
RANK AND CONGRUENCES FOR OVERPARTITION PAIRS

KATHRIN BRINGMANN AND JEREMY LOVEJOY

Abstract. The rank of an overpartition pair is a generalization of Dyson’s rank of a partition.
The purpose of this paper is to investigate the role that this statistic plays in the congruence
properties of pp(n), the number of overpartition pairs of n. Some generating functions and
identities involving this rank are also presented.

1. Introduction

An overpartition λ of n is a partition of n in which the first occurrence of a number may be
overlined. An overpartition pair (λ, µ) of n is a pair of overpartitions where the sum of all of
the parts is n. For example, there are 12 overpartition pairs of 2,

((2), ∅), ((2), ∅), ((1, 1), ∅), ((1, 1), ∅), ((1), (1)), ((1), (1)), ((1), (1)), ((1), (1)),

(∅, (2)), (∅, (2)), (∅, (1, 1)), (∅, (1, 1)).

Since the overlined parts of an overpartition form a partition into distinct parts and the non-
overlined parts of an overpartition form an unrestricted partition, we have the generating func-
tion

∑

n≥0

pp(n)qn =
∏

n≥1

(1 + qn)2

(1 − qn)2
=

η2(2z)

η4(z)
= 1 + 4q + 12q2 + 32q3 + 76q4 + · · · .

Here pp(n) denotes the number of overpartition pairs of n, and η(z) is the eta-function

η(z) := q1/24
∏

n≥1

(1 − qn), (1.1)

where q := e2πiz.
It has recently become clear that overpartition pairs play an important role in the theory of

q-series and partitions. They provide a natural and general setting for the study of q-series iden-
tities [8, 13, 14, 39] and q-difference equations [25, 26, 28]. One of the important statistics that
has arisen in the study of overpartition pairs is the rank. To define the rank of an overpartition
pair we use the notations ℓ(·) and n(·) for the largest part and the number of parts of an object.
Overlining these functions indicates that we are only considering the overlined parts. We order
the parts of (λ, µ) by stipulating that for a number k,

kλ > kλ > kµ > kµ, (1.2)
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where the subscript indicates to which of the two overpartitions the part belongs.

Definition 1.1. The rank of an an overpartition pair (λ, µ) is

ℓ((λ, µ)) − n(λ) − n(µ) − χ((λ, µ)), (1.3)

where χ((λ, µ)) is defined to be 1 if the largest part of (λ, µ) is non-overlined and in µ, and 0
otherwise.

For example, the rank of the overpartition pair ((6, 6, 5, 4, 4, 4, 3, 1), (7, 7, 5, 2, 2, 2)) is 7− 8 −
1−1 = −3, while the rank of the overpartition pair ((4, 3, 3, 2, 1), (4, 4, 4, 1)) is 4−5−1−0 = −2.
When the overpartition µ is empty and λ has no overlined parts, the overpartition pair is just
a single partition λ, and the rank reduces to the largest part minus the number of parts, which
is Dyson’s original rank for partitions [15].

Dyson defined his rank in order to understand certain congruence properties for the partition
function p(n). Ramanujan had proven that

p(5n + 4) ≡ 0 (mod 5), (1.4)

p(7n + 5) ≡ 0 (mod 7), (1.5)

p(11n + 6) ≡ 0 (mod 11). (1.6)

Using theta functions and q-series identities, Atkin [6] and Watson [38] later on showed gen-
eralisations for powers of 5, 7, and 11. In a celebrated paper Ono [32] treated these kinds
of congruences systematically. Combining Shimura’s theory of modular forms of half-integral
weight with results of Serre on modular forms modulo ℓ he showed that for any prime ℓ ≥ 5
there exist infinitely many non-nested arithmetic progressions of the form An + B such that

p(An + B) ≡ 0 (mod ℓ).

Ahlgren and Ono [1] and [2] extended this phenomenon to prime powers.
Dyson [15] conjectured that

N(r, 5, 5n + 4) =
p(5n + 4)

5
for 0 ≤ r < 5, (1.7)

N(r, 7, 7n + 5) =
p(7n + 5)

5
for 0 ≤ r < 7. (1.8)

Here N(r, t, n) denotes the number of partitions of n whose rank is congruent to r modulo t.
Dyson’s conjectures were proven by Atkin and Swinnerton-Dyer [7]. It is interesting to note that
the congruence modulo 11 may not be established in the same way using the rank. However,
there is a statistic called the crank, predicted by Dyson and found by Andrews and Garvan [4],
which provides combinatorial decompositions like (1.7) and (1.8) for all three of Ramanujan’s
congruences [18].

In this paper we investigate the role played by the rank of an overpartition pair in congruence
properties of pp(n). Our first result shows that this statistic implies a simple Ramanujan-type
congruence in the same way as the rank for ordinary partitions implies (1.4) and (1.5).

Theorem 1.2. Let NN(r, t, n) denote the number of overpartition pairs of n whose rank is

congruent to r modulo t. For all 0 ≤ r < 3 we have

NN(r, 3, 3n + 2) =
pp(3n + 2)

3
. (1.9)
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Corollary 1.3. For all natural numbers n, we have

pp(3n + 2) ≡ 0 (mod 3).

The interested reader may check, for example, that of the 12 overpartition pairs of 2 listed
on the previous page, four have rank 1, four have rank 0, and four have rank −1.

When there is no congruence in the arithmetic progression An + B, it is still natural to
seek information about the rank differences NN(r, t, An + B) − NN(s, t, An + B). In the case
of the partition function and Dyson’s rank, such rank differences have been studied by many
authors (see [5, 7, 9, 33], for instance) who prove a variety of results. For example, some rank
differences are 0, some have nice infinite product generating functions, and some are always
positive or always negative. In the case of overpartition pairs, there are several cases where the
rank differences can be expressed as nice infinite products, the following being just one example.
More of these identities are given in Section 3.

Theorem 1.4. We have

4 +
∑

n≥1

(
NN(0, 3, n) − NN(1, 3, n)

)
qn =

4η2(2z)

η(z)η(3z)
(1.10)

=
4η(6z)η2(9z)

η2(3z)η(18z)
+

4η2(18z)

η(3z)η(9z)
. (1.11)

Perhaps the most interesting feature of such identities is that many of the infinite products
can be interpreted in a natural way as generating functions for overpartitions or overpartition
pairs. Moreover, some of these products have shown up in other studies of overpartitions. We
shall record some of the resulting combinatorial identities, the following corollary of Theorem
1.4 being one example:

Corollary 1.5. Let S1(n) denote the number of overpartitions of n, where parts differ by at

least 3 if the smaller part is overlined OR both parts are divisible by 3, and parts differ by

at least 6 if the smaller is overlined AND both parts are divisible by 3. Let S2(n) denote the

number of overpartitions λ = λ1 + λ2 + · · · of n, where parts occur at most twice and λi − λi+2

is at least 2 if λi+2 is non-overlined and at least 1 if λi+2 is overlined. Let S3(n) denote the

number of overpartitions of n into parts not divisible by 3. Then 4S1(n) = 4S2(n) = 4S3(n) =
NN(0, 3, 3n) − NN(1, 3, 3n).

Instead of asking if the rank implies congruences in the sense of Theorem 1.2, we may ask
if congruences for pp(n) are implied by the fact that the counting functions NN(r, t, An + B)
themselves satisfy congruences. This turns out to be true, much like it is for partitions [10, 12]
and overpartitions [11], but with two notable differences. First, for partitions and overpartitions
one obtains weak Maass forms, while for overpartition pairs we use classical modular forms.
Second, in the case of overpartition pairs we are dealing with objects of integral weight instead
of half-integral weight. Hence we obtain strong density results in addition to congruences in
arithmetic progressions.

Theorem 1.6. Let ℓ be an odd prime. For any positive integers j and u, almost all natural

numbers n satisfying
(

n
ℓ

)
= −

(
−2
ℓ

)
have the property that

NN(r, ℓu, n) ≡ 0 (mod ℓj) (1.12)
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for all r with 0 ≤ r ≤ ℓu − 1.

Theorem 1.7. Let ℓ be an odd prime and let t be an odd number which is a power of ℓ or

relatively prime to ℓ. For any positive integer j, there are infinitely many non-nested arithmetic

progressions An + B such that

NN(r, t, An + B) ≡ 0 (mod ℓj) (1.13)

for all r with 0 ≤ r ≤ t − 1.

We note that since

pp(n) =
ℓu−1∑

r=0

NN(r, ℓu, n),

Theorem 1.6 is also true for pp(n). For completeness, we shall also study the case ℓ = 2 and
thus establish the following.

Theorem 1.8. For any prime ℓ and natural number j, we have

lim inf
X→∞

#{n ≤ X : pp(n) ≡ 0 (mod ℓj)}

X
≥

{
1
2 − 1

ℓ , ℓ odd,

1, ℓ = 2.

The paper is organized as follows. In the next section, we give some fundamental generating
functions for the rank. In Section 3 we prove Theorems 1.2 and 1.4, Corollary 1.5, and related
results. In Section 4, we use the theory of modular forms in the spirit of Ahlgren-Ono [2],
Mahlburg [29], and Serre [35, 36] to deduce Theorems 1.6 and 1.7.

2. Generating functions

In this section we give some basic generating functions required to prove the main theorems
as well as some that will be of independent interest. To begin, let NN(m, n) denote the number
of overpartition pairs of n with rank m. We assume that the empty overpartition pair of 0 has
rank 0. We shall establish a two-variable generating function for NN(m, n). Our argument will
depend on the following, which is equation (1.11) in [22]:

4

(1 + z)(1 + z−1)
+
∑

n≥1

(−1)2nqn

(zq, q/z)n
=

4(−q)2∞
(1 + z)(1 + z−1)(zq, q/z)∞

. (2.1)

Here we have employed the standard q-series notation [17],

(a1, a2, . . . , ak)n := (a1, a2, . . . , ak; q)n :=

n−1∏

j=0

(1 − a1q
j)(1 − a2q

j) · · · (1 − akq
j).

We shall also require the q-Gauss summation [17],
∑

n≥0

(a, b)n(c/ab)n

(c, q)n
=

(c/a, c/b)∞
(c, c/ab)∞

. (2.2)

Proposition 2.1. We have

∑

n≥0
m∈Z

NN(m, n)zmqn =
∑

n≥0

(−1)2nqn

(zq, q/z)n
(2.3)
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Proof. We begin by recalling from the elementary theory of partitions [3, p. 16] that 1/(zq)n

(resp., (−zq)n) is the generating function for partitions (resp., partitions into distinct parts),
where the exponent of q is the number being partitioned, the exponent of z is the number of
parts, and all parts are less than or equal to n. Using these generating functions together with
the definition of the rank (1.3), and splitting the overpartition pairs with a positive number of
parts into four cases, depending on whether the largest part is overlined and whether it is in λ
or µ, gives us four series. For example, the series

∑

n≥1

(−q/z)2n−1q
nzn−1

(q/z)n−1(q)n

is the generating function for overpartition pairs whose largest part n is overlined and in µ,
where the exponent of q is the number being partitioned and the exponent of z is the rank.
Combining this with the three other cases gives

∑

n≥0
m∈Z

NN(m, n)zmqn = 1 +
∑

n≥1

(−q/z)n−1(−q/z)nqnzn−1

(q/z, q)n
+
∑

n≥1

(−q/z)n−1(−q/z)nqnzn−1

(q/z, q)n

+
∑

n≥1

(−q/z)2n−1q
nzn−1

(q/z)n−1(q)n
+
∑

n≥1

(−q/z)2n−1q
nzn−1

(q/z)n−1(q)n

= 1 + 2
∑

n≥1

(−q/z)n−1(−q/z)nqnzn−1

(q/z, q)n
+ 2

∑

n≥1

(−q/z)2n−1q
nzn−1

(q/z)n−1(q)n

= 1 + 2
∑

n≥1

(−q/z)2n−1q
nzn−1

(q/z)n−1(q)n

(
1 +

1 + q
z

1 − q
z

)

= 1 +
4z−1

(1 + 1
z )2

∑

n≥1

(−1/z)2n(zq)n

(q/z, q)n

= 1 +
4

(1 + z)(1 + 1
z )



∑

n≥0

(−1/z)2n(zq)n

(q/z, q)n
− 1




= 1 +
4

(1 + z)(1 + 1
z )

(
(−q)2∞

(zq, q/z)2∞
− 1

)

= 1 +
∑

n≥1

(−1)2nqn

(q/z, zq)n
,

where the last two inequalities follow from (2.2) and (2.1). �

We would like to make two remarks here. First, the above proposition implies the symmetry
NN(m, n) = NN(−m, n). Second, one can use the “Frobenius representation of an overpartition
pair” to give an alternative definition of the rank. This is the approach taken in [28], and it
immediately gives the symmetry as well as the generating function (2.3). Using the above
argument or the bijection in [13, 27], one can then recover the definition for the rank that we
employ in the present paper.
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There are some nice generating functions which follow from (2.3), and we record these here,
even though they are not required in the sequel.

Proposition 2.2. For any integer m we have

∑

n≥1

NN(m, n)qn =
(−1)2∞
(q)2∞

∑

n≥1

(−1)n−1qn(n+1)/2+|m|n(1 − qn)

(1 + qn)2
. (2.4)

Proof. We employ a limiting case of Watson’s transformation [17],

∞∑

n=0

(aq/bc, d, e)n(aq
de )n

(q, aq/b, aq/c)n
=

(aq/d, aq/e)∞
(aq, aq/de)∞

∞∑

n=0

(a, b, c, d, e)n(1 − aq2n)(aq)2n(−1)nqn(n−1)/2

(q, aq/b, aq/c, aq/d, aq/e)n(1 − a)(bcde)n
.

(2.5)
Taking a = 1, b = z, c = 1/z, d = −1, and e = −1, we obtain

∞∑

n=0

(−1)2nqn

(zq, q/z)n
=

(−q)2∞
(q)2∞

(
1 + 4

∞∑

n=1

(1 − z)(1 − 1/z)(−1)nqn(n+1)/2+n

(1 − zqn)(1 − qn/z)(1 + qn)

)
.

Now it is easily verified that

(1 − z)(1 − 1/z)qn

(1 − zqn)(1 − qn/z)
= 1 −

(1 − qn)

(1 + qn)

∞∑

m=0

zmqmn −
(1 − qn)

(1 + qn)

∞∑

m=1

z−mqmn.

Substituting this into the above equation and picking off the coefficient of zm immediately gives
the desired result for m 6= 0. By Proposition 2.1 with m = 0, the generating function

∑

n≥1

NN(0, n)qn

is the coefficient of z0 in

−1 +
∑

n≥0

(−1)2nqn

(zq, q/z)n
.

Arguing as above, this constant term is

−1 +
(−q)2∞
(q)2∞


1 + 4

∑

n≥1

(−1)nqn(n+1)/2

1 + qn
+ 4

∑

n≥1

(−1)n−1qn(n+1)/2(1 − qn)

(1 + qn)2


 .

Now it is known (see [17, 5.2, p.134], for example) that the first two terms in parentheses sum
to

(q)2∞
(−q)2∞

.

Hence we end up with

∑

n≥1

NN(0, n)qn =
(−1)2∞
(q)2∞

∑

n≥1

(−1)n−1qn(n+1)/2(1 − qn)

(1 + qn)2
,

as desired. �

The following is deduced immediately from Proposition 2.2
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Corollary 2.3. For 0 ≤ r ≤ t, we have

∑

n≥1

NN(r, t, n)qn =
(−1)2∞
(q)2∞

∑

n≥1

(−1)n−1qn(n+1)/2(qrn + q(t−r)n)(1 − qn)

(1 + qn)2(1 − qtn)
. (2.6)

Proof. Use Proposition 2.2 plus the fact that

NN(r, t, n) =
∑

k∈Z

NN(r + tk, n).

�

We close this section with a useful decomposition of the generating function for NN(r, t, n)
into a linear combination of certain modular forms.

Proposition 2.4. For t an odd integer and 0 ≤ r ≤ t − 1, let C(r, t) be the constant

C(r, t) :=
4

t

t−1∑

s=0

ζ−rs
t

(1 + ζs
t )(1 + ζ−s

t )
.

Then we have

C(r, t) +
∑

n≥1

NN(r, t, n)qn =
1

t

∑

n≥0

pp(n)qn +
1

t

t−1∑

s=1

ζ−rs
t R(ζs

t ; q). (2.7)

Here

R(z; q) :=
4(−q)2∞

(1 + z)(1 + 1/z)(zq, q/z)∞
.

Proof. Since
∑

pp(n)qn = R(1; q), by (2.1) and (2.3), we see that for n ≥ 1 the coefficient of qn

on the right hand side of (2.7) is

1

t

t−1∑

s=0

ζ−rs
t

∑

m∈Z

NN(m, n)ζsm
t =

1

t

∑

m∈Z

NN(m, n)
t−1∑

s=0

ζ
(m−r)s
t .

Now the sum on s is equal to t if m ≡ r (mod t), and is 0 otherwise. This establishes the
theorem up to the constant term, which is easily calculated from (2.1). �

Notice that because of the denominator in R(z; q), we can only take t odd in order to avoid
the case z = −1. This restricts the values of t for which we can obtain information about the
counting functions NN(r, t, n). It would be interesting to know what can be done in the case t
even.

3. Generating functions for rank differences

In this section we prove Theorem 1.4 and Corollary 1.5, along with some similar results when
t = 2 or 4. Theorem 1.2 will also follow from this work, as we shall see shortly.

Proof of Theorems 1.2 and 1.4. Using (2.3) and (2.1) with z = ζ3, a third root of unity,
together with the fact that NN(1, 3, n) = NN(2, 3, n), we may conclude that

4 +
∑

n≥1

(
NN(0, 3, n) − NN(1, 3, n)

)
qn = 4

(−q)2∞(q)∞
(q3; q3)∞

. (3.1)
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This is (1.10). By Jacobi’s triple product identity [17],
∑

n∈Z

znqn2
= (−zq,−q/z, q2; q2)∞ (3.2)

we have
2(−q)2∞(q)∞ =

∑

n∈Z

q(
n+1

2 ). (3.3)

Since there are no triangular numbers congruent to 2 mod 3, we have that

NN(0, 3, 3n + 2) = NN(1, 3, 3n + 2).

This establishes that for r = 0, 1, or 2,

NN(r, 3, 3n + 2) =
pp(3n + 2)

3
,

which completes the proof of Theorem 1.2. For (1.11), we note that the triangular numbers
congruent to 1 modulo 3 are of the form (3n + 1)(3n + 2)/2, and so by (3.2) we have

∑

n∈Z

q(3n+1)(3n+2)/2 = 2q(−q9; q9)∞(q18; q18)∞.

Similarly, the triangular numbers divisible by 3 are of the form (3n)(3n + 1)/2 (each of these
contributing twice), and we have

2
∑

n∈Z

q(3n)(3n+1)/2 = 2
(q9; q9)∞(−q3; q3)∞

(−q9; q9)∞
.

Putting these last two equations together with (3.1) and (3.3) above, we have Theorem 1.4. �

Theorem 3.1. We have
∑

n≥0

(
NN(0, 2, 2n + 1) − NN(1, 2, 2n + 1)

)
qn =

4η8(2z)

η4(z)
(3.4)

Proof. From (2.3), we have

∑

n≥1

(
NN(0, 2, n) − NN(1, 2, n)

)
qn =

∑

n≥1

(−1)2nqn

(−q)2n
.

This final series may be written as

4
∑

n≥1

qn

(1 + qn)2
= 4

∑

n≥1

(qn − 2q2n + 3q3n − 4q4n + · · · ),

and so we see that

NN(0, 2, 2n + 1) − NN(1, 2, 2n + 1) = 4σ(2n + 1),

where σ(n) is the sum of the divisors of n. Now it is well known (see [16, p. 482-483], for
example) that

∑

n≥0

σ(2n + 1)qn =
η8(2z)

η4(z)
,

which completes the proof. �
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Theorem 3.2. We have

2 +
∑

n≥1

(
NN(0, 4, n) − NN(2, 4, n)

)
qn

=
2η3(2z)

η2(z)η(4z)
(3.5)

=
2η5(8z)

η2(2z)η(4z)η2(16z)
+

4η(4z)η2(16z)

η2(2z)η(8z)
(3.6)

=
2η5(8z)η3(16z)

η6(4z)η2(32z)
+

4η7(16z)

η4(4z)η(8z)η2(32z)
+

4η7(8z)η2(32z)

η6(4z)η3(16z)
+

8η(8z)η(16z)η2(32z)

η4(4z)
.

(3.7)

Proof of Theorem 3.2. Using z = i in (2.3) and (2.1), together with the fact that NN(1, 4, n) =
NN(3, 4, n), we have

2 +
∑

n≥1

(
NN(0, 4, n) − NN(2, 4, n)

)
= 2

(−q)2∞
(−q2; q2)∞

=
2(−q; q2)∞
(q; q2)∞

= 2
(q2; q2)3∞

(q)2∞(q4; q4)∞
.

This is (3.5). For (3.6), we observe that

(−q2; q2)∞(−q,−q, q2; q2)∞
(q2; q2)∞

=
(−q2; q2)∞
(q2; q2)∞

×
∑

n∈Z

qn2
.

Now, (3.6) follows from (3.2) and the fact that n2 is even if and only if n is even. The proof of
(3.7) is similar. In this case, we write

(−q; q2)∞
(q; q2)∞

=
(−q,−q,−q2,−q2, q2; q2)∞

(q4; q4)∞

= (−q,−q, q2; q2)∞(−q2,−q2, q4; q4)∞ ×
(−q4; q4)2∞
(q4; q4)2∞

=
∑

n∈Z

qn2
∑

m∈Z

q2m2
×

(−q4; q4)2∞
(q4; q4)2∞

,

the last equality following from (3.2). Now n2 + 2m2 is divisible by 4 if and only if n and m are
even. Hence the powers of q divisible by 4 in (−q; q2)∞/(q; q2)∞ come from

∑

n∈Z

q4n2
∑

m∈Z

q8m2
×

(−q4; q4)2∞
(q4; q4)2∞

,

which by (3.2) is

(−q4; q4)2∞(−q4,−q4, q8; q8)∞(−q8,−q8, q16; q16)∞
(q4; q4)2∞

.

This is the first term in (3.7), and the other three follow in a similar way. This completes the
proof of Theorem 3.2. �

We now highlight a few combinatorial identities that follow from the rank difference generating
functions above, beginning with Corollary 1.5.
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Proof of Corollary 1.5. The generating function for S3(n) is

∑

n≥0

S3(n)qn =
(−q)∞(q3; q3)∞
(q)∞(−q3; q3)∞

.

Hence from (1.11), it is clear that for n ≥ 1 we have

NN(0, 3, 3n) − NN(1, 3, 3n) = 4S3(n).

The fact that S3(n) = S2(n) is the case k = 3 of Theorem 1.1 in [21], while the fact that
S3(n) = S1(n) follows from Corollary 1.4 of [24] �

Corollary 3.3. Let T1(n) denote the number of overpartitions of n into distinct parts, where

parts differ by at least two if the smaller is overlined. Let T2(n) denote the number of overpar-

titions of n into odd parts. Then for all natural numbers n we have

NN(0, 4, n) − NN(2, 4, n) = 2T1(n) = 2T2(n).

Proof. By (3.5), NN(0, 4, n) − NN(2, 4, n) is equal to twice the number of overpartitions of n
into odd parts. But this latter quantity is also equal to twice T1(n) (see Theorem 1.1 of [21], for
example). �

As two more examples we record the following, which is easily deduced from (3.6).

Corollary 3.4. Let U(n) denote the number of overpartition pairs (λ, µ) of n, where the parts

of λ are not divisible by 4 and the parts of µ are congruent to 2 modulo 4. Let V (n) denote the

number of overpartition pairs (λ, µ) of n, where the non-overlined parts of λ are not divisible by

8 and µ contains only overlined parts, these being divisible by 4. Then for all natural numbers

n we have

(i) NN(0, 4, 2n) − NN(2, 4, 2n) = 2U(n),

(ii) NN(0, 4, 2n + 1) − NN(0, 4, 2n + 1) = 4V (n).

Proof. The right side of (3.6) may be written as

2(−q2; q2)∞(−q4; q8)∞
(q2; q2)∞(q4; q8)∞

+
4q(−q2; q2)∞(−q8; q8)∞(q16; q16)∞

(q2; q2)∞
,

which is clearly equal to

2
∑

n≥0

U(n)q2n + 4
∑

n≥0

V (n)q2n+1.

�

It is intriguing to wonder if the equality between the rank differences and the overpartition-
theoretic functions in Corollaries 1.5, 3.3, and 3.4 could be proven using combinatorial mappings.
Corollaries 1.5 and 3.3 are particularly interesting, as they relate overpartition pairs to overpar-
titions.
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4. Congruences for the rank

In this section we establish Theorems 1.6 and 1.7. These results depend heavily on the theory
of modular forms [19], particularly the properties of eta-functions [31] and Klein forms [20, 34].
Before we prove the main result of this section, we review a few definitions.

Let Γ = Γ0(N) or Γ1(N) denote the congruence subgroups of SL2(Z) consisting of ma-

trices equivalent modulo N to

(
• •
0 •

)
or

(
1 •
0 1

)
, respectively. Let Mk(Γ0(N), χ) (resp.

Sk(Γ0(N)), χ) denote the usual space of weight k modular forms (resp. cusp forms) on Γ0(N)
with character χ, and let Mk(Γ1(N)) (resp. Sk(Γ1(N))) denote the space of weight k modular
forms (resp. cusp forms) on Γ1(N). For a matrix in SL2(Z) and function f(z) on the upper half
plane, define the weight k slash operator by

f(z)

∣∣∣∣
k

(
a b
c d

)
:= (cz + d)kf

(
az + b

cz + d

)
.

Recall that the (0, s)-Klein form is defined relative to a modulus N , for all s with 0 ≤ s ≤ N−1,
by

K0,s(z) :=
−iωsq

1/12

2π
×

1

η2(z)

∏

n≥1

(1 − ζsqn)(1 − ζ−sqn). (4.1)

Here we have ζ := e2πi/N and ωs := ζs/2(1 − ζ−s). This function is a weakly holomorphic
modular form of weight −1 on Γ1(2N2). (Recall that weakly holomorphic means that the poles,

if there are any, are supported at the cusps.) More specifically, if

(
a b
c d

)
∈ Γ0(N), then

K0,s(z)

∣∣∣∣
−1

(
a b
c d

)
= βsK0,ds(z). (4.2)

Here d denotes d modulo N and

βs := exp

(
cs + (ds − ds)

2N
+

cs · (ds − ds) − cs · ds

2N2

)
,

with exp(z) := e2πiz.

Theorem 4.1. For an odd prime ℓ and natural numbers j and u, there exists a weight k and a

level N so that modulo ℓj we have
∑

(n
ℓ )=−

�
−2
ℓ

�NN(r, ℓu, n)qn ∈ Sk(Γ1(N)) (4.3)

for all r with 0 ≤ r ≤ ℓu − 1. Moreover, this cusp form has coefficients of the form a(n)/ℓu,

with a(n) an integer.

Proof. Let ℓ be an odd prime, let t = ℓu, and suppose that 0 ≤ r ≤ ℓu − 1. With ζ an ℓuth root
of unity, define the function

f(z) :=
−2i

π

t−1∑

s=0

ωsζ
−rsη2(2z)η6ℓ−8(2ℓz)η4(ℓz)

(1 + ζs)(1 + ζ−s)η4(z)K0,s(z)
. (4.4)
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Notice that from Proposition 2.4 and equation (4.1), f(z) has a q-expansion with integer coeffi-
cients. Basic properties of eta-functions and of Klein forms tell us that

η2(2z)η6ℓ−8(2ℓz)η4(ℓz)

η4(z)

is a holomorphic modular form in the space M3ℓ−3(Γ0(2ℓ)) and K0,s(z) is a weakly holomorphic
form of weight −1 on Γ1(2t2). Hence the function f(z) is a weakly holomorphic modular form
in the space M3ℓ−2(Γ1(2t2)).

For any modular form F =
∑

a(n)qn, define F̃ (z) by

F̃ (z) :=
(
F (z) −

(
−2
ℓ

)
F (z) ⊗

(
•
ℓ

))
⊗
(
•
ℓ

)
.

Recall that the twist of a modular form F ⊗
(
•
ℓ

)
(z) is defined by

F ⊗
(
•
ℓ

)
(z) :=

∑

n

(
n
ℓ

)
a(n) qn,

which may also be written

F ⊗
(
•
ℓ

)
(z) =

g

ℓ

∑

v (mod ℓ)

(
v
ℓ

)
F (z)

∣∣∣∣
(

1 −v/ℓ
0 1

)
,

where g is the usual Gauss sum

g :=
∑

v (mod ℓ)

(
v
ℓ

)
e2πiv/ℓ.

By the theory of twists of modular forms, the function f̃(z) is a weakly holomorphic modular
form in the space M3ℓ−2(Γ1(2ℓ4t2)).

Now let Eℓ,x(z) be defined by

Eℓ,x(z) :=
ηℓx

(z)

η(ℓxz)
. (4.5)

It is known that Eℓ,x(z) is a modular form in the space M(ℓx−1)/2(Γ0(ℓ
x), χ) for a certain character

χ, that Eℓ,x(z)ℓy
≡ 1 (mod ℓy+1), and that Eℓ,x(z) vanishes at every cusp a/c with ℓx not

dividing c.
Define G(z) by

G(z) :=
f̃(z)

η6ℓ−8(2ℓz)η4(ℓz)
× Eℓ,u+1(z)T ,

where T is a large enough power of ℓ so that

G(z) ≡
f̃(z)

η6ℓ−8(2ℓz)η4(ℓz)
(mod ℓj)

and G(z) vanishes at all cusps a/c with ℓt (= ℓu+1) not dividing c. We now want to show that
G(z) vanishes at the cusps a/c with ℓt|c. We shall consider two cases, depending on the parity
of c.
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If c is even, then let

(
a b
c d

)
∈ Γ0(2ℓt) be the matrix for such a cusp. The expansion for the

denominator of G(z) at such a cusp up to a constant is

η6ℓ−8(2ℓz)η4(ℓz)|

(
a b
c d

)
= q(ℓ2−ℓ)/2 + · · · .

Now we treat the function f(z) ⊗
(
•
ℓ

)
. First recall the commutation relation, that for any

v′ ≡ d2v (mod ℓ) we have
(

1 −v/ℓ
0 1

)(
a b
c d

)
=

(
a′ b′

c′ d′

)(
1 −v′/ℓ
0 1

)
, (4.6)

where (
a′ b′

c′ d′

)
=

(
a − cv/ℓ b − cvv′/ℓ2 + (av′ − dv)/ℓ

c d + cv′/ℓ

)
. (4.7)

Since we are in the case where c is even, we have

(
a′ b′

c′ d′

)
∈ Γ0(2ℓt).

So, we have

f(z) ⊗
(
•
ℓ

) ∣∣∣∣
(

a b
c d

)

=
g

ℓ

ℓ−1∑

v=1

(
v
ℓ

)
f(z)

∣∣∣∣
(

1 −v/ℓ
0 1

) ∣∣∣∣
(

a b
c d

)

=
g

ℓ

ℓ−1∑

v=1

(
v
ℓ

)
f(z)

∣∣∣∣
(

a′ b′

c′ d′

) ∣∣∣∣
(

1 −v′/ℓ
0 1

)

=
−2ig

πℓ

ℓ−1∑

v=1

(
v
ℓ

)
(

t−1∑

s=0

ωsζ
−rsη2(2z)η6ℓ−8(2ℓz)η4(ℓz)

(1 + ζs)(1 + ζ−s)η4(z)K0,s(z)

)∣∣∣∣
(

a′ b′

c′ d′

) ∣∣∣∣
(

1 −v′/ℓ
0 1

)

=
−2ig

πℓ

ℓ−1∑

v=1

(
v
ℓ

)
(

t−1∑

s=0

ωsζ
−rsη2(2z)η6ℓ−8(2ℓz)η4(ℓz)

(1 + ζs)(1 + ζ−s)η4(z)β′
sK0,d′s(z)

)∣∣∣∣
(

1 −v′/ℓ
0 1

)
.

Here we have used the transformation for the Klein forms (4.2) together with the fact that

η2(2z)η6ℓ−8(2ℓz)η4(ℓz)

η4(z)
∈ M3ℓ−3(Γ0(2ℓ, χtriv)).

Now, the first term in this q-expansion is

4g

ℓ
q(ℓ2−ℓ)/2

(
t−1∑

s=0

ωsζ
−rs

ωd′sβ
′
s(1 + ζs)(1 + ζ−s)

ℓ−1∑

v=1

(
v
ℓ

)
e−2πiv′(ℓ2−ℓ)/2ℓ

)
.

Since 2ℓ|(ℓ2 − ℓ), the sum on v is equal to 0. This means the expansion of f(z) ⊗
(
•
ℓ

)
at the

cusp a/c starts with (at least) q(ℓ2−ℓ)/2+1. We can also see that twisting again will not decrease

the order of vanishing at this cusp (since the matrix

(
1 −v′/ℓ
0 1

)
does not decrease the order of
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vanishing). Hence f(z) ⊗
(
•
ℓ

)
⊗
(
•
ℓ

)
also vanishes to order at least (ℓ2 − ℓ)/2 + 1, and so G(z)

vanishes at the cusp a/c.

Now suppose that c is odd, and let

(
a b
c d

)
∈ Γ0(ℓt) be the matrix for such a cusp. The

expansion for the denominator of G(z) at such a cusp is in terms of q2 := q1/2, and up to a
constant this expansion begins

η6ℓ−8(2ℓz)η4(ℓz)|

(
a b
c d

)
= q

ℓ2/4
2 + · · · .

One may also compute that the expansion of η2(2z)η6ℓ−8(2ℓz)η4(ℓz)/η4(z) at such a cusp a/c

begins with ⋆q
(ℓ2−1)/4
2 + · · · .

Next we calculate the order of vanishing of the numerator of G(z) at the cusp a/c. First, for
f(z), we have

f(z)

∣∣∣∣
(

a b
c d

)
=

−2i

π

(
t−1∑

s=0

ωsζ
−rsη2(2z)η6ℓ−8(2ℓz)η4(ℓz)

(1 + ζs)(1 + ζ−s)η4(z)K0,s(z)

)∣∣∣∣
(

a b
c d

)

=
−2i

π

(
⋆q

(ℓ2−1)/4
2 + · · ·

) t−1∑

s=0

ωsζ
−rs

(1 + ζs)(1 + ζ−s)K0,s(z)

∣∣∣∣
(

a b
c d

)

=
−2i

π

(
⋆q

(ℓ2−1)/4
2 + · · ·

) t−1∑

s=0

ωsζ
−rs

(1 + ζs)(1 + ζ−s)βsK0,ds(z)
.

The first term in this expansion is

4 ⋆ q(ℓ2−1)/8
t−1∑

s=1

ωsζ
−rs

(1 + ζs)(1 + ζ−s)βsωds

. (4.8)

Now, for f ⊗
(
•
ℓ

)
(z), we make the observation that in the commutation relation (4.6) above

we may select v′ even. This ensures that

(
a b
c d

)(
a′ b′

c′ d′

)−1

∈ Γ0(2ℓt),

and in particular,

η2(2z)η6ℓ−8(2ℓz)η4(ℓz)

η4(z)

∣∣∣∣
(

a b
c d

)
=

η2(2z)η6ℓ−8(2ℓz)η4(ℓz)

η4(z)

∣∣∣∣
(

a′ b′

c′ d′

)
.
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Hence we have

f ⊗
(
•
ℓ

)
(z)

∣∣∣∣
(

a b
c d

)

=
g

ℓ

ℓ−1∑

v=1

(
v
ℓ

)
f(z)

∣∣∣∣
(

1 −v/ℓ
0 1

) ∣∣∣∣
(

a b
c d

)

=
g

ℓ

ℓ−1∑

v=1

(
v
ℓ

)
f(z)

∣∣∣∣
(

a′ b′

c′ d′

) ∣∣∣∣
(

1 −v′/ℓ
0 1

)

=
−2ig

πℓ

ℓ−1∑

v=1

(
v
ℓ

)
(

t−1∑

s=0

ωsζ
−rsη2(2z)η6ℓ−8(2ℓz)η4(ℓz)

(1 + ζs)(1 + ζ−s)η4(z)K0,s(z)

)∣∣∣∣
(

a′ b′

c′ d′

) ∣∣∣∣
(

1 −v′/ℓ
0 1

)

=
−2ig

πℓ

ℓ−1∑

v=1

(
v
ℓ

)



t−1∑

s=0

ωsζ
−rs
(
⋆q

(ℓ2−1)/4
2 + · · ·

)

(1 + ζs)(1 + ζ−s)β′
sK0,d′s(z)



∣∣∣∣
(

1 −v′/ℓ
0 1

)
.

We have β′
s = βs and d′ ≡ d (mod t), and so the above expansion begins as

4g

ℓ

t−1∑

s=0

ωsζ
−rs

(1 + ζs)(1 + ζ−s)βsωds

ℓ−1∑

v=1

(
v
ℓ

)
⋆

(
q
(ℓ2−1)/4
2

∣∣∣∣
(

1 −v′/ℓ
0 1

)
+ · · ·

)
,

which begins with

4 ⋆ q(ℓ2−1)/8 g

ℓ

t−1∑

s=1

ωsζ
−rs

(1 + ζs)(1 + ζ−s)βsωds

ℓ−1∑

v=1

(
v
ℓ

)
e

−2πiv′(ℓ2−1)/8
ℓ .

If we multiply this by
(
−2
ℓ

)
and simplify using g2 = ℓ

(
−1
ℓ

)
, then we get the same term as in

(4.8). This shows that

f(z) −
(
−2
ℓ

)
f(z) ⊗

(
•
ℓ

)

has an expansion at a/c which begins at least with q(ℓ2+7)/8. Twisting again, as before, does not
lower this. Since the denominator η6ℓ−8(2ℓz)η4(ℓz) had an expansion at a/c that starts with

qℓ2/8, we may conclude that G(z) vanishes at a/c, and is therefore a cusp form.
To finish the proof, observe that for a series of the form

∑
a(n)qn

∑
b(ℓn)qℓn,

twisting by
(
•
ℓ

)
gives

(∑
a(n)qn

∑
b(ℓn)qℓn

)
⊗
(
•
ℓ

)
=
(∑

a(n)qn ⊗
(
•
ℓ

))(∑
b(ℓn)qℓn

)
.

This fact, combined with the definition of G(z) and the generating function (2.7), shows that
∑

(n
ℓ )=−

�
−2
ℓ

� ℓuNN(r, ℓu, n)qn

is congruent to a cusp form with integer coefficients modulo ℓj . Since j is arbitrary and u is
fixed, dividing by ℓu completes the proof of the theorem. �
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Using a result of Serre on modular forms, Theorem 1.6 is an easy corollary of the previous
theorem:

Proof of Theorem 1.6. Serre [35] has shown that for any integer M , any holomorphic modular
form of integer weight on any congruence subgroup of SL2(Z) with integer coefficients has almost
all of its Fourier coefficients divisible by M . From Theorem 4.1, the series

∑

(n
ℓ )=−

�
−2
ℓ

�NN(r, ℓu, n)qn (4.9)

is congruent to a cusp form modulo ℓj for any j. By construction, that cusp form has coefficients
of the type a(n)/ℓu, with a(n) ∈ Z. Since (4.9) contains 1/2− 1/ℓ of the values of NN(r, ℓu, n),
the theorem follows from Serre’s result. �

As mentioned in the introduction, Theorem 1.6 is also true for pp(n). We now complete the
proof of Theorem 1.8 by considering the case ℓ = 2.

Proof of Theorem 1.8. The function
(

η2(z)

η(2z)

)2j

is congruent to 1 modulo 2j+1, and so the function

η2(2z)

η4(z)
×

(
η2(z)

η(2z)

)2j

=
η2j+1−4(z)

η2j−2(2z)
(4.10)

is congruent modulo 2j+1 to ∑

n≥0

pp(n)qn.

It is easily verified using properties of eta functions that (4.10) is a holomorphic modular form,
and hence Serre’s result implies that almost all n have pp(n) divisible by 2j . �

Proof of Theorem 1.7. Fix an odd prime ℓ and a power j. It follows from work of Serre [36]
that for any cusp form f(z) =

∑
a(n)qn on Sk(Γ0(N), χ) with algebraic integer coefficients, and

for any modulus M , a positive proportion of the primes p satisfy

f(z)|T (p) ≡ 0 (mod M).

Here T (p) is the integral weight Hecke operator which acts on such forms by

f(z)|T (p) =
∑

n≥0

(
a(pn) + χ(p)pk−1a(n/p)

)
qn.

From work of Ono [30, Theorem 2.2] and the classical decomposition of Sk(Γ1(N)), it follows
that for any finite set of holomorphic integer weight cusp forms fi(z) on Γ1(Ni) with algebraic
integer coefficients, a positive proportion of the primes p satisfy

fi(z)|T (p) ≡ 0 (mod M)

for all i. For the case of t = ℓu, let fi (0 ≤ i ≤ ℓu − 1) be the form
∑

(n
ℓ )=−

�
−2
ℓ

�NN(i, ℓu, n)qn.
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Then for a positive proportion of the primes p, if (p, n) = 1 and
(

n
ℓ

)
= −

(
−2
ℓ

)
, NN(i, ℓu, pn) ≡ 0

(mod ℓj) for all i. The congruences in arithmetic progressions follow immediately.
For the case (t, ℓ) = 1 we use Definition 4.1 and Corollary 4.3 of [29] to see that each R(ζs

t ; q)
is a weakly holomorphic modular form in Γ1(8t2). In particular, we have that up to a constant
multiple,

R(ζs
t ; q) =

η2(2z)

η4(z)K0,s(z)
.

Now, by a result of Treneer [37, Theorem 3.1] (and the remarks at the end of [12]), we may
conclude that there is a natural number m so that

∑

ℓ∤n

NN(i, t, ℓmn)qn

is congruent modulo ℓj to a cusp form. Again applying the work of Serre and Ono, there are
infinitely many integer-weight Hecke operators that annihilate all of these cusp forms modulo
ℓj . As in the case t = ℓj , this gives Theorem 1.7 for (t, ℓ) = 1. �
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[35] J.-P. Serre, Divisibilité des coefficients des formes modulaires de poids entier, C.R. Acad. Sci. Paris A 279

(1974), 679-682.
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