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Abstract. In this note, we continue our study of generalized quantum modular forms initiated
in [4, 5]. We construct further examples of depth two quantum modular forms generalizing several
results in [4]. In a special case (corresponding to p = 2) we present a more detailed analysis. In
particular, a rank two higher depth quantum modular form for the full modular group is constructed.

1. Introduction and statement of results

For p ∈ N, define the following sl3 false theta function

F (q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3 (m2

1+m2
2+m1m2)−m1−m2+ 1

p (1− qm1) (1− qm2)
(
1− qm1+m2

)
.

This function was introduced in [3] as the numerator of the character of a certain W -algebra
associated to sl3. A more direct connection between the series and Lie theory can be readily seen
from its coefficient min(m1,m2) - the value of Kostant’s partition function of sl3.

In [4] we decomposed F as

F (q) =
2

p
F1 (qp) + 2F2 (qp) , (1.1)

where F1 and F2 are generalizations of quantum modular forms. Roughly speaking Zagier [12]
defined quantum modular forms to be function f : Q → C (Q ⊂ Q) such that the “obstruction to
modularity”

f(τ)− (cτ + d)−kf(Mτ) M =
(
a b
c d

)
∈ SL2(Z)

is “nice”. One can show quantum modular properties of the Fj by using two-dimensional Eichler

integrals. For instance, as τ → h
k ∈ Q, F1 agrees with an integral of the shape (q := e2πiτ )

ˆ i∞

−τ

ˆ i∞

w1

f(w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1,

where f ∈ S 3
2
(χ1,Γ) ⊗ S 3

2
(χ2,Γ) (χj are certain multipliers and Γ ⊂ SL2(Z)). Throughout we

write vectors in bold letters and their components with subscripts. The modular properties of the
integral in (1.1) follow from the modularity of f which in turn gives quantum modular properties of
F1. We call the resulting functions higher depth quantum modular forms. Roughly speaking, depth
two quantum modular forms satisfy, in the simplest case, the modular transformation property with
M =

(
a b
c d

)
∈ SL2(Z)

f(τ)− (cτ + d)−kf(Mτ) ∈ Qκ(Γ)O(R) +O(R), (1.2)

where Qκ(Γ) is the space of quantum modular forms of weight κ and O(R) the space of real-analytic
functions defined on R ⊂ R. In [5], we proved that F1 and F2 are components of vector-valued
quantum modular forms of depth two, generalizing (1.2).
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A natural question that arises is what the other components of the vector-valued forms are as
q-series. To investigate this, we define, for 1 ≤ s1, s2 ≤ p ∈ N,

Fs(q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3

((
m1− s1p

)2
+
(
m2− s2p

)2
+
(
m1− s1p

)(
m2− s2p

))

×
(

1− qm1s1 − qm2s2 + qm1s1+(m1+m2)s2 + qm2s2+(m1+m2)s1 − q(m1+m2)(s1+s2)
)
.

Note that F(1,1)(q) = F (q). As discussed in [3] these series are in fact parametrized by dominant
integral weights (s1 − 1)ω1 + (s2 − 1)ω2 for sl3, where ωj are fundamental weights (dual to simple
roots α1 and α2).

We may decompose Fs as in (1.1) (see Lemma 2.1). The corresponding functions F1,s and F2,s

are again generalized quantum modular forms. More precisely, we have.

Theorem 1.1. The functions F1,s and F2,s are depth two quantum modular forms (with respect to
some subgroup) of weights one and two, respectively.

To prove Theorem 1.1, we show that F1,s(τ) asymptotically agrees to infinite order with a certain
Eichler integral E1,s(

τ
p ) defined in (2.1). Similarly, F2,s(τ) asymptotically agrees with an Eichler

integral E2,s(
τ
p ) given in (2.2).

We next restrict to the special case p = 2. It turns out (see Lemma 2.2) that for p = 2 all F2,s

vanish. Thus we only need to consider F1,s.

Theorem 1.2. For p = 2, the space spanned by E1,(1,1) and E1,(1,2) is essentially invariant under
modular transformations. By this we mean that the only terms appearing in the modular transfor-
mations which do not lie in the space are simpler (see (2.6) and (2.7) for the case of inversion).

Motivated by representation theory of the W -algebra W 0(p)A2 studied in [3, 8], we raise the
following.

Conjecture. After multiplication with η2, the characters of W 0(p)A2 given in [3, Section 5] (which
also includes the series Fs) combine into a vector-valued quantum modular form of depth two.

The second goal of this paper is to determine the asymptotic behavior of E1,s(it) as t → 0+.
It is well-known that asymptotic behaviors of vector-valued modular forms (as t → 0+) can be
computed by applying the S-transformation τ 7→ − 1

τ , and then analyzing the dominating term.
This method is widely used for studying quantum dimensions of modules of vertex algebras (and
affine Lie algebras) as their characters often transform invariantly under SL2(Z). In this paper we
work with functions (coming also from characters) that transform with higher depth error terms so
their asymptotics are more interesting and harder to analyze. We show that asymptotic behavior
of double Eichler integrals can be also analyzed by using a similar approach. We do this directly
from the integral representation of the error function. In the body of the paper, we show that it is
enough to study

E1,(1,1)(τ) := 4I(1,3)(τ) and E1,(1,2)(τ) := 2I(1,1)(τ) + 2I(1,5)(τ), (1.3)

where the theta integrals Ik are defined in (2.3). We prove the following.

Theorem 1.3. We have, as t→ 0+,

E1,(1,1)(it) ∼
1

4
, E1,(1,2)(it) ∼

3

4
.

Note that the asymptotics in Theorem 1.3 agree with the answer which one obtains from [5] by
using two-dimensional false theta functions.
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2. Proof of Theorem 1.1 and Theorem 1.2

To prove Theorem 1.1 and Theorem 1.2, we let

F1,s(q) :=
∑
α∈Ss

εs(α)
∑
n∈N2

0

qpQ(n+α),

where Q(x1, x2) := 3x2
1 + 3x1x2 + x2

2 and where

Ss :=

{(
s2 − s1

3p
, 1− s2

p

)
,

(
1− s2 − s1

3p
, 1− s1

p

)
,

(
2s1 + s2

3p
, 1− s1 + s2

p

)
,(

2s2 + s1

3p
, 1− s1 + s2

p

)
,

(
1− s1 + 2s2

3p
,
s2

p

)
,

(
1− s2 + 2s1

3p
,
s1

p

)
,(

2s1 + s2

3p
, 1− s1

p

)
,

(
2s2 + s1

3p
, 1− s2

p

)
,

(
1− s1 + 2s2

3p
,
s1 + s2

p

)
,(

1− s2 + 2s1

3p
,
s1 + s2

p

)
,

(
s2 − s1

3p
,
s1

p

)
,

(
1− s2 − s1

3p
,
s2

p

)}
,

εs(α) :=



s2 if α ∈
{(

s2−s1
3p , 1− s2

p

)
,
(

1− s1+2s2
3p , s2p

)
,
(

2s2+s1
3p , 1− s2

p

)
,(

1− s2−s1
3p , s2p

)}
,

s1 if α ∈
{(

1− s2−s1
3p , 1− s1

p

)
,
(

1− s2+2s1
3p , s1p

)
,
(

2s1+s2
3p , 1− s1

p

)
,(

s2−s1
3p , s1p

)}
,

−(s1 + s2) if α ∈
{(

2s1+s2
3p , 1− s1+s2

p

)
,
(

2s2+s1
3p , 1− s1+s2

p

)
,
(

1− s1+2s2
3p , s1+s2

p

)
,(

1− s2+2s1
3p , s1+s2

p

)}
and

F2,s(q) :=
∑
α∈Ss

ηs(α)
∑
n∈N2

0

(n2 + α2) qQ(n+α),

where

ηs(α) :=



1 if α ∈
{(

s2−s1
3p , 1− s2

p

)
,
(

1− s2−s1
3p , 1− s1

p

)
,
(

2s1+s2
3p , 1− s1

p

)
,(

2s2+s1
3p , 1− s2

p

)
,
(

1− s1+2s2
3p , s1+s2

p

)
,
(

1− s2+2s1
3p , s1+s2

p

)}
,

−1 if α ∈
{(

2s1+s2
3p , 1− s1+s2

p

)
,
(

2s2+s1
3p , 1− s1+s2

p

)
,
(

1− s1+2s2
3p , s2p

)
,(

1− s2+2s1
3p , s1p

)
,
(
s2−s1

3p , s1p

)
,
(

1− s2−s1
3p , s2p

)}
.
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Remark. We have

F(p,p)(q) = 1.

Thus we may throughout assume that s 6= (p, p).

Similarly as in the case s = (1, 1), a lengthy calculation gives.

Lemma 2.1. We have

Fs(q) =
1

p
F1,s (qp) + F2,s (qp) .

The following theorem states quantum modular properties of the functions F1,s and F2,s, using
the method of [4]. Let

E1,s(τ) :=
∑
α∈S ∗

s

εs(α)E1,α(pτ), (2.1)

where

S ∗
s :=

{(
s2 − s1

3p
, 1− s2

p

)
,

(
1− s2 − s1

3p
, 1− s1

p

)
,

(
2s1 + s2

3p
, 1− s1

p

)
,(

2s2 + s1

3p
, 1− s2

p

)
,

(
1− s1 + 2s2

3p
,
s1 + s2

p

)(
1− s2 + 2s1

3p
,
s1 + s2

p

)}
.

Moreover, the Eichler integrals E1,α are given as

E1,α(τ) := −
√

3

4

ˆ i∞

−τ

ˆ i∞

w1

θ1(α;w) + θ2(α;w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

with

θ1(α;w) :=
∑

n∈α+Z2

(2n1 + n2)n2e
3πi
2

(2n1+n2)2w1+
πin22w2

2 ,

θ2(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 .

Finally let

E2,s(τ) :=
∑
α∈S ∗

s

E2,α(pτ). (2.2)

Here

E2,α(τ) :=

√
3

8π

ˆ i∞

−τ

ˆ i∞

w1

2θ3(α;w)− θ4(α;w)√
−i(w1 + τ)(−i(w2 + τ))

3
2

dw2dw1

+

√
3

8π

ˆ i∞

−τ

ˆ i∞

w1

θ5(α;w)

(−i(w1 + τ))
3
2

√
−i(w2 + τ)

dw2dw1

with

θ3(α;w) :=
∑

n∈α+Z2

(2n1 + n2)e
3πi
2

(2n1+n2)2w1+
πin22w2

2 ,

θ4(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 ,

θ5(α;w) :=
∑

n∈α+Z2

n1e
πi
2

(3n1+2n2)2w1+
3πin21w2

2 .
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Furthermore define, for ν ∈ {0, 1}, h ∈ Z, N,A ∈ N with A|N and N |hA, the theta function
studied, for example, by Shimura [11]

Θν(A, h,N ; τ) :=
∑
m∈Z

m≡h (mod N)

mνq
Am2

2N2 .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 (Sketch): We start with F1,s. Write

F1,s

(
e2πih

k
−t
)
∼
∑
m≥0

As,h,k(m)tm
(
t→ 0+

)
.

Using the Euler-Maclaurin summation formula (in the shape stated in (28) of [4]) one can prove,
following the proof of Theorem 7.1 of [4], that

E1,s

(
it

2π
− h

k

)
∼
∑
m≥0

As,h,k(m)(−t)m
(
t→ 0+

)
.

Here

E1,s(τ) :=
1

2

∑
α∈S ∗

s

εs(α)
∑

n∈α+Z2

M2

(√
3;
√
v
(

2
√

3n1 +
√

3n2, n2

))
q−Q(n),

where w ∈ R2 and κ ∈ R with w2, w1 − κw2 6= 0, we set

M2(κ;w) := − 1

π2

ˆ
R2−iw

e−πt
2
1−πt22−2πi(t1w1+t2w2)

t2(t2 − κt1)
dt1dt2.

In particular, E1,s agrees with F1,s on Q. Proceeding as in the proof of Lemma 6.1 of [4] one can
then show that

E1,s(τ) = E1,s

(
τ

p

)
.

To determine the transformation behaviour, we rewrite the theta functions in E1,s in terms of
Shimura theta functions to obtain, as in the proof of Proposition 5.2 of [4]

3pE1,s

(
τ

p

)
= (2s1 + s2)J(s2,s2+2s1)(τ) + (2s2 + s1)J(s1,s1+2s2)(τ) + (s2 − s1)J(s1+s2,s1−s2)(τ),

where

Jk(τ) :=
∑

δ∈{0,1}

I(k1+δp,k2+3δp)(τ) with Ik(τ) := −
√

3

4p
IΘ1(2p,k1,2p;·),Θ1(6p,k2,6p,·)(τ). (2.3)

Here, for modular forms f and g of weights κ1 and κ2, respectively,

If,g(τ) :=

ˆ i∞

−τ

ˆ i∞

w1

f(w1)g(w2)

(−i(w1 + τ))2−κ1(−i(w2 + τ))2−κ2 dw2dw1.

Now the transformation properties follow as in the proof of Proposition 5.2 of [5].
For the function F2,s, we proceed in the same way. Writing

F2,s

(
e2πih

k
−t
)
∼
∑
m≥0

Bs,h,k(m)tm
(
t→ 0+

)
we may show in a similar manner as in the proof of Theorem 7.2 of [4], using the Euler-Maclaurin
summation formula, that

E2,s

(
it

2π
− h

k

)
∼
∑
m≥0

Bs,h,k(m)(−t)m.
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Here

E2(τ) =E2,s(τ)

:=
1

4πi

∑
α∈S ∗

s

∑
n∈α+Z2

[
∂

∂z

(
M2

(√
3;
√

3v(2n1 + n2),
√
v

(
n2 −

2 Im(z)

v

))
e2πin2z

)]
z=0

q−Q(n).

Following the proof of Lemma 6.2 of [4], one may then prove that

E2,s(τ) = E2,s

(
τ

p

)
.

To finish the proof one may show that, proceeding as in the proof of Proposition 5.2 of [4].

E2,s(τ) =
2

p

(
−J(s1+s2,s1−s2) (τ) + J(s2,2s1+s2) (τ) + J(s1,2s2+s1) (τ)

)
,

where

Jk(τ) :=
∑

δ∈{0,1}

I(k1+pδ,k2+3pδ)(τ), with Ik(τ) := −
√

3

8π
IΘ1(2p,k1,2p;·),Θ0(6p,k2,6p;·)(τ).

Again the transformation properties follow as in the proof of Proposition 5.5 of [5]. �

We now restrict to p = 2. The following lemma shows the vanishing of F2,s in this case.

Lemma 2.2. For p = 2, the functions F2,s and E2,s vanish identically.

Proof: We start by proving that F2,s = 0. It is enough to consider s ∈ {(1, 1), (1, 2)}. The claim
for s = (1, 1) follows directly by plugging in the definition of F2,(1,1) and canceling terms.

We next consider F2,(1,2). By definition

F2,(1,2)(q) =
∑

α∈S(1,2)

η(1,2)(α)
∑
n∈N2

0

(n2 + α2) qQ(n+α),

where

η(1,2)(α) =

{
1 if α ∈

{(
1
6 , 0
)
,
(

5
6 ,

1
2

)
,
(

2
3 ,

1
2

)
,
(

5
6 , 0
)
,
(

1
6 ,

3
2

)
,
(

1
3 ,

3
2

)}
,

−1 if α ∈
{(

2
3 ,−

1
2

)
,
(

5
6 ,−

1
2

)
,
(

1
6 , 1
)
,
(

1
3 ,

1
2

)
,
(

1
6 ,

1
2

)
,
(

5
6 , 1
)}
.

Note that

Hα(q) :=
∑
n∈N2

0

(n2 + α2) qQ(n+α) −
∑
n∈N2

0

(n2 + α2 − 1) qQ(n+(α1,α2−1))

= (1− α2) q
1
4

(α2−1)2
∑

n∈α1+
α2−1

2
+N0

q3n2
.

Thus

F2,(1,2)(q) = −H( 1
6
,1)(q) +H( 5

6
, 1
2)(q) +H( 2

3
, 1
2)(q)−H( 5

6
,1)(q) +H( 1

6
, 3
2)(q) +H( 1

3
, 3
2)(q)

=
1

2
q

1
16

∑
n∈ 7

12
+N0

q3n2
+

1

2
q

1
16

∑
n∈ 5

12
+N0

q3n2 − 1

2
q

1
16

∑
n∈ 5

12
+N0

−1

2
q

1
16

∑
n∈ 7

12
+N0

q3n2
= 0.

To see that E2,s = 0, it is sufficient to prove

−J(s1+s2,s1−s2) + J(s2,2s1+s2) + J(s1,2s2+s1) = 0,

which is a straightforward computation with theta series. �

We are now ready to prove Theorem 1.2.
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Sketch of proof of Theorem 1.2: We write

E1,s(τ) = −
√

3

2

ˆ i∞

−τ

ˆ i∞

w1

∑
α∈S ∗

s
ε(α) (θ1(α; 2w) + θ2(α; 2w))√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.

We next show the identities in (1.3). We start with s = (1, 1). We use the theta relation

1

2

∑
α∈S ∗

(1,1)

ε(α) (θ1(α; 2w) + θ2(α; 2w)) =
1

2
Θ1(4, 1, 4;w1)Θ1(12, 3, 12;w2). (2.4)

Equation (2.4) yields

E1,(1,1)(τ) = −
√

3

2

ˆ i∞

−τ

ˆ i∞

w1

Θ1(4, 1, 4;w1)Θ1(12, 3, 12;w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1 = 4I(1,3)(τ),

which is the first identity in (1.3).
We next consider E1,(1,2) and use that∑
α∈S ∗

(1,2)

ε(α) (θ1(α; 2w) + θ2(α; 2w)) =
1

2
Θ1(4, 1, 4;w1) (Θ1(12, 1, 12;w2) + Θ1(12, 5, 12;w2)) .

(2.5)
Thus

E1,(1,2)(τ) = −
√

3

4

ˆ i∞

−τ

ˆ i∞

w1

Θ1(4, 1, 4;w1) (Θ1(12, 1, 12;w2) + Θ1(12, 5, 12;w2))√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

= 2(I(1,1)(τ) + I(1,5)(τ)),

which is the second identity in (1.3).
We next use Lemma 5.1 of [5], to obtain

Ik(τ) = (−iτ)−1 1√
3

5∑
k=1

sin

(
πkk2

6

)
I(k1,k)

(
−1

τ

)
+ Ak(τ),

where Ak contributes the simpler terms mentioned in Theorem 1.2, and is explicitly given by

Ak(τ) := −
√

3

8

ˆ i∞

0

ˆ i∞

w1

Θ1(4, k1, 4;w1)Θ1(12, k2, 12;w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

−
√

3

8
IΘ1(4,k1,4;·)(τ)rΘ1(12,k2,12;·)(τ) +

√
3

8
rΘ1(4,k1,4;·)(τ)rΘ1(12,k2,12;·)(τ),

where, for f a holomorphic modular form of weight k,

rf (τ) :=

ˆ i∞

0
f(w)(−i(w + τ))k−2dw.

In particular

E1,(1,1)(τ) =
1√

3(−iτ)

(
2E1,(1,2)

(
−1

τ

)
− E1,(1,1)

(
−1

τ

))
+ 4A(1,3)(τ),

E1,(1,2)(τ) =
1√

3(−iτ)

(
E1,(1,1)

(
−1

τ

)
+ E1,(1,2)

(
−1

τ

))
+ 2A(1,1)(τ) + 2A(1,5)(τ).

Inverting and reordering gives

E1,(1,1)

(
−1

τ

)
= − iτ√

3

(
2E1,(1,2)(τ)− E1,(1,1)(τ)

)
− 4iτ√

3

(
A(1,3)(τ)− A(1,1)(τ)− A(1,5)(τ)

)
, (2.6)
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E1,(1,2)

(
−1

τ

)
= − iτ√

3

(
E1,(1,2)(τ) + E1,(1,1)(τ)

)
+

2iτ√
3

(
A(1,1)(τ) + A(1,5)(τ) + 2A(1,3)(τ)

)
. (2.7)

The claim follows using that

E1,(1,1)(τ + 1) = −E1,(1,1)(τ), E1,(1,2)(τ + 1) = e−
πi
6 E1,(1,2)(τ).

�

3. The asymptotic behavior of H1,α

To prove Theorem 1.3 we need to compute

Hα := lim
t→0+

H1,α

(
i
t

)
t

,

where, for α ∈ R2,

H1,α(τ) := −
√

3

ˆ i∞

0

ˆ i∞

w1

θ1 (α;w) + θ2 (α;w)√
−i (w1 + τ)

√
−i (w2 + τ)

dw2dw1.

Proposition 3.1. Assume that α1, α2 are not both in Z. We have

Hα =


2√
3

sin(2πα1) sin(2πα2)
(1−cos(2πα1))(1−cos(2πα2)) if α1, α2 6∈ Z,
2
√

3
1−cos(2πα2) if α1 ∈ Z, α2 6∈ Z,

2
(1−cos(2πα1))

√
3

if α1 6∈ Z, α2 ∈ Z.

Proof: We first rewrite H1,α(τ). By Theorem 1.2 of [5], we have

H1,α(τ) =

ˆ
R2

g1,α(w)e2πiτQ(w)dw1dw2.

Here we define

g1,α(w) :=


2Gα1(w1)Gα2(w2)− 2Fα1(w1)Fα2(w2) if α1, α2 /∈ Z,
−2F0(w1)Fα2(w2) + 2

πw1
Fα2

(
w2 + 3w1

2

)
if α1 ∈ Z, α2 /∈ Z,

−2Fα1(w1)F0(w2) + 2
πw2
Fα1

(
w1 + w2

2

)
if α1 /∈ Z, α2 ∈ Z,

setting

Fα(x) :=
sinh(2πx)

cosh(2πx)− cos(2πα)
, Gα(x) :=

sin(2πα)

cosh(2πx)− cos(2πα)
.

Applying the two-dimensional saddle point method gives that

Hα =
g1,α(0, 0)√

3
.

Explicitly computing g1,α(0, 0) yields the claim of Proposition 3.1.
�

4. Proof of Theorem 1.3.

Inverting (2.6) and (2.7) gives

E1,(1,1)(τ) =
1√

3(−iτ)

(
2E1,(1,2)

(
−1

τ

)
− E1,(1,1)

(
−1

τ

))
+

4√
3(−iτ)

(
A(1,3)

(
−1

τ

)
− A(1,1)

(
−1

τ

)
− A(1,5)

(
−1

τ

))
,
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E1,(1,2)(τ) =
1√

3(−iτ)

(
E1,(1,2)

(
−1

τ

)
+ E1,(1,1)

(
−1

τ

))
− 2√

3(−iτ)

(
A(1,1)

(
−1

τ

)
+ A(1,5)

(
−1

τ

)
+ 2A(1,3)

(
−1

τ

))
.

We next rewrite the first summand of A(1,j), denoting it by B(1,j). For this, we again use the
theta relations (2.4) and (2.5). This yields

B(1,3)(τ) =
1

16

∑
α∈S ∗

(1,1)

ε(α)H1,α(2τ), B(1,1)(τ) + B(1,5)(τ) =
1

8

∑
α∈S ∗

(1,2)

ε(α)H1,α(2τ).

Thus

E1,(1,1)(τ) =
1√

3(−iτ)

(
2E1,(1,2)

(
−1

τ

)
− E1,(1,1)

(
−1

τ

))

+
1

2
√

3(−iτ)

1

2

∑
α∈S ∗

(1,1)

ε(α)H1,α

(
−2

τ

)
−

∑
α∈S ∗

(1,2)

ε(α)H1,α

(
−2

τ

)
− 1

2(−iτ)

(
IΘ1(4,1,4)

(
−1

τ

)
− rΘ1(4,1,4)

(
−1

τ

))

×
(
rΘ1(12,3,12)

(
−1

τ

)
− rΘ1(12,1,12)

(
−1

τ

)
− rΘ1(12,5,12)

(
−1

τ

))
,

E1,(1,2)(τ) =
1√

3(−iτ)

(
E1,(1,2)

(
−1

τ

)
+ E1,(1,1)

(
−1

τ

))

− 1

4
√

3(−iτ)

 ∑
α∈S ∗

(1,1)

ε(α)H1,α

(
−2

τ

)
+

∑
α∈S ∗

(1,2)

ε(α)H1,α

(
−2

τ

)
+

1

4(−iτ)

(
IΘ1(4,1,4,1)

(
−1

τ

)
− rΘ1(4,1,4)

(
−1

τ

)

×
(

2rΘ1(12,3,12; · )

(
−1

τ

)
+ rΘ1(12,1,12; · )

(
−1

τ

)
+ rΘ1(12,5,12; · )

(
−1

τ

)))
.

Letting τ = it→ 0 yields

E1,(1,1)(it) ∼
1

8
√

3

 ∑
α∈S ∗

(1,1)

ε(α)Hα − 2
∑

α∈S ∗
(1,2)

ε(α)Hα

+
1

2
(h3 − h1 − h5), (4.1)

E1,(1,2)(it) ∼ −
1

8
√

3

 ∑
α∈S ∗

(1,1)

ε(α)Hα +
∑

α∈S ∗
(1,2)

ε(α)Hα

− 1

4
(2h3 + h1 + h5), (4.2)

where

hj := lim
t→0

1

t
rΘ1(4,1,4; · )

(
i

t

)
rΘ1(12,j,12; · )

(
i

t

)
.
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We have∑
α∈S ∗

s

ε(α)Hα =s2H(
s2−s1

6
,1− s2

2

) + s1H(
1− s2−s1

6
,1− s1

2

) + s1H(
2s1+s2

6
,1− s1

2

) + s2H(
2s2+s1

6
,1− s2

2

)
− (s1 + s2)H(

1− s1+2s2
6

,
s1+s2

2

) − (s1 + s2)H(
1− s2+2s1

6
,
s1+s2

2

).
In particular, using Proposition 1.1, we evaluate∑

α∈S ∗
(1,1)

ε(α)Hα =
2√
3
,

∑
α∈S ∗

(1,2)

ε(α)Hα =
16√

3
. (4.3)

To compute limt→0 t
− 1

2 rΘ1(N,a,N ; · )(
i
t) we employ Lemma 3.2 of [5] to obtain

rΘ1(N,a,N ; · )

(
i

t

)
=
i
√
N

2
sin

(
2πa

N

) ˆ
R

e−
πN
t
x2

sinh
(
πx+ πia

N

)
sinh

(
πx− πia

N

)dx.
The saddle point method then yields that

rΘ1(N,a,N ; · )

(
i

t

)
= i
√
t cot

(πa
N

)
.

Thus

hj = cot

(
πj

12

)
.

In particular

h1 = − cot
( π

12

)
, h3 = −1, h5 = − cot

(
5π

12

)
.

Plugging this and (4.3) into (4.1) and (4.2) gives the claim.

5. Simplification for p = 2

We first recall the one-dimensional situation for p = 2. There is a unique false theta function∑
n∈Z

sgn

(
n+

1

2

)
q2(n+ 1

4)
2

,

whose corresponding Eichler integral is (see [3])

F ∗1,2(τ) := −2i

ˆ i∞

−τ̄

Θ1(4, 1, 4;w)√
−i(w + τ)

dw.

Noting that

Θ1(4, 1, 4; τ) = η(τ)3, (5.1)

this integral transforms as a scalar-valued quantum modular form of weight 1
2 .

In the two-dimensional case, a similar ”higher depth” picture emerges. Observing (5.1) and

Θ1(12, 3, 12; τ) = 3η(3τ)3, Θ1(12, 1, 12; τ) + Θ1(12, 5, 12; τ) = 3η(3τ)3 + η
(τ

3

)3

we obtain that the space spanned by E1,(1,1)(τ) and E1,(1,2)(τ) is also spanned by

ˆ i∞

−τ

ˆ i∞

w1

η(w1)3η(3w2)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1,

ˆ i∞

−τ

ˆ i∞

w1

η(w1)3η
(
w2
3

)3√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1.

(5.2)
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The next result can be found in [10, Corollary 6.6] (it can be also derived by using representation

theory of ŝl3 as discussed in [2]).

Proposition 5.1. We have

η(τ)
∑
m,n∈Z

qm
2+n2−mn = 3η(3τ)3 + η

(τ
3

)3
, η(τ)q

1
3

∑
m,n∈Z

qm
2+n2−mn+n = 3η(3τ)3.

According to [9],
∑

m,n∈Z q
m2+n2−mn and q

1
3
∑

m,n∈Z q
m2+n2−mn+n are numerators of two char-

acters of irreducible highest weight ŝl3-modules of level one. Therefore modular properties of the
double Eichler integrals in (5.2), modulo correction factors, are identical to modular transformation

properties of the span of characters of the level one simple affine vertex algebra of ŝl3. It would be
interesting to understand a possible connection from a purely representation theoretic perspective.
This is closely related to a conjecture of Creutzig and the third author [8] pertaining to quantum
modular properties of characters of W 0(p)A2 , representations of affine Lie algebras, and represen-
tations of quantum groups at a root of unity (see also [1, 6, 7] for other appearances of this and
related vertex algebras).
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