc − 1

2 if x ∈ R \ Z,
0 if x ∈ Z.

Combining the results of [8] and [10] gives the following transformation law for the function
D
(
a
c ; z
)
.

Proposition 3.1. Assume that
(
α β
γ δ

)
∈ SL2(Z), a, c ∈ N with 0 < a < c and c odd.

Moreover let c1 = c
gcd(c,γ) , 0 < l < c1, such that l ≡ aγ1 (mod c1) where γ1 = γ

gcd(c,γ) ,
s := s(l, c1).

(1) If c|γ, then

D

(
a

c
;
αz + β

γz + δ

)
=

(−1)aγi
1
2 · sin

(
πa
c

)
· ωδ,γ

sin
(
πaδ
c

) · e
3πia2γ1δ

c · e−
π

12γ
(α+δ) · (γz + δ)

1
2 ·D

(
aδ

c
; z
)
.

(2) If c - γ, then

D

(
a

c
;
αz + β

γz + δ

)
=

(−1)aγ+li
1
2 sin

(
πa
c

)
ωδ,γ

sin
(
πaδ
c

) e
5πil
c1

+
3πia2δγ1

cc1 e
− π

12γ
(α+δ)(γz+δ)

1
2D

(
−αδ, lc

c1
, c; z

)
.

For the proof of Theorem 1.2, we apply a certain twist to “kill” the non-holomorphic part
of D

(
a
c ; z
)
. For this we need to know on which arithmetic progressions its non-holomorphic

part is supported. Similarly as in [10], we obtain

Proposition 3.2. For integers 0 < a < c, we have

D
(a
c

; z
)

= q−
1
24 +

∞∑
n=1

∞∑
m=−∞

N(m,n)ζamc qn−
1
24

−
2 sin

(
πa
c

)
√
π

∑
m (mod fc)

(−1)m sin
(
πa(6m+ 1)

c

) ∑
n≡6m+1 (mod 6fc)

Γ
(

1
2

;
πn2y

6

)
q−

n2

24 ,

where

Γ(a;x) :=
∫ ∞
x

e−tta−1 dt.
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4. Proof of Theorem 1.2

For brevity we set t := `m. Using the orthogonality of roots of unity easily gives
∞∑
n=0

N(r, t;n)qn =
1
t

∞∑
n=0

p(n)qn +
1
t

t−1∑
j=1

ζ−rjt R
(
ζjt ; q

)
.(4.1)

Define the function

gr(z) := t
∞∑
n=0

N(r, t;n)qn+δ`

∞∏
n=1

(
1− q`n

)`
.

Then (3.5) and (4.1) imply

gr(z) =
η`(`z)
η(z)

+
t−1∑
j=1

ζ−rjt

(
D

(
j

t
; z
)

+ S

(
j

t
; z
))

η`(`z),(4.2)

where η(z) := q
1
24
∏∞
n=1 (1− qn) is Dedekind’s eta function. We denote the two summands

by f(z) and fr(z), respectively. We now define for a function h(z) :=
∑

n a(n)qn

h̃(z) := ε` (h(z)− ε`h(z)`)` .

Clearly

h̃(z) = ε`
∑
n

a(n)
(

1− ε`
(
n

`

))(
n

`

)
qn.(4.3)

The main step in the proof of Theorem 1.2 is the following Theorem.

Theorem 4.1. For every u ≥ 0 there exists a character χ, λ, λ′ ∈ N, and modular forms
h(z) ∈ Sλ+ 1

2

(
Γ0

(
576`5

)
, χ
)

and hr(z) ∈ Sλ′+ 1
2

(
Γ1

(
576`4t2

))
such that

g̃r(24z)
η`(24`z)

≡ h(z) + hr(z) (mod `u).

The proof of Theorem 4.1 is given in Section 4.1. We first show how Theorem 1.2 follows
from Theorem 4.1.

Proof of Theorem 1.2. We easily see that
g̃r(24z)
η`(24`z)

= −2t
∑

(n`)=−ε`

N(r, t;n− δ`) · q24n−`2 .

Now we consider for β ∈ S` the series

gr,β(z) := −2t
∑

n=β+δ`+`m
m∈Z

N(r, t;n− δ`) · q24n−`2 = −2t
∑

n≡24β−1 (mod 24`)

N

(
r, t;

n+ 1
24

)
· qn.

Theorem 4.1 gives that
gr,β(z) ≡ hβ(z) + hr,β(z) (mod `u),
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where hβ(z) and hr,β(z) denote the restrictions of the Fourier expansion of h(z) resp. hr(z)
to those coefficients n with n ≡ 24β − 1 (mod 24`). By (2.3), we have that hβ(z) ∈
Sλ+ 1

2

(
Γ1

(
21234`7

))
and hr,β(z) ∈ Sλ+ 1

2

(
Γ1

(
21234`6t2

))
. Due to Theorem 2.1 a positive

proportion of all primes p ≡ −1 (mod 24`) satisfy for all r

hr,β(z)|T (p2) ≡ hβ(z)|T (p2) ≡ 0 (mod `u).

Thus we have for all r
gr,β(z)|T (p2) ≡ 0 (mod `u).

Replacing n by pn in (2.1) gives that for all n ≡ 1− 24β (mod 24`) that are not divisible by
p, we have

−2tN
(
r, t;

p3n+ 1
24

)
≡ 0 (mod `u).

Dividing by −2t directly gives the Theorem since u is arbitrary. �

4.1. Proof of Theorem 4.1. If a is a positive integer, then define

E`,a(z) :=
η`
a
(z)

η(`az)
∈M `a−1

2
(Γ0(`a), χ`,a) ,

where χ`,a(d) :=
((−1)(`

a−1)/2`a

d

)
. It is well known that E`,a(z) vanishes at those cusps of

Γ0(`a) that are not equivalent to ∞ and that for all u > 0

E`
u−1

`,a (z) ≡ 1 (mod `u).(4.4)

We now treat the summands in (4.2) separately. Since f(z) ∈M `−1
2

(
Γ0(`),

(•
`

))
we have that

f̃(z) ∈M `−1
2

(
Γ0(`5),

(•
`

))
. For sufficiently large u′ the function

f ′(z) := f̃(z) · E`u
′

`,5 (z)

is a cusp form on Γ0(`5) with character χ`,5 ·
(•
`

)
satisfying

f ′(z) ≡ f̃(z) (mod `u)
ord∞(f ′(z)) ≥ δ` + 1.

Thus for u′ sufficiently large
(
f ′(z)
η`(`z)

)24
vanishes at ∞ which implies that f ′(24z)

η`(24`z)
is a cusp

form for Γ0

(
576`5

)
with some character χ.

We next turn to fr(z). Let us recall the transformation law for Dedekind’s eta function.
For

(
α β
γ δ

)
∈ SL2(Z) we have

η

(
αz + β

γz + δ

)
= ω−δ,γ · (−i)

1
2 · (γz + δ)

1
2 · e

πi
12γ

(α+δ) · η(z).(4.5)
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Combining the fact that f(z) ∈ M `−1
2

(
Γ0(`),

(·
`

))
with Proposition 3.1 and (4.5) directly

gives that

D

(
j

t
; z
)
η`(`z) = D

(
j

t
; z
)
η(z) · η

`(`z)
η(z)

is a weak Maass form of weight `+1
2 on Γ1(2t2). From Propositon 3.2 we see that its non

holomorphic part is supported on exponents of the form q−
n2

24
+ `2

24
+m`, where n ∈ Z with

n ≡ 1 (mod 6) and m ∈ N0. Now (4.3) easily gives that the non holomorphic part of f̃r(z)
is vanishing, thus f̃r(z) is a weakly holomorphic modular form of weight `+1

2 on Γ1

(
2t2`4

)
.

Since E`,2m(z) vanishes at each cusp α
γ with t2 - γ if we take u′ sufficiently large, the function

f ′r(z) := E`
u′

`,2m(z)fr(z)

is a weakly holomorphic modular form on Γ1

(
2t2
)

that vanishes at all cusps α
γ with t2 - γ

and satisfies
f ′r(z) ≡ fr(z) (mod `u).

Therefore to finish the proof it remains to show that f̃r(z)
η`(`z)

vanishes also at those cusps α
γ

with t2|c. If
(
α β
γ δ

)
∈ Γ0(t2), then the q-expansion of η`(`z)|`/2

(
α β
γ δ

)
starts with q

`2

24 (times

a non zero constant). Thus we have to prove that the q−expansion of f̃r(z) starts with qb

with b > `2

24 . In the following we need the commutation relation for ν ′ ≡ δ2ν (mod `)(
1 −ν

`
0 1

)(
α β
γ δ

)
=
(
α′ β′

γ′ δ′

)(
1 −ν′

`
0 1

)
(4.6)

with (
α′ β′

γ′ δ′

)
=

(
α− γν

` β − γνν′

`2
+ αν′−δν

`

γ δ + γν′

`

)
∈ Γ0(t2).

Combining this with the fact that | `+1
2

(
1 − ν

′
`

0 1

)
doesn’t decrease the order of vanishing we

show that the order of vanishing of the holomorphic part of

(fr(z)− ε`fr(z)`) | `+1
2

(
α β
γ δ

)
is bigger than `2

24 . This follows if we show that the order of vanishing of the holomorphic part
of

(fr,j(z)− ε`fr,j(z)`) | `+1
2

(
α β
γ δ

)
is bigger than `2

24 . Here

fr,j(z) := D

(
j

t
; z
)
· η`(`z).
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From Propostion 3.1 easily gives that the holomorphic part of fr,j(z)| `+1
2

(
α β
γ δ

)
is given by

(−1)jγ ·
sin
(
πj
t

)
sin
(
πjδ
t

) · e 3πij2γ1δ
t ·

(
δ

t

)
· fr,jδ(z).(4.7)

To compute the holomorphic part of ε`fr,j(z)`|
(
α β
γ δ

)
we use again (4.6). Using Propostion

3.1 it is not hard to see that the holomorphic part of ε`fr,j(z)`| `+1
2

(
α β
γ δ

)
is given by

ε` · (−1)jγ ·
sin
(
πj
t

)
sin
(
πjδ
t

) · e 3πij2γ1δ
t ·

(
δ

t

)
· g
`

`−1∑
ν=1

(
ν

`

)
fr,jδ(z)|

(
1 −ν′

`
0 1

)
.(4.8)

Since the holomorphic parts of the q-expansions of (4.7) and (4.8) start with q
`2−1
24 and have

integer exponents, it is enough to show that the `2−1
24 -th coefficients coincide. But this follows

directly from

ε` · g
`

∑
ν (mod `)∗

(
ν

`

)
e−

2πiν′(`2−1)/24
` =

ε` · g
`

∑
ν (mod `)∗

(
ν ′ `

2−1
24

`

)
e−

2πiν
` =

gḡ

`
= 1.

This proves Theorem 4.1.
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