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INEQUALITIES FOR DIFFERENCES OF DYSON’S RANK FOR
ALL ODD MODULI

Kathrin Bringmann and Ben Kane

1. Introduction and Statement of results

A partition of a non-negative integer n is any non-increasing sequence of positive
integers whose sum is n. As usual, let p(n) denote the number of partitions of n. The
partition function satisfies the famous “Ramanujan congruences” declaring that for
c ∈ {5, 7, 11} we have for all n ≥ 0 that p(cn+δc) ≡ 0 (mod c), where δc is defined by
the congruence 24δc ≡ 1 (mod c). In order to understand these from a combinatorial
point of view, Dyson defined the rank of a partition as its largest part minus its
number of parts [11]. Atkin and Swinnerton-Dyer [4] later proved that Dyson’s rank
indeed provides a combinatorial explanation of the congruences modulo 5 and 7, but
not the congruence modulo 11. To simplify notation, for integers 0 ≤ a < c, we let
N(a, c;n) to be the number of partitions of n whose rank is congruent to a (mod c).

Rank differences have been the focus of several works and lead to interesting new
automorphic forms, so called harmonic Maass forms. Harmonic Maass forms are
generalizations of modular forms, in that they satisfy the same transformation law,
and (weak) growth conditions at cusps, but instead of being holomorphic, they are
annihilated by the weight k hyperbolic Laplacian. As an example, consider the func-
tion

f(q) := 1 +
∞∑
n=1

(N(0, 2, n)−N(1, 2, n))qn = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

which is one of the third order mock theta functions Ramanujan defined in his last
letter to Hardy [19]. Thanks to work of Zwegers [22] this function is now known
to be the “holomorphic part” of a harmonic Maass form. A similar phenomenon is
true for all the rank generating functions [7]. Asymptotic and exact formulas for the
coefficients of f(q) are proven by Dragonette [10], Andrews [1], and the first author
and Ono [6]. These imply (as conjectured by Ramanujan) that

ᾱ(n) := N(0, 2, n)−N(1, 2, n) ∼ 1
2

(−1)n−1n−
1
2 exp

(
π

√
n

6
− 1

144

)
.

In particular we obtain that for n sufficiently large (a statement which can be made
precise) ᾱ(n) is positive (resp. negative) if n is odd (resp. even), which was first
observed by Lewis [17] using combinatorial methods.
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We next observe that the process of partition conjugation yields the identity

(1.1) N(a, c;n) = N(c− a, c;n).

In their proof of Dyson’s rank conjecture Atkin and Swinnerton-Dyer [4] also showed
some non-trivial identities including

(1.2) N(1, 7; 7n+ 1) = N(2, 7; 7n+ 1) = N(3, 7; 7n+ 1).

Moreover they related rank differences to infinite (modular) products, such as

(1.3)
∞∑
n=0

(N(0, 7; 7n+ 6)−N(1, 7; 7n+ 6)) qn = − (q; q7)2∞(q6; q7)2∞(q7; q7)2∞
(q; q)∞

.

With the benefit of retrospect, we may now view, thanks to Zwegers thesis [21], such
identities in the framework of automorphic forms occurring from relations between
non-holomorphic parts of harmonic Maass forms. Their proof then boils down to a
calculation of a finite number of Fourier coefficients. Using this idea the first au-
thor, Ono, and Rhoades [9] found infinite families of modular relations between rank
differences which were then made explicit by S. Kang [15].

The situation is more complicated if one considers inequalities between rank dif-
ferences since here a proof cannot be reduced to a finite computation of Fourier
coefficients. For this reason only isolated examples of such inequalities have been
shown so far. For example, Andrews and Lewis [3, 17] proved that

N(0, 2; 2n) < N(1, 2; 2n) if n ≥ 1,
N(0, 4;n) > N(2, 4;n) if 26 < n ≡ 0, 1 (mod 4),
N(0, 4;n) < N(2, 4;n) if 26 < n ≡ 2, 3 (mod 4).

Moreover, they conjectured (see Conjecture 1 of [3]).

Conjecture. (Andrews and Lewis)
For all n > 0, we have

N(0, 3;n) < N(1, 3;n) if n ≡ 0 or 2 (mod 3),
N(0, 3;n) > N(1, 3;n) if n ≡ 1 (mod 3).

This conjecture was proven (up to a finite number of exceptions in which case
one has equality) by the first author [5] using automorphic properties of the rank
generating functions combined with the Circle Method. Here we obtain a similar
result for the moduli 5, 7, and 9. In view of (1.1) we only have to consider

N(a, c, n)−N(b, c, n)

with 0 ≤ a < b ≤ c−1
2 . The following theorem treats all the rank differences for

moduli 5, 7, and 9.

Theorem 1.1. For sufficiently large n (see the Appendix for the exact statement) the
following hold:

(1) We have

N(a, 5, 5n+ d)−N(b, 5, 5n+ d)


< 0 if (a, b, d) ∈ {(0, b, 0), (0, 1, 2), (a, 2, 3)} ,
> 0 if (a, b, d) ∈ {(1, 2, 0), (0, b, 1), (1, 2, 2),

(0, 1, 3)} .
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(2) We have that the difference N(a, 7, 7n+ d)−N(b, 7, 7n+ d) is
< 0 if (a, b, d) ∈ {(0, 1, 2), (2, 3, 2), (1, 2, 3), (2, 3, 4), (0, 1, 6), (0, 2, 6), (1, 2, 6)} ,
> 0 if (a, b, d) ∈ {(0, b, 0), (1, b, 0), (0, b, 1), (0, 2, 2), (1, b, 2), (0, 1, 3),

(0, 3, 3), (2, 3, 3), (0, 2, 4), (1, 2, 4), (0, 3, 6), (1, 3, 6), (2, 3, 6)} .
(3) We have that the difference N(a, 9, 3n+ d)−N(b, 9, 3n+ d) is

< 0 if (a, b, d) ∈ {(0, 1, 0), (1, 3, 1), (2, 3, 1), (0, 1, 2), (0, 2, 2), (3, 4, 2)} ,
> 0 if (a, b, d) ∈ {(0, 2, 0), (0, 3, 0), (0, 4, 0), (1, b, 0), (2, b, 0), (0, b, 1),

(1, 2, 1), (a, 4, 1), (0, 3, 2), (1, b, 2), (2, b, 2)} .

Remarks.
1) Some comments are in order concerning Theorem 1.1. Of the above inequalities
for the moduli 5 and 7 some were conjectured and some were proven by Garvan
[12, 13] using combinatorial methods. For completeness we decided to give a full list
for all (odd) moduli here (the remaining cases can be found in Theorem 1.2). We
further recall that the above mentioned equalities (1.2) and (1.3) arose from relations
between non-holomorphic parts and thus from a modern point of view can be seen as
statements about modular forms. Similarly, some of the inequalities in Theorem 1.1,
in particular those shown by Garvan, are statements about the positivity of Fourier
coefficients of modular forms. Of particular interest are those inequalities for which
this is not the case, i.e., the associated harmonic Maass forms also have nontrivial non-
holomorphic parts, for example the case (0,1,0) (for moduli 5), which is related to the
mock theta conjectures going back to Ramanujan. These are a list of ten identities
involving Ramanujan’s mock theta functions of order 5. Andrews and Garvan [2]
proved that these are equivalent to the truth of the following pair of combinatorial
identities

N(1, 5, 5n) = N(0, 5, 5n) + ρ0(n),
2N(2, 5, 5n+ 3) = N(1, 5, 5n+ 3) +N(0, 5, 5n+ 3) + ρ1(n) + 1,

where ρ0(n) is the number of partitions of n with unique smallest part and all other
parts ≤ the double of the smallest part and ρ1(n) is the number of partitions of n
with unique smallest part and all other parts ≤ one plus the double of the smallest
part. Clearly these statistics are non-negative so the first mock theta identity implies
the case (0, 1, 0) of Theorem 1.1. The mock theta conjectures remained open until
Hickerson’s important paper [14] in which he used lengthy and highly complicated
combinatorial methods.
2) From [4], we know that in the missing cases equality holds for the cases 5 and 7,
while Santa-Gadea [20] has shown that equality holds in the two missing cases for
c = 9.
3) The much weaker statement that both the greater than and less than inequalities
in (1), (2), (3) must be satisfied for at least one choice of n and d follows from an
observation of Knopp, Kohnen, and Pribitkin [16, p. 274].

Given the nature of the Andrews-Lewis Conjecture and Theorem 1.1 one might
expect a similar behavior in the case for general moduli, namely that rank inequalities
are dictated by congruence conditions. However, we show that in the case of higher
moduli the rank inequality is surprisingly unaffected by the residue class.
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Theorem 1.2. Assume that c > 9 is an odd integer. Then for 0 ≤ a < b ≤ c−1
2 we

have for n > Na,b,c, where Na,b,c is an explicit constant, the inequality

N(a, c, n) > N(b, c, n).

Remarks.
1) The proof of Theorem 1.2 gives an explicit algorithm to determine the bound
Na,b,c. Using this algorithm we obtained the bounds necessary to show Theorem 1.1.
The bounds employed in the proof of Theorem 1.2 can be used to obtain the bounds
necessary to show Theorem 1.1. The only difference occurs in determining the main
term. Since the proof merely amounts to a numerical calculation we chose to not
include further details in the paper.
2) We recall that Atkin and Swinnerton-Dyer’s proof of Dyson’s rank conjecture relied
on identities like (1.2). Theorem 1.2 shows that although there are infinitely many
identities of type (1.3) by [9], identities of type (1.2) cannot exist for moduli above
9. Thus the rank cannot be used to dissect the partition function for any of these
moduli (not even for sufficiently large n).

2. Proof of Theorem 1.2

For simplicity we throughout assume that c is a prime, since the case of composite
c is treated similarly but with slightly varying bounds. We write

(2.1)
∑
n

(N(a, c;n)−N(b, c;n)) qn =
2
c

c−1
2∑
j=1

ρj(a, b, c)R
(
ζjc ; q

)
,

where ζc := e
2πi
c and

R(z; q) :=
∞∑
n=0

∑
m∈Z

N(n,m)zmqn,

with N(m,n) counting the number of partitions of n with rank m. Moreover,

ρj(a, b, c) :=
(

cos
(

2πaj
c

)
− cos

(
2πbj
c

))
.

Define the coefficients A
(
j
c ;n
)

by

R(ζjc ; q) =: 1 +
∞∑
n=1

A

(
j

c
;n
)
qn.

To determine the asymptotic behavior of (2.1), we use Theorem 1.1 of [5]. To state
this, we require some notation. We let k and h be coprime integers, and define h′

by hh′ ≡ −1 (mod k) if k is odd and by hh′ ≡ −1 (mod 2k) if k is even. Moreover,
if c - k, we define 0 < l < c by the congruence l ≡ jk (mod c). Moreover, if
f
c ∈ (0, 1) \ { 1

2 ,
1
6 ,

5
6}, then define the integer s(f, c) by

(2.2) s(f, c) :=


0 if 0 < f

c <
1
6 ,

1 if 1
6 <

f
c <

1
2 ,

2 if 1
2 <

f
c <

5
6 ,

3 if 5
6 <

f
c < 1.
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In particular, set s := s(l, c). Let ωh,k be the multiplier occuring in the transformation
law of the partition function p(n) (see [18]) which can be written in terms of Gauss
sums and in particular satisfies |ωh,k| = 1. Moreover we define, for n,m ∈ Z, the
following sums of Kloosterman type

Bj,c,k(n,m) := (−1)jk+1 sin
(
πj

c

) ∑
h (mod k)∗

ωh,k

sin
(
πjh′

c

) · e− 3πij2h′
c · e 2πi

k (nh+mh′)

if c|k, and
Dj,c,k(n,m) := (−1)jk+l

∑
h (mod k)∗

ωh,k · e
2πi
k (nh+mh′).

Here the sums run through all primitive residue classes modulo k. Moreover, for c - k,
let

δj,c,k,r :=


−
(

1
2 + r

)
l
c + 3

2

(
l
c

)2
+ 1

24 if 0 < l
c <

1
6 ,

− 5l
2c + 3

2

(
l
c

)2
+ 25

24 − r
(
1− l

c

)
if 5

6 <
l
c < 1,

0 otherwise,

and for 0 < l
c <

1
6 or 5

6 <
l
c < 1

mj,c,k,r :=


1

2c2

(
−3j2k2 + 6ljk − jkc− 3l2 + lc− 2jrkc+ 2lcr

)
if 0 < l

c <
1
6 ,

1
2c21

(
−6jkc− 3j2k2 + 6ljk + jkc+ 6lc if 5

6 <
l
c < 1.

−3l2 − 2c2 − lc+ 2jrkc+ 2c(c− l)r
)

In [5], the following asymptotic formulas for the coefficients A
(
j
c ;n
)

were shown using
the Circle Method.

Theorem 2.1. If 0 < j < c are coprime integers and c is odd, then for positive
integers n we have that

A

(
j

c
;n
)

=
4
√

3i√
24n− 1

∑
1≤k≤

√
n

c|k

Bj,c,k(−n, 0)√
k

sinh
(
π
√

24n− 1
6k

)
+

8
√

3 · sin
(
πj
c

)
√

24n− 1

×
∑

1≤k≤
√
n

c-k
r≥0

δj,c,k,r>0

Dj,c,k(−n,mj,c,k,r)√
k

sinh

(
π
√

2δj,c,k,r(24n− 1)√
3k

)
+Oc (nε) .

Remarks.
We note that by work of the first author and Ono [8] an exact formula for A

(
j
c ;n
)

involving infinite sums on k is known. To prove Theorem 1.2 one could also employ
this formula and bound the tails (i.e., those terms with large k) for example by using
spectral theory. However it seems much more complicated to make these bounds
explicit.

Inserting Theorem 2.1 into (2.1) yields that

(2.3) N(a, c;n)−N(b, c;n) =

c−1
2∑
j=1

(Sj(a, b; c) + Tj(a, b; c)) +Oc (nε) ,
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where

(2.4) Sj(a, b; c) := ρj(a, b, c)
8
√

3i
c
√

24n− 1

∑
1≤k≤

√
n

c|k

Bj,c,k(−n, 0)√
k

sinh
(
π
√

24n− 1
6k

)
,

(2.5) Tj(a, b; c) := ρj(a, b, c)
16
√

3 · sin
(
πj
c

)
c
√

24n− 1

×
∑

1≤k≤
√
n

c-k
r≥0

δj,c,k,r>0

Dj,c,k(−n,mj,c,k,r)√
k

sinh

(
π
√

2δj,c,k,r(24n− 1)
√

3k

)
.

In order to show Theorem 1.2, we must determine which terms give the main contri-
bution to (2.3) and then bound the other terms explicitly.

2.1. Determining the main terms. We first compare the occurring arguments of
the hyperbolic sines in (2.4) and (2.5) in order to determine the main terms. In the
sums Sj , one can directly see that the largest argument occurs when k = c. In Tj the
term coming from k = 1, r = 0, and j = 1 has the argument

π
√

2δ0(24n− 1)√
3

,(2.6)

where δ0 := 3
2c2 −

1
2c + 1

24 . We will proceed to show that this gives the main con-
tribution to (2.3). Using that c > 7, it is not hard to see that the argument in the
hyperbolic sine is smaller in the terms coming from Sj . Turning to Tj , we may assume
that r = 0, since for fixed j and k this yields the largest argument. Assuming without
loss of generality that 0 < l

c <
1
6 , we have

δj,c,k,0 = − l

2c
+

3
2

(
l

c

)2

+
1
24
≤ δ0.

Moreover, for k = 1, we have l = j and δj,c,1,0 < δ0, when j 6= 1, which yields that
the main contribution occurs for k = 1, r = 0, and j = 1.

The main term coming from k = 1, r = 0, and j = 1 gives the contribution

T1(a, b; c) =
2
c
ρ1(a, b, c)

8
√

3 sin
(
π
c

)
√

24n− 1
sinh

(
π
√

2δ0(24n− 1)√
3

)
.

We note that the sign of this equation is entirely determined by the sign of ρj(a, b, c),
which is clearly positive since 0 ≤ a < b ≤ c−1

2 . This yields that N(a, c, n) > N(b, c, n)
for n sufficiently large. In the following we will make this statement more precise.
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2.1.1. Bounding the contribution of Sj and Tj. We first consider Sj and estimate

|Sj(a, b; c)| ≤
8|ρj(a, b, c)|

√
3

c
√

24n− 1

∑
1≤k≤

√
n

c|k

|Bj,c,k(−n, 0)|√
k

sinh
(
π
√

24n− 1
6k

)

≤ 8|ρj(a, b, c)|
√

3
c
√

24n− 1

∣∣∣∣sin(πjc
)∣∣∣∣ sinh

(
π
√

24n− 1
6c

) ∑
1≤k≤

√
n

c|k

k−
1
2

k∑
h=1

(h,k)=1

1∣∣sin (πhc )∣∣ .
We estimate the inner sum using the inequality
(2.7)

k∑
h=1

(h,k)=1

1∣∣sin (πhc )∣∣ ≤ 2k
c

c−1
2∑

h=1

1∣∣sin (πhc )∣∣ ≤ 2k
π

c−1
2∑

h=1

1
h
(
1− π2

24

) ≤ 2k
(
1 + log

(
c−1
2

))
π
(
1− π2

24

) .

This yields

|Sj(a, b; c)| ≤
16|ρj(a, b, c)|

√
3

c
√

24n− 1

∣∣sin (πjc )∣∣ (1 + log
(
c−1
2

))
π
(
1− π2

24

) sinh
(
π
√

24n− 1
6c

) ∑
1≤k≤

√
n

c|k

k
1
2

≤
64
(
1 + log

(
c−1
2

))
n

3
4

√
24n− 1c2

√
3π
(
1− π2

24

) sinh
(
π
√

24n− 1
6c

)
.

We note that this estimate could be improved in specific cases.
We next explicitly estimate the error coming from Tj and we will trivially bound

Dj,c,k(−n,mj,c,k,r) by k in all instances. Using the above, we see that every term
inside the sum with k ≥ 2, for each r such that δj,c,k,r > 0, can be bounded against

k
1
2 sinh

(
π

√
2δ0(24n− 1)

2
√

3

)
≤ k

1
2

2
e
π

√
2δ0(24n−1)

2
√

3 .

Due to symmetry we may in the following assume that j
c <

1
6 . We note that the

number of r satisfying δj,c,k,r > 0 is decreasing as a function of l and thus has its
maximum at l = 1, in which case it equals⌊

c

24
+

1
2

+
3
2c

⌋
<
c+ 18

24
.

Thus the contribution coming from k 6= 1 can be estimated against
4(c+ 18)

3
√

3c
√

24n− 1
n

3
4 e
π

√
2δ0(24n−1)

2
√

3 .

Moreover, letting δ1 := δ2,c,1,0, the contribution of k = 1 can be estimated against

2(c+ 18)√
3c
√

24n− 1
e
π

√
2δ1(24n−1)
√

3 .

2.2. Estimation of the error term arising in the Circle Method. We next
explicitly estimate the error terms which occurred in Theorem 2.1 from using the
Circle Method. For the readers convenience, we first recall the required set up of the
Circle Method following [5].
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2.2.1. Set up. By Cauchy’s Theorem we have for n > 0

A

(
j

c
;n
)

=
1

2πi

∫
C

N
(
j
c ; q
)

qn+1
dq,

where

N

(
j

c
; q
)

:= R
(
ζjc ; q

)
,

and where C is an arbitrary path inside the unit circle surrounding 0 counterclockwise.
Choosing the circle with radius e−

2π
n and as a parametrisation q = e−

2π
n +2πit with

0 ≤ t ≤ 1, gives

A

(
j

c
;n
)

=
∫ 1

0

N

(
j

c
; e−

2π
n +2πit

)
· e2π−2πint dt.

Define

ϑ′h,k :=
1

k(k1 + k)
, ϑ′′h,k :=

1
k(k2 + k)

,

where h1
k1

< h
k < h2

k2
are adjacent Farey fractions in the Farey sequence of order

N :=
⌊
n1/2

⌋
. From the theory of Farey fractions it is known that

1
k + kj

≤ 1
N + 1

(j = 1, 2).(2.8)

We decompose the path of integration in paths along the Farey arcs −ϑ′h,k ≤ Φ ≤ ϑ′′h,k,
where Φ = t− h

k and 0 ≤ h ≤ k ≤ N with (h, k) = 1. Thus

A

(
j

c
;n
)

=
∑
h,k

e−
2πihn
k

∫ ϑ′′h,k

−ϑ′h,k
N

(
j

c
; e

2πi
k (h+iz)

)
· e 2πnz

k dΦ,

where z = k
n−kΦi. Applying the transformation law for the rank generating functions

shown in [5] gives

A

(
j

c
;n
)

=
∑
1

+
∑
2

+
∑
3

,
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where∑
1

:= i sin
(
πj

c

)∑
h,k
c|k

ωh,k
(−1)jk+1

sin
(
πjh′

c

) · e− 3πij2kh′

c2
− 2πihn

k

×
∫ ϑ

′′
h,k

−ϑ′h,k
z−

1
2 · e

2πz
k (n− 1

24 )+ π
12kzN

(
jh′

c
; q1

)
dΦ

∑
2

:= −4i sin
(
πj

c

)∑
h,k
c-k

ωh,k (−1)jk+l e−
2πih′sj

c − 3πih′j2k
c2

+ 6πih′lj
c2

− 2πihn
k

×
∫ ϑ

′′
h,k

−ϑ′h,k
z−

1
2 · e

2πz
k (n− 1

24 )+ π
12kz · q

sl
c −

3l2

2c2
1 ·N (jh′, l, c; q1) dΦ,

∑
3

:= 2 sin2

(
πj

c

)∑
h,k

ωh,k
k
· e− 2πihn

k

∑
ν (mod k)

(−1)ν e−
3πih′ν2

k +πih′ν
k

×
∫ ϑ

′′
h,k

−ϑ′h,k
e

2πz
k (n− 1

24 ) · z 1
2 · Ij,c,k,ν(z)dΦ.

Here q1 := e
2π
k (h′+ i

z ),

N(a, b, c; q) :=
i

2(q; q)∞

( ∞∑
m=0

(−1)me−
πia
c · qm2 (3m+1)+ms(b,c)+ b

2c

1− e− 2πia
c · qm+ b

c

−
∞∑
m=1

(−1)me
πia
c · qm2 (3m+1)−ms(b,c)− b

2c

1− e 2πia
c · qm− bc

)
,

and

Ij,c,k,ν(z) :=
∫

R
e−

3πzx2
k ·Hj,c

(
πiν

k
− πi

6k
− πzx

k

)
dx

with

Hj,c(x) :=
cosh(x)

sinh
(
x+ πij

c

)
· sinh

(
x− πij

c

) .
To estimate

∑
1, we split N

(
hj′

c ; q1
)

into a contribution coming from the constant
term (which will be part of the main contribution) and an error contribution coming
from the remaining terms. We denote the associated sums by S1 and S2. Throughout
we need the easily verified fact that Re(z) = k

n , Re
(

1
z

)
> k

2 , |z|− 1
2 ≤ n

1
2 · k− 1

2 , and
ϑ′h,k + ϑ

′′

h,k ≤ 2
k(N+1) .

2.2.2. Estimation of S2. We get

S2 ≤ 2
∣∣∣∣sin(πjc

)∣∣∣∣ e2π ∑
k≤N
c|k

k−
3
2

k−1∑
h=1

(h,k)=1

1∣∣sin (πhc )∣∣ max
z

∣∣∣∣e π
12kz

(
N

(
h

c
; q1

)
− 1
)∣∣∣∣ .
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To estimate
∣∣e π

12kz
(
N
(
h
c ; q1

)
− 1
)∣∣, recall that

N

(
h

c
; q1

)
=

1
(q1; q1)∞

+

(
1− ζhc

)
(q1; q1)∞

∞∑
m=1

(−1)mq
m
2 (3m+1)

1

1− ζhc qm1

+

(
1− ζ−hc

)
(q1; q1)∞

∞∑
m=1

(−1)mq
m
2 (3m+1)

1

1− ζ−hc qm1
.

Thus
∣∣e π

12kz
(
N
(
h
c ; q1

)
− 1
)∣∣ can be bounded against

e
π
24

∞∑
m=1

p(m) e−πm + e
π
24

∞∑
m=0

p(m) e−πm
∞∑
m=1

e−
πm(3m+1)

2

∣∣∣∣ 1− ζhc
1− ζhc qm1

+
1− ζ−hc

1− ζ−hc qm1

∣∣∣∣
≤ e π24

∞∑
m=1

p(m) e−πm + 2
(

1 +
∣∣∣cos

(π
c

)∣∣∣) e π24 ∞∑
m=0

p(m) e−πm
∞∑
m=1

e−
πm(3m+1)

2

1− e−πm
.

This gives the estimate

S2 ≤ 2e2π
∣∣∣∣sin(πjc

)∣∣∣∣ e π24 (c2 + 2
(

1 +
∣∣∣cos

(π
c

)∣∣∣) c1(1 + c2)
) ∑
k≤N
c|k

k−
3
2

k−1∑
h=1

1∣∣sin (πhc )∣∣ ,
where

c1 :=
∞∑
m=1

e−
πm(3m+1)

2

1− e−πm
, c2 :=

∞∑
m=1

p(m)e−πm.

Using (2.7) and estimating the sum on k yields

S2 ≤
8e2π+ π

24
(
c2 + 2

(
1 +

∣∣cos
(
π
c

)∣∣) c1(1 + c2)
) ∣∣sin (πjc )∣∣n 1

4
(
1 + log

(
c−1
2

))
π
(
1− π2

24

)
c

.

2.2.3. Terms in
∑

2 with positive exponent. We next estimate the terms in
∑

2 cor-

responding to positive exponents in the q1-expansion of e
π

12kz q
sl
c −

3l2

2c2
1 N (jh′, l, c; q1)

which will contribute to the error. We denote this series by N∗(jh′, l, c; q1) and de-
note the whole associated sum by T2. We have

T2 ≤ 8e2π
∣∣∣∣sin(πjc

)∣∣∣∣∑
h,k
c-k

k−
3
2 max

z
|N∗ (h, l, c; q1)| .

To estimate N∗, we write

N(h, l, c; q1) = − iζh2cq
− l

2c
1

2(q1; q1)∞
(

1− ζhc q
− l
c

1

) +
iζh2cq

− l
2c+2−s

1

2(q1; q1)∞
(

1− ζhc q
1− l

c
1

)
− iζh2cq

− l
2c

1

2(q1; q1)∞

∞∑
m=2

(−1)m q
m
2 (3m+1)−sm

1

1− ζhc q
m− l

c
1

+
iζ−h2c q

l
2c
1

2(q1; q1)∞

∞∑
m=1

(−1)m q
m
2 (3m+1)+sm

1

1− ζ−hc q
m+ l

c
1

.
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We only estimate the first summand since the other terms are treated similarly. For
this, we write

− iζh2cq
− l

2c+
sl
c −

3l2

2c2
1 e

π
12kz

2(q1; q1)∞
(

1− ζhc q
− l
c

1

) =
i

2
ζ−h2c q

l
2c+

sl
c −

3l2

2c2
1 e

π
12kz

∞∑
m=0

p(m)qm1
∞∑
r=0

ζ−hrc q
lr
c

1 .(2.9)

If s = 0, then the terms contributing to N∗ are given by

(2.10)
1
2
e−

πl
2c+

3πl2

2c2
+ π

24

∑
r≥r0

e−
πrl
c +

∞∑
r=0

e−
πrl
c

∞∑
m=1

p(m)e−πm


with

r0 :=
⌈
−1

2
+

3l
2c

+
c

24l

⌉
.

It is not hard to see that (2.10) can be estimated against

e−
πl
2c+

3πl2

2c2
+ π

24−
πr0l
c

2
(

1− e−πlc
) +

e−
πl
2c+

3πl2

2c2
+ π

24 c2

2
(

1− e−πlc
) ≤ 1 + eπδ0c2

2
(
1− e−πc

) .
In the case s 6= 0, (2.9) can be bounded by

1
2
e−

πl
2c+

3πl2

2c2
−πslc + π

24

1− e−πlc
(1 + c2) ≤ 1 + c2

2
(
1− e−πc

) .
Thus N∗ can be estimated against

2 + c2
(
1 + eπδ0

)
2
(
1− e−πc

) +
1
2
eπδ0(1 + c2)(e−πc3 + c1) =: A(c),

where

c3 :=
∞∑
m=2

e−
πm
2 (3m+1)+3πm

1− eπ−πm
.

We hence obtain the bound

T2 ≤ 16A(c)
∣∣∣∣sin(πjc

)∣∣∣∣n 1
4 e2π.

2.2.4. Estimation of
∑

3. We next consider the error coming from
∑

3. For this, we
write

H+
j,c(x) +H−j,c(x) = Hj,c(x)

with

H±j,c(x) := ± i

2 sin
(
πj
c

)
sinh

(
x± πij

c

) .
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We denote the contribution of these functions to Ij,c,k,ν(x) by I±j,c,k,ν(x). Proceeding
as in the proof of Lemma 3.1 of [5], we obtain∣∣∣z 1

2 I±j,c,k,ν(z)
∣∣∣ ≤ k

2π|z| 12
∣∣sin (πνk − π

6k ±
πj
c

)∣∣ 1∣∣sin (πjc )∣∣
∫

R
e−

3k
π Re( 1

z )t2dt

=

√
k

2
√

3
(

Re
(

1
z

)
|z|
) 1

2
∣∣sin (πjc )∣∣ ∣∣sin (πνk − π

6k ±
πj
c

)∣∣
≤ 2−

3
4

√
3
n

1
4

1∣∣sin (πjc )∣∣ ∣∣sin (πνk − π
6k ±

πj
c

)∣∣ .
This yields the inequality∑

3

≤ 2
5
4 e2πn−

1
4

√
3

∣∣∣∣sin(πjc
)∣∣∣∣∑

±

∑
k≤N

∑
ν (mod k)

1
k
∣∣sin (πνk − π

6k ±
πj
c

)∣∣ .
We next estimate the sum on ν. We have∑
±

∑
ν (mod k)

1∣∣sin (πνk − π
6k ±

πj
c

)∣∣ = 2
∑

ν (mod k)

1∣∣sin (πνk − π
6k

)∣∣
= 2

 [ k2 ]∑
ν=1

1∣∣sin (πνk − π
6k

)∣∣ +
[ k+1

2 ]−1∑
ν=0

1∣∣sin (πνk + π
6k

)∣∣


≤ 2k
π

 [ k2 ]∑
ν=1

1(
ν − 1

6

){
1− 1

6

(
π
k

([
k
2

]
− 1

6

))2}

+
[ k+1

2 ]−1∑
ν=0

1(
ν + 1

6

){
1− 1

6

(
π
k

([
k+1
2

]
− 5

6

))2}
 ≤ 4k log

(
k
2

)
π
(
1− π2

24

) .
where {x} := x− [x]. Combing the above bounds gives the estimate∑

3

≤
2

9
4 · 2 1

4 e2πn
1
4
∣∣sin (πjc )∣∣ log

(
n
4

)
√

3π
(
1− π2

24

) .

2.2.5. Symmetrizing paths of integration. We write∫ ϑ
′′
h,k

−ϑ′h,k
=
∫ 1

kN

− 1
kN

−
∫ − 1

k(k+k1)

− 1
kN

−
∫ 1

kN

1
k(k+k2)

and estimate the contributions to the error terms from the last two integrals as before
(using Re(z) = k

n , Re
(

1
z

)
< k, and |z|2 ≥ k2

n2 ). Their contribution to
∑

1 can be
estimated against

8e2π+ π
12
(
1 + log

(
c−1
2

))
· n 1

4

cπ
(
1− π2

24

) ∣∣∣∣sin(πjc
)∣∣∣∣ .
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We next consider the error that is introduced by symmetrizing
∑

2, which can be
estimated against

8e2π
∣∣∣∣sin(πjc

)∣∣∣∣ ∑
r,k

δj,c,k,r>0

k−
1
2 e2πδj,c,k,r .

Recall that δj,c,k,r > 0 implies that s ∈ {0, 3}. For s = 0, the sum on r equals

e−
πl
c + 3πl2

c2
+ π

12
∑

r≤r0−1

e−
2πlr
c =

e−
πl
c + 3πl2

c2
+ π

12

(
e−

2πl
c r0 − 1

)
e−

2πl
c − 1

≤ e2πδ0

1− e− 2π
c

.

The case s = 3 is treated similarly and yields the same error term. Thus the error
introduced by symmetrizing

∑
2 can be estimated against

16e2π
∣∣∣∣sin(πjc

)∣∣∣∣n 1
4

e2πδ0

1− e− 2π
c

.

2.2.6. Error introduced by integrating along the smaller arc. To finish the evaluation
of
∑

1 and
∑

2 we have to consider integrals of the form

Ik,r :=
∫ 1

kN

− 1
kN

z−
1
2 · e

2π
k (z(n− 1

24 )+ r
z )dΦ.

Substituting z = k
n − ikΦ gives

Ik,r =
1
ki

∫ k
n+ i

N

k
n−

i
N

z−
1
2 · e

2π
k (z(n− 1

24 )+ r
z ) dz.

We denote the circle through k
n ±

i
N and tangent to the imaginary axis at 0 by Γ.

Writing z = x + iy, Γ is given by x2 + y2 = αx, with α := k
n + n

N2k . We change the
path of integration into the larger arc by Cauchy’s Theorem and then estimate the
contribution to the error term from the integral along the smaller arc by using the
fact that on the smaller arc we have 2 > α > 1

k , Re(z) ≤ k
n , and Re

(
1
z

)
< k. Denoting

by A the smaller arc on the circle, we can estimate the contribution against

2
k
e2π+2πr

∫
A
|z|− 1

2 dz ≤ 1
k
e2π+2πrα−

1
4

∣∣∣∣∣43
(
k

n

) 3
4

+ i

∫ k
n

0

x−
3
4
α− 2x

2
√
α− x

dx

∣∣∣∣∣ .
It is not hard to see that the function f(x) := α−2x

2
√
α−x on [0, α] obtains its maximum

at x = 0. Thus we have a contribution of at most

2
k
e2π+2πrα−

1
4

(
4
3

(
k

n

) 3
4

+ 2α
1
2

(
k

n

) 1
4
)
≤
(

4
3

+ 2
5
4

)
2
k
e2π+2πrN−

1
2 .

This yields, using (2.7), that the contribution coming from
∑

1 can be bounded by

4
(

4
3 + 2

5
4

) ∣∣sin (πjc )∣∣ (1 + log
(
c−1
2

))
e2π+ π

12n
1
4

πc
(
1− π2

24

) .

Similarly the contribution coming from
∑

2 can be estimated against

8
∣∣∣∣sin(πjc

)∣∣∣∣ (4
3

+ 2
5
4

)
e2πδ0+2π

1− e− 2π
c

.
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Having bounded all of the relevant terms, we conclude Theorem 1.2.

Appendix

Following the argument given in the proof of Theorem 1.2 to bound the error terms,
one can obtain effective bounds for c = 5, c = 7, and c = 9 beyond which the main
term of the asymptotic formula dominates the other terms. Noting that the sign of
the main term is determined by n modulo c easily gives Theorem 1.1 for sufficiently
large n. Since the upper bounds for integers that might not satisfy the inequalities in
Theorem 1.1 are relatively small, we obtain the explicit set of exceptions to Theorem
1.1 after a quick computer check (calculations were done here with MAGMA and
MAPLE). For 0 ≤ a < b ≤ c−1

2 and d (mod c) fixed, Tables 1, 2, and 3 contain the
set of n ≡ d (mod c) which do not satisfy the inequality given in Theorem 1.1 for
c = 5, c = 7, and c = 9, respectively. For brevity we omit the choices of (a, b, d) for
which there are no exceptions.

Table 1. Exceptions to the inequality for c = 5.

(a, b, d) Exceptions n

(0, 2, 0) {5, 10, 20, 30, 50}
(0, 1, 2) {7, 27}
(1, 2, 2) {7, 27}
(0, 1, 3) {8}
(0, 2, 3) {3, 13}

Table 2. Exceptions to the inequality for c = 7.

(a, b, d) Exceptions n

(0, 1, 0) {14, 42, 56, 70, 84, 126}
(0, 2, 0) {14, 42}
(0, 3, 0) {14, 42}
(1, 2, 0) {7, 21, 28, 35, 49, 63, 77, 91, 133}
(1, 3, 0) {7, 21, 28, 35, 49, 63, 77, 91, 133}
(0, 2, 2) {2, 9, 23, 30, 51}
(2, 3, 2) {2, 9, 23, 30, 51}
(0, 1, 3) {10, 24, 52}
(0, 3, 3) {10, 24, 52}
(1, 2, 3) {10, 24, 52}
(2, 3, 3) {10, 24, 52}
(0, 2, 4) {11, 18, 39, 53}
(1, 2, 4) {11, 18, 39, 53}
(2, 3, 4) {11, 18, 39, 53}
(0, 1, 6) {13, 27, 41, 48, 55, 76, 83, 97, 111, 125}
(0, 2, 6) {13}
(0, 3, 6) {6, 20, 34}
(1, 2, 6) {6, 20, 34}
(1, 3, 6) {13}
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Table 3. Exceptions to the inequality for c = 9.

(a, b, d (mod 3)) Exceptions n

(0, 1, 0) {3, 9, 12, 15, 21, 27, 33, 39, 45, 57, 75}
(0, 2, 0) {3, 6, 12, 15, 18, 24}
(0, 3, 0) {6}
(0, 4, 0) {6}
(1, 2, 0) {3, 12, 15, 21, 39}
(1, 3, 0) {3}
(1, 4, 0) {3}
(2, 3, 0) {6, 9}
(2, 4, 0) {6, 9}
(0, 1, 1) {4}
(0, 3, 1) {4, 16}
(1, 2, 1) {1, 7, 13, 19, 25}
(1, 3, 1) {1, 4, 10}
(1, 4, 1) {1, 7}
(2, 3, 1) {1, 7}
(2, 4, 1) {1, 4, 10}
(3, 4, 1) {1}
(0, 1, 2) {5}
(0, 2, 2) {2, 5, 14}
(0, 3, 2) {2, 8}
(1, 2, 2) {5, 8, 11, 17, 23, 35}
(1, 4, 2) {5}
(2, 3, 2) {2}
(2, 4, 2) {2, 5, 14}
(3, 4, 2) {2, 8}
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